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This paper proposes the metafrontier non-radial Malmquist CO2 emission performance index (MNMCPI) for
measuring dynamic changes in total-factor CO2 emission performance over time. The MNMCPI method allows
for the incorporation of group heterogeneity and non-radial slack into the previously introduced Malmquist
CO2 emission performance index (MCPI). We derive the MNMCPI by solving several non-radial data envelop-
ment analysis (DEA) models. We decompose the MNMCPI into an efficiency change (EC) index, a best-practice
gap change (BPC) index, and a technology gap change (TGC) index, and based on the proposed indices, we
examine the dynamic changes in CO2 emission performance and its decomposition of fossil fuel power plants
in China for the 2005–2010 period. The empirical results show a 0.38% increase in total-factor CO2 emission
performance as a whole and a U-shaped MNMCPI curve for the sample period. Because companies owned by
the central government lack innovation and technological leadership, the results suggest a missing link in the
role of the central government in promoting CO2 emission performance.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

There is growing concern over the mitigation of climate change in
China. During the 11thfive-year plan (2006–2010), the Chinese govern-
ment announced the mandatory goals of a 20% reduction in energy
intensity (energy consumption per GDP) from 2006 to 2010 and a
40–45% decrease in carbon intensity (CO2 emissions per GDP) by 2020
compared to the 2005 level. Based on these goals, the fossil fuel power
sector has been under considerable pressure to reduce its energy use
and CO2 emissions because fossil fuel electricity generation accounted
for approximately 50% of coal consumption and 48% of CO2 emissions
in China as of 2010 (Liu and Wang, 2011). In this regard, it is crucial
for power plants in China to vastly improve their CO2 emission perfor-
mance not only for reducing CO2 emission regulation risks but also for
increasing “climate change competitiveness” in the future.

Many indicators such as carbon or energy intensity have been used
to monitor CO2 emission performance at the macroeconomic level
(Ang, 1999; Sun, 2005; Tol et al., 2009). Some studies have taken a
benchmarking approach to estimate energy or emission efficiency in
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the global electric power industry by assuming that the efficiency of
fossil fuel power plants can reach certain levels (Maruyama and
Eckelman, 2009; Ang et al., 2011). These methods may be interpreted
as a partial-factor CO2 emission performance analysis because they
can reflect only some aspects of CO2 emission performance. However,
electricity generation is a multi-factor production process using both
energy and non-energy inputs such as labor and capital to produce elec-
tricity. Therefore, it may be useful to measure CO2 emission perfor-
mance within a total-factor integrated production framework. In the
literature, Zhou et al. (2010) first propose the Malmquist CO2 emission
performance index (MCPI) for measuring changes in total-factor CO2

emission performance. This paper attempts to extend the MCPI by in-
corporating group heterogeneity and non-radial slack to develop a
new integrated index called metafrontier non-radial Malmquist CO2

emission performance index (MNMCPI) for measuring total-factor CO2

emission performance dynamic change. After introducing the
MNMCPI, we also conduct an empirical study for the Chinese fossil
fuel power plants case.

The rest of this paper is organized as follows. Section 2 reviews the
related literatures and gives the contextual setting. Section 3 introduces
themethodology, which consists of the environmental production tech-
nology, the non-radial directional distance function, and the MNMCPI.
Section 4 takes the proposed approach to empirically analyze the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2013.08.012&domain=f
http://dx.doi.org/10.1016/j.eneco.2013.08.012
mailto:zn928@naver.com
mailto:zhang@inha.edu
mailto:yrchoi@inha.ac.kr
http://dx.doi.org/10.1016/j.eneco.2013.08.012
http://www.sciencedirect.com/science/journal/01409883


550 N. Zhang, Y. Choi / Energy Economics 40 (2013) 549–559
dynamic changes in the total-factor CO2 emission performance of fossil
fuel electric power plants in China for the 2005–2010 period, and
Section 5 concludes with some suggestions for future study.
2. Literature review and contextual setting

A number of studies have taken the data envelopment analysis
(DEA) approach to benchmark energy and environmental performance.
Zhou et al. (2008) provide a survey of 100 papers on energy and envi-
ronmental performance by using theDEAmethod. In terms of electricity
generation, many studies have employed the DEA method to analyze
the efficiency of fossil fuel electricity generation (e.g., Barros and
Peypoch, 2008; Liu et al., 2010; Sözen et al., 2010; Sueyoshi et al.,
2010; Yang and Pollitt, 2010; Sueyoshi and Goto, 2011, 2012; Jaraite
and Maria, 2012; Zhou et al., 2012).

However, previous studies have been limited in that they have
generally assessed environmental efficiency by using cross-sectional,
not time-series data. Therefore, it is not possible to obtain insights into
dynamic changes in CO2 emission performance.Malmquist productivity
index proposed by Färe et al. (1994) could be used for measuring dy-
namic productivity change. The case for using the standard Malmquist
index in the power plant industry can be found in Barros (2008).
Chung et al. (1997) is the first to propose aMalmquist indexwith unde-
sirable outputs to measure environmentally sensitive productivity
growth: theMalmquist–Luenberger (ML) index. Some empirical studies
applying theML index includeWeber andDomazlicky (2001), Färe et al.
(2001), Yörük and Zaim (2005), Kumar (2006), andNakano andManagi
(2008) for measuring environmental performance change.

For the carbon emission performance issue, it is the study by Zhou
et al. (2010) that first propose the concept total-factor carbon emission
performance based on Malmquist CO2 emission performance index
(MCPI), which is later extended by many studies in diverse aspects
(e.g. Zhang and Choi, in press). The another contribution of Zhou et al.
(2010) is the bootstrapping ofMCPI which provides the statistical infer-
ence on the total-factor carbon emission performance change and its
decomposed components.

The present paper extends the MCPI by incorporating group hetero-
geneity and non-radial slack. If these two factors are not considered,
then the Malmquist index may produce biased estimates. To integrate
these two factors with the MCPI, we incorporate the metafrontier
Malmquist index (Oh and Lee, 2010) 1 and the non-radial directional
distance function (Zhou et al., 2012)2 into this paper's model. For this
reason, we refer to the proposed index as the metafrontier non-radial
MCPI (MNMCPI). In addition, following the decomposition of the
Malmquist index,we decompose theMNMCPI into several components,
including an efficiency change (EC) index, a best-practice gap change
(BPC) index, and a technology gap change (TGC) index, to obtain better
insights into changes in CO2 emission performance over time. Based on
the proposed approach, we provide an empirical analysis of fossil fuel
power plants in China to investigate the effects of China's “carbon
reduction” policy on CO2 emission performance during the 11th five-
year plan.

With regard to CO2 emission efficiency for China based on the fron-
tier approach, some studies have focused on the CO2 emission perfor-
mance of China at the national level (Song et al., 2013), provincial
level (e.g., Guo et al., 2011; Choi et al., 2012;Wei et al., 2012) or industry
1 Oh and Lee (2010) are thefirst to present ametafrontierMalmquist index by incorpo-
rating group heterogeneity into the conventional Malmquist index. By incorporating un-
desirable outputs into the metafrontier Malmquist index, Oh (2010) develops a
metafrontier Malmquist–Luenberger (ML) index.

2 The conventional directional distance function is a radial efficiency measure that may
overestimate efficiencywhen there is some slack (Fukuyama andWeber, 2009). Recently,
Zhou et al. (2012) make important contributions by providing a formal definition of the
non-radial directional distance function with undesirable outputs.
level (Lee andZhang, 2012; Chang et al., 2013). Barros et al. (2013)mea-
sure the cost efficiency of Chinese hydroelectric power plant. However,
to the best of our knowledge, no study has examined CO2 emission
performance at the plant level for China, and therefore this paper may
be the first to investigate the dynamic changes in the CO2 emission
performance of fossil fuel power plants in China.

During the11thfive-year plan (2006–2010), the fossil fuel power in-
dustry of China had been under large pressure to reduce the carbon
emissions to meet emission reduction targets. The Chinese government
introduced a selective concentration policy to meet these targets. The
country's “promoting large and closing small” policy implies the closure
of small fossil fuel power plants by 2010 and the total loss of
76,830 MW (10.8% of the total capacity). This selective concentration
policy during the 11th five-year period was very effective in that, with
2005 as the base year, the fossil fuel power sector reduced its CO2

emissions by 1.74 billion tons (China Electricity Council, 2011). In this
context, we attempt to investigate the effect of carbon emission regula-
tion on the CO2 emission performance change in China's fossil fuel
power plants.

3. Methodology

3.1. Environmental production technology

Suppose that there areN fossil fuel power plants and that each plant
uses capital (K), labor (L), and fossil fuel (F) as inputs to generate elec-
tricity (E), a desirable output, and CO2 emissions (C), an undesirable
output. Then we can express the multi-output production technology
as follows:

T ¼ K; L; F; E;Cð Þ : K; L; Fð Þ can produce E;Cð Þf g ð1Þ

where T is usually assumed to satisfy the standard axioms of production
economics theory (Färe and Grosskopf, 2005). Here, because T is a
closed set, inactivity is always possible, and finite amounts of inputs
can produce only finite amounts of outputs. In addition, inputs and de-
sirable output are often assumed to be strongly or freely disposable. For
the reasonablemodeling of the joint-production technology, we impose
weak-disposability and null-jointness assumptions on T based on Färe
et al. (1989). We can express the above two assumptions as follows:

(i) If (K,L,F,E,C) ∈ T and 0 ≤ θ ≤ 1 then, (K,L,F,θE,θC) ∈ T
(ii) If (K,L,F,E,C) ∈ T and C = 0, then E = 0.

The weak-disposability assumption (i) shifts attention to reducing
CO2 emissions, and the abatement of CO2 emissions entails an opportu-
nity cost measured by the proportional reduction in electricity genera-
tion. The null-jointness assumption (ii) implies that the production of
CO2 emissions is inevitable in fossil fuel electricity generation and that
the only way to remove all CO2 emissions is to completely stop electric-
ity generation.

Once the environmental production technology (T) is defined, we
can employ a parametric function or a nonparametric DEA method to
specify it. Following Zhou et al. (2012), we can formulate T for N
power plants showing constant returns to scale (CRS) as follows:

T ¼
K; L; F; E;Cð Þ :

XN
n¼1

znKn≤K;
XN
n¼1

znLn≤L;

XN
n¼1

zn Fn≤ F;
XN
n¼1

znEn≥E;
XN
n¼1

znCn ¼ C; zn≥0;n ¼ 1;2; ⋯;N

8>>>><
>>>>:

9>>>>=
>>>>;
; ð2Þ

where Zn is an intensity variable for constructing the environmental
production technology by a convex combination. The environmental
production technology (or the environmental DEA technology) has



3 The use of the weight vector (0, 0, 1/3, 1/3, 1/3) could measure CO2 emission perfor-
mance without changing capital and labor input, which could be regarded as pure CO2

emission performance measurement (Zhang and Choi, in press).
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been widely used in energy and environmental research (Färe et al.,
2007; Zhou et al., 2010, 2012; Zhang et al., 2012).

If a nonparametric environmental production technology is well
constructed, then it is ready to use the directional distance function to
calculate CO2 emission performance.

3.2. Non-radial directional distance function

The directional distance function (DDF), developed by Chambers
et al. (1996) and extended by Chung et al. (1997) to environmental ef-
ficiency, is a relatively new methodology for measuring performance.
Here the traditional DDF is defined such that itmaximizes desirable out-
puts while reducing undesirable ones at the same rate simultaneously:

D
!

K; L; F; E;C; gð Þ ¼ sup β : K; L; F; E;Cð Þ þ g � βÞð Þ∈Tf g: ð3Þ

The conventional DDF is a radial efficiency measure that may
overestimate efficiency when there is some slack (Fukuyama and
Weber, 2009). Non-radial efficiency measures are often advocated to
overcome this limitation in measuring energy and environmental per-
formance because of their advantages (Chang and Hu, 2010; Zhang
and Choi, 2013). Recently, Zhou et al. (2012) make important contribu-
tions by providing a formal definition of the non-radial DDF by consid-
ering undesirable outputs. Zhang et al. (2013) extend the non-radial
DDF by incorporating the metafrontier approach. Following Zhou et al.
(2012), we define the non-radial directional distance function (NDDF)
as follows:

D
!

K; L; F; E;C; gð Þ ¼ sup wTβ : K; L; F; E;Cð Þ þ g � diag βð Þð Þ∈T
n o

; ð4Þ

wherewT = (wK,wL,wF,wE,wC)T denotes a normalizedweight vector rele-
vant to the numbers of inputs andoutputs; g = (−gK,−gL,−gF, gE,−gC)
is an explicit directional vector; and β = (βK,βL,βF,βE,βC)T ≥ 0 denotes a
vector of scaling factors representing individual inefficiency measures
for inputs and outputs. The symbol diag means diagonal matrices. Zhou
et al. (2012) incorporate only fossil fuel as the input because they focus
onmeasuring pure energy efficiency. Unlike Zhou et al. (2012), however,
the present paper also considers non-energy inputs because its objective
is to measure CO2 emission performance within the total-factor produc-
tivity framework.

We can calculate the NDDF value for a specific plant n′, denoted as D
!

K; L; F; E;C; gð Þ, by solving the following DEA-type model:

D
!

K; L; F; E;C; gð Þ ¼ maxwKβK þwLβL þwFβ F þwEβE þwCβC

s:t:
XN
n¼1

znKn≤Kn′−βKgK

XN
n¼1

znLn≤Ln′−βLgL

XN
n¼1

zn Fn≤ Fn′−β Fg F

XN
n¼1

znEn≥En′þβEgE

XN
n¼1

znCn ¼ Cn′−βCgC

zn≥0;n ¼ 1;2; ⋯;N
βK ;βL;β F ;βE;βC≥0:

ð5Þ

Herewe can set the directional vector g in variousways based on dif-
ferent policy goals of emission reductions. If D

!
K; L; F; E;C; gð Þ ¼ 0, then

the power plant to be evaluated is located along the best-practice
frontier in the g direction.

Because there are three inputs (capital, labor, and energy), one desir-
able output (regional GDP), and one undesirable output (CO2 emissions),
we set the weight vector to (1/9, 1/9, 1/9, 1/3, 1/3) and the directional
vectors to g = (−K, −L, −F, E, −C). We follow Zhou et al. (2012) and
define the static total-factor CO2 emission performance index (TCPI) as
the ratio of potential target carbon intensity to actual carbon intensity
(C/E).3 Suppose that βc⁎ and βE⁎ are optimal solutions corresponding to
CO2 emissions and electricity outputs in model (5). Then we can formu-
late the TCPI as

TCPI ¼ C−β�
CCð Þ= E þ β�

EEð Þ
C=E

¼ 1−β�
C

1þ β�
E
: ð6Þ

Eq. (6) seeks tomeasuremaximumpossible reductions in carbon in-
tensity, which can be used tomeasure the CO2 emission performance of
each power plant over a certain period of time which is a static index.
Clearly, the TCPI lies between zero and unity, and the higher the TCPI,
the better the CO2 emission performance is. If the TCPI is equal to
unity, then the plant shows the best CO2 emission performance located
along the frontier.

Based on Eq. (6), Zhang et al. (2013) develop a static metafrontier
CO2 emission performance. To examine the dynamic changes in CO2

emission performance over time and consider group heterogeneity at
the same time, we propose the MNMCPI, which is discussed in the
next subsection.

3.3. Metafrontier non-radial Malmquist CO2 emission performance index

Three definitions of production technology sets are required for de-
fining and decomposing theMNMCPI. These include the contemporane-
ous production technology, the intertemporal production technology,
and the global production technology.

Based on Tulkens andVandenEeckaut (1995) andOh (2010),we de-
fine these three environmental production technology sets as follows:
First, we define the contemporaneous environmental production tech-
nology of group Rh as T

c
Rh

¼ Kt ; Lt ; Ft ; Et ;Ct� �
:

�
Kt ; Lt ; Ft
� �

can produce
Et ;Ct� �Þ , where t = 1,…T. This constructs the production technology
described in Eq. (2) for the specific group Rh for a specific period t.

We define the intertemporal environmental production technology
of group Rh asT

I
Rh

¼ T1
Rh
∪T2

Rh
∪…∪TT

Rh
. This consists of a single technology

constructed from observations over the whole period for group Rh..
Suppose that there are H distinct intertemporal technologies. Then it
is assumed that observations for one intertemporal environmental
production technology are unable to access other intertemporal
technologies.

We define the global environmental production technology as TG ¼
TI
R1
∪TI

R2
∪…∪TI

RH
, which is constructed from all observations over the

whole period for all groups. This means that the global environmental
production technology envelops all intertemporal environmental pro-
duction technologies, and it is assumed that all observations can access
the global technology through innovation.

We can express the NDDF described in Eq. (4) based on these three
environmental production technologies.Wedefine the contemporaneous

NDDF: D
!c

:ð Þ ¼ supfwTβc : K; L; F; E;Cð Þ þ g � diag βc� �� �
∈Tc

Rh
g based on

the contemporaneous environmental production technology ( Tc
Rh

) of
some specific group Rh and the intertemporal NDDF: D

!I
:ð Þ ¼ sup

wTβI : K; L; F; E;Cð Þ þ g � diag βI
� �� �

∈TI
Rh

n o
based on the intertemporal

environmental production technology ( TI
Rh

) of group Rh. Finally, we

define the global NDDF: D
!G

:ð Þ ¼ sup wTβG : K; L; F; E;Cð Þþð
n

g � diag
βG
� �

Þ∈TGg based on the global environmental production technology

(TG).
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To compute and decompose the MNMCPI, we solve six different

NDDFs: D
!C

Ks; Ls; Fs; Es;Cs� �
, D
!I

Ks; Ls; Fs; Es;Cs� �
, and D

!G
Ks; Ls; Fs
�

; Es;

CsÞ, S = t, t + 1. As in the case of Eq. (5), we can solve the NDDFs by
using the following DEA-type models4:

D
!d

Ks
; Ls; Fs; Es;Cs

; g
� � ¼ maxwKβ

d
K þwLβ

d
L þwFβ

d
F þwEβ

d
E þwCβ

d
C

s:t:
X
con

zsnK
s
n≤Kn′−βd

KgKX
con

zsnL
s
n≤Ln′−βd

LgLX
con

zsn F
s
n≤ Fn′−βd

Fg FX
con

zsnE
s
n≥En′ þ βd

EgEX
con

zsnC
s
n ¼ Cn′−βd

CgC

zsn≥0;βd≥0;
ð7Þ

where the superscript d on D
!d

:ð Þ means the type of NDDF that can be
contemporaneous, intertemporal, or global. The symbol con under ∑
represents the condition for constructing the three environmental pro-
duction technologies. For the contemporaneous NDDF, we have d ≡ C
and con ≡ {n ∈ Rh}; for the intertemporal NDDF, we have d ≡ I and
con ≡ {n ∈ Rh, s ∈ [1,2,…,T]}; and for the global NDDF, we have d ≡ G
and con ≡ {n ∈ [R1 ∪ R2 ∪ … ∪ RH], s ∈ [1,2,…,T]}.

Based on Eq. (5), we set theweight vectors to (1/9, 1/9, 1/9, 1/3, 1/3)
and the directional vectors to g = (−K, −L, −F, E, −C). We can solve
the six different NDDFs by using Eq. (7). Once the NDDFs are solved,
we can obtain six corresponding TCPI values defined in Eq. (6). Based
on these six different NDDFs, we have

TCPId Ks
; Ls; Fs; Es;Cs� � ¼ C−βd�

C C
� �

= E þ βd�
E E

� �
C=E

2
4

3
5
s

¼ 1−βd�
C

1þ βd�
E

 !s

ð8Þ

where d ≡ (C, I, G), S = t, t + 1. Here we define the MNMCPI based on
the global environmental production technology set (TG) as follows:

MNMCPI Ks
; Ls; Fs; Es;Cs� � ¼ TCPIG Ktþ1

; Ltþ1
; Ftþ1

; Etþ1
;Ctþ1

� �
TCPIG Kt ; Lt ; Ft ; Et ;Ct

� � : ð9Þ

From Eq. (9), similar to metafrontier Malmquist index (Oh and Lee,
2010), the MNMCPI measures changes of the TCPI on TG for the period
between t and t + 1. Following the decomposition of the metafrontier
Malmquist index in Oh and Lee (2010), we can decompose the
MNMCPI into various components: a technical efficiency change (EC)
index of CO2 emissions, a best-practice gap change (BPC) index of CO2

emission reduction technologies, and a technology gap change (TGC)
index of CO2 emission reductions.5 Because this decomposition of the
MNMCPI requires many notations, we replace TCPIG(Kt,Lt,Ft,Et,Ct) as
TCPIG(.t) to save space.
4 One alternativemethod to specify themetafrontier technology is to use the stochastic
approach (e.g. Assaf et al., 2010; Huang et al., 2010). The strength of the stochastic
metafrontier is that it can provide the statistical inference on the estimated parameters
whereas the shortcoming is the relative difficulty to incorporate undesirable output into
the stochastic technology. A comparative study between stochastic parametric
metafrontier and non-parametric metafrontier could be an interesting topic for the future
study. We thank one referee for his suggestion on this point.

5 As MNMCPI incorporates both metafrontier and non-radial concepts, it could be
decomposed into more components based on the production-theoretical decomposition
analysis (PDA) which could be considered as the future research topic. We appreciate
for one referee's helpful suggestion on this point.
The decomposition process is as follows:

MNMCPI Ks
; Ls; Fs; Es; Cs� � ¼ TCPIG :

tþ1
� �

TCPIG :t
� �

¼
TCPIC :tþ1

� �
TCPIC :t

� �
2
4

3
5 �

TCPII :tþ1
� �

=TCPIC :tþ1
� �

TCPII :t
� �

=TCPIC :t
� �

2
4

3
5 �

TCPIG :tþ1
� �

=TCPII :tþ1
� �

TCPIG :t
� �

=TCPII :t
� �

2
4

3
5

¼
1−βC�

C

1þβC�
E

� �tþ1

1−βC�
C

1þβC�
E

� �t
8><
>:

9>=
>; �

1−βI�
C

1þβI�
E

� �tþ1
= 1−βC�

C

1þβC�
E

� �tþ1

1−βI�
C

1þβI�
E

� �t
=

1−βC�
C

1þβC�
E

� �t
8><
>:

9>=
>; �

1−βG�
C

1þβG�
E

� �tþ1
= 1−βI�

C

1þβI�
E

� �tþ1

1−βG�
C

1þβG�
E

� �t
=

1−βI�
C

1þβI�
E

� �t
8><
>:

9>=
>;:

¼ TEtþ1

TEt

" #
� BPRtþ1

BPRt

" #
� TGRtþ1

TGRt

" #
¼ EC � BPC � TGC:

ð10Þ
The efficiency change (EC) term in Eq. (10) is ameasure of the “catch-

up” effect in terms of technical efficiency changes in CO2 emissions for a
specific group for two time periods (t, t + 1). EC captures how close a
power plant moves toward the contemporaneous environmental
production technology. Here EC N (or b) 1 means an efficiency gain (or
loss). The best-practice gap change (BPC) index measures changes in
the best-practice gap ratio for the CO2 emission reduction technology be-
tween the contemporaneous environmental technology and the
intertemporal environmental technology during two periods. Here
BPC N (or b) 1 means that the contemporaneous technology frontier
shifts toward (or far away from) the intertemporal technology frontier.
Because BPC measures frontier shifts in a contemporaneous technology,
it can be considered an innovation effect, as in the case of the technolog-
ical change (TC) term in theMCPI (Zhou et al., 2010). TGC is ameasure of
changes in the technology gap ratio for CO2 emission reductions between
the intertemporal environmental production technology frontier and the
global frontier during two periods. TGC N (or b) 1 indicates a decrease
(increase) in the technology gap between the intertemporal technology
for a specific group and the global technology. Therefore, TGC measures
the technology leadership change for a given group.

Fig. 1 shows the MNMCPI and its decomposed components. This is a
case of two groups (R1, R2) and two time periods (t, t + 1). Here a1 and
a2 are observedpowerplants for the twoperiods t and t + 1, respectively,
and TtR1

and Tt + 1
R1
represent the contemporaneous environmental pro-

duction technology of group R1 in periods t and t + 1, respectively. TIR1

is the intertemporal environmental production technology for group R1,
and TGR is the global environmental production technology for two
groups. Assume that the coordinates of a1 is (Ca1, Ea1). Similarly, we can
obtain the coordinates of the other points in Fig. 1. The following equation
explains the result for the decomposition of the MNMCPI in Fig. 2:

MNMCPI Ks
; Ls; Fs; Es;Cs� �

¼
TCPIG :

tþ1
� �

TCPIG :t
� � ¼

Cd2=Ed2
Ca2=Ea2

� �
Cd1=Ed1
Ca1=Ea1

� �
8>><
>>:

9>>=
>>;

¼
Cb2=Eb2
Ca2=Ea2

� �
Cb1=Eb1
Ca1=Ea1

� �
8>><
>>:

9>>=
>>; �

Cc2=Ec2
Cb2=Eb2

� �
Cc1=Ec1
Cb1=Eb1

� �
8>><
>>:

9>>=
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4. Empirical analysis

4.1. Data

We employ the methodology proposed in Section 3 to examine the
changes in the total-factor CO2 emission performance of fossil fuel
power plants in China during 2005–2010 period. The sample consists of
259 large fossil fuel power plants operating as of 2010 and listed in the
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Table 1
Descriptive statistics for variables (2005–2010, N = 93).

Variable Unit Group N Mean StDev Min Max

K GW Central 335 1.60 0.68 1.00 4.80
Local 223 1.59 0.61 1.00 4.20

F Million tons of
standard coal
equivalent

Central 335 2.74 1.16 0.07 8.54
Local 223 2.91 0.98 1.44 7.11
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China Electric Power Yearbook 2011. The generating capacity of these
plants exceeds 1 GW. For a balanced panel data, we exclude those
plants with incomplete data on variables and obtain a total of 93 fossil
fuel power plants and a total of 558 (93 ∗ 6) observations. Wemeasure
the electricity output (E) of each power plant by the gross amount of
electricity generated and the capital input (K) and the fossil fuel input
(F) by the installed generating capacity and fuel consumption, respec-
tively. We measure the labor input (L) by the number of employees
for each power plant. We obtain data on E, K, L, and F from the Compila-
tion of Power industry statistical data, China Electric Power Yearbook, the
Chinese Industrial Enterprises Database, and the China Electric Power In-
dustry Statistical Analysis, respectively.6 Following Yang and Pollitt
6 We also obtain some missed data by contacting the China Electricity Council or the
power company via e-mail or phone directly. Finally, for plants not reporting a variable
for a given year,we use the average value for that variable from the previous and following
years based on the interpolation approach. We employ this method sparingly.
(2010), we employ the fuel-based carbon calculation model described
in IPCC to estimate the CO2 emissions of power plants. CO2 emission
factors according to major types of carbonaceous fuels for China can
L Num. Central 335 654.1 278.1 380 2016
Local 223 652.7 248.6 370 1764

C Million tons Central 335 7.72 3.24 0.34 24.23
Local 223 8.28 2.83 3.99 21.07

E GWH Central 335 8.46 3.53 0.50 26.60
Local 223 9.13 3.16 4.40 23.70



Table 2
Average value and growth rate for variables in two groups (2005–2010).

Group Num. E (GWH) C (106 tons) K (GW) L (Persons) F (106 tons)

Mean Growth Mean Growth Mean Growth Mean Growth Mean Growth

Central 56 8.58 2.8% 7.83 2.5% 1.64 4.1% 663 1.8% 2.78 2.2%
Local 37 9.18 1.8% 8.32 2.1% 1.63 3.4% 629 1.1% 2.92 2.0%
Total 93 8.82 2.3% 8.02 2.2% 1.63 3.8% 660 1.5% 2.84 2.1%
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be found in National Development Reform Commission (NDRC) (2007).
Table 1 shows the descriptive statistics for the input and output
variables.

The sample accounts for a substantial portion of total fossil fuel gen-
eration in China. For instance, the total installed capacity of sample
plants in 2005 reaches 130,200 MW, accounting for approximately
33.9% of the country's total fossil fuel capacity. The total CO2 emissions
of sample plants in 2005 are 697.5 million tons, accounting for 12.8%
of total CO2 emissions (BP, 2006).

To calculate the MNMCPI, we first characterize groups and deter-
mine their members. Here the criterion for grouping a power plant is
based on the type of ownership for an enterprise to which the power
plant belongs. We consider two types of power companies: companies
owned by the central government (central group) and those owned
by local governments (local group). The central group includes compa-
nies belonging to “five main power groups,” which are directly under
the control of the State-Owned Assets Supervision and Administration
Commission (SASAC) of the State Council. The local group includes
companies under the control of local governments. Ownership differ-
ences can lead to differences in policies and management strategies
for individual power plants. For instance, the local group takes full re-
sponsibility for its own profits and losses, whereas the central group
enjoys substantial subsidies from the central government. Table 2
shows the average values and growth rates for input and output
variables for the two groups.

As shown in Table 2, the two groups show different growth rates for
the variables. The central group has a higher growth rate in all the var-
iables than the local group. It is also found that the growth rate of CO2

emissions is lower than that of electricity output for the central group,
while the converse can be observed for the local group. This interesting
result indicates that during the research period, the central group i.e. the
central power enterprises were under greater pressure to reduce their
carbon intensity than the local power enterprises. It suggests that the
central state-owned enterprises were facingmore stricter environmen-
tal regulations than the local enterprises.

To investigate group heterogeneity in greater detail, we consider 3D
surface plots of growth rates for K, F, and E for each group. As shown in
Fig. 2, each group shows a different growth pattern. For instance, the
plots for the central group show a peak in the middle, whereas those
for the local group show it along the edge. Therefore, it is meaningful
to compare theMNMCPI for these two groups based on the type of own-
ership. To test whether the two groups are operating under the same
technology,we use thenon-parametricMann–Whitney test for efficien-
cy result of the pooled data. The result shows that the null hypothesis of
a common technology is rejected, leading us to construct efficiency
frontiers separately for each industry group.

Based on the aforementioned discussion, we may obtain biased re-
sults if group heterogeneity is not considered when measuring the
MNMCPI. This provides a rationale for employing a metafrontier analy-
sis in the context of this paper.
7 We also calculate the efficiency change results of standard Malmquist index (Barros,
2008) without incorporating the CO2 emission and find the related average efficiency
change is larger than both of MNMCPI and MCPI. It indicates that without taking into
the CO2 emission account, the standard Malmquist might overestimate the real efficiency
change. We thank one referee for the suggestion on this point.
4.2. Empirical results

The Appendix shows the empirical results for the average MNMCPI
for the 2005–2010 period and its decomposition for each power plant.
For comparative purposes, we also compute the MCPI based on the
method in Zhou et al. (2010).7

For bothmethodological approaches, the results indicate an increase
in total-factor CO2 emission performance for the 2005–2010 period. On
average, the total-factor CO2 emission performance of China's power
plants increases by approximately 0.38% under the MNMCPI. This
means that, on average, the ratio of target carbon intensity to actual
carbon intensity increases by 0.38% per year over the sample period.
The results for the MCPI show a relatively high growth rate for CO2

emission performance (0.68%). This difference may be due to the use
of different methodologies. Without considering group heterogeneity
and non-radial slack for all the variables, the MCPI approach might
lead to the overestimation of CO2 emission performance in this case.

At the plant level, 64 power plants show an increase in CO2 emission
performance under the MNMCPI, whereas 29 plants, a decrease.
Wangtan (in Hubei) shows the highest MNMCPI (average growth
rate = 6.2%), whereas Latela (in Inner Mongolia), the lowest MNMCPI
(average = 0.9914), indicating a 0.86% decrease in CO2 emission
performance.

The average efficiency change (EC) index of CO2 emission perfor-
mance is 1.0067 under the MNMCPI framework, indicating an average
annual increase in efficiency of approximately 0.67%. The MCPI ap-
proach provides similar results, showing an average annual increase of
0.68%. A total of 76 plants show an EC index greater than unity,
suggesting the movement of these plants toward the contemporane-
ously environmental technology frontier over the study period and
reflecting the catch-up effect. For individual plants, Wangtan (Hubei)
shows the best catch-up performance (average growth rate = 6.82%
under the MNMCPI and 11.1% under the MCPI). Hancheng (Shaanxi)
ranks second with a growth rate of 2.15% under the MNMCPI (6.01%
under the MCPI), whereas Fengzhen and Latela (Inner Mongolia)
show the poorest catch-up performance (average = 0.9909).

The average best-practice change (BPC) index is approximately
0.9978 under the MNMCPI, indicating a decrease in technology change.
This in turn implies a shift in the contemporaneous frontier further
away from the intertemporal frontier. The results for the MNMCPI and
the MCPI verify some technological decline in fossil fuel electricity gen-
eration. A total of 70 power plants show a state of technological decline
under the MNMCPI, whereas only 23 show technological progress. The
average annual technology gap ratio change (TGC) value is 1.00003,
which implies little change in the gap between the global frontier and
the intertemporal frontier. Because the TGC index measures changes
in technological leadership, this result suggests a lack of technological
leadership among power plants in China during the sample period.

We examine the trends in dynamic total-factor CO2 emission perfor-
mance and its decomposition. Fig. 3 shows the changes in CO2 emission
performance and the decomposed sources based on the MNMCPI and
the MCPI. For total-factor CO2 emission performance, both the
MNMCPI and the MCPI show a U-shaped curve. Between 2005 and
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2006, the MNMCPI and the MCPI show values greater than unity, indi-
cating an increase in CO2 emission performance. Between 2006 and
2008, however, both indices are less than 1, indicating a decrease in
CO2 emission performance. After 2008, both indices showvalues greater
than unity, and these values continue to increase, implying rapidly in-
creasing CO2 emission performance. As discussed earlier, the average
MCPI exceeds the average MNMCPI, and therefore the former may
overestimate performance scores because it does not consider group
heterogeneity and non-radial slacks.

The EC index of CO2 emissions for the 2005–2006 period shows a
value greater than unity, indicating good catch-up performance. For
the 2006–2007 period, however, the EC index shows a decrease, indi-
cating a decline in efficiency. In each year after 2007, the EC index re-
mains near unity, alternatively going above or below unity. The TC
index for the MNMCPI and the MCPI for the 2005–2008 period is less
than unity, indicating a period of technological decline, whereas for
the 2008–2010 period, the TC index is greater than unity, suggesting
technological progress.

Changes in CO2 emission performance coincide with the EC trends
for the 2005–2006 period, whereas they coincide with the TC trends
for the 2008–2010 period. This suggests that the increase in total-
factor CO2 emission performance from 2005 to 2006 is driven mainly
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by efficiency changes, whereas that from 2008 to 2010, by technological
advances.

This interesting phenomenon emerges from a paradigm shift in
China's policies. As discussed earlier, during the 11th five-year plan
(2006–2010), the Chinese government set a reduction target for energy
consumption and CO2 emissions. Therefore, the fossil fuel electricity
generation sector was under considerable pressure to reduce its CO2

emissions. By 2010, this sector reduced its CO2 emissions by
1.74 billion tons relative to the base year (2005) (China Electricity
Council, 2011). This strong regulation had a negative impact on firm
performance and innovation because of higher regulatory costs for
power plants. According to the empirical results, total-factor CO2 emis-
sion performance and innovation both decrease from 2006 to 2008.

On the other hand, the increases in CO2 emission performance and
innovation after 2008 provide support for the Porter hypothesis
(Porter and Van der Linde, 1995), which posits that a stricter environ-
mental regulationmeans not only cost increases but also improvements
in productivity and innovation for more environment-friendly produc-
tion processes. However, to test the Porter hypothesis accurately we
need to conduct future empirical work which is not within our research
content.

We compare the MNMCPI and its decomposition at the group level.
Table 3 shows the MNMCPI estimation and its decomposition for each
group. The central group shows a higher MNMCPI (average annual
growth rate = 0.48%). In terms of decomposed factors, the central
group shows a higher EC index, indicating a strong catch-up effect,
whereas the local group shows a higher BPC index, indicating techno-
logical innovation. The changes in the TGC are less than unity for both
groups, indicating an absence of technology leadership. The results of
group differences could provide useful information for the Chinese gov-
ernment to negotiate with individual power companies as to the carbon
emission reduction targets based on their performances. In addition, the
results regarding the group difference may provide useful information
for the initial quota allocation in China's carbon emission trading
scheme with particular reference on the electricity generation compa-
nies because the MNMCPI could provide the information for both effi-
ciency and fairness considering the group heterogeneities. The recent
study by Zhou et al. (in press) provides a discussion on the impacts of
alternative quota allocation methods on the impacts of emission
trading.

Fig. 4 shows the trends in theMNMCPI and its decomposition for the
two groups. The two groups show similarMNMCPI trends, demonstrat-
ing a U-shaped pattern, and have a highly competitive relationship in
terms of the MNMCPI in that their rankings change each period. For in-
stance, from 2005 to 2006, the central group shows a higher MNMCPI,
whereas the local group shows a higher MNMCPI from 2006 to 2007.
This pattern continues in subsequent periods. The two groups show
similar EC patterns except for the 2005–2006 period. On average, the
central group shows a slightly higher EC index.We find different results
for the TC index. The local group shows a higher TC index than the cen-
tral group except for the 2007–2008 period, indicating that the compa-
nies belonging to the local group led innovation. Although both groups
showTGC values less than unity, indicating a decrease in the technology
leadership effect, the central group shows slightly better technology
leadership performance than the local group.
Table 3
Group comparison of the MNMCPI and its decomposition.

Group MNMCPI EC BPC TGC

Central 1.0048 1.0092 0.9961 0.9998
Local 1.0024 1.0029 1.0004 0.9993
Total 1.0038 1.0067 0.9978 0.9996
In sum, the central group lacks both innovation and leadership, and
therefore there is a missing link in the role of the central government of
China for power sector. This suggests that the central government
should facilitate increased innovation and leadership for its power en-
terprises because these enterprises form the backbone of the national
economy.

We examine plant innovators because the TGC index can indicate
only those power plants demonstrating technological leadership. A
more in-depth analysis of innovative plants requires a more deliberate
examination. There are two types of innovative plants: group and
metafrontier innovative power plants. Group innovators refer to out-
standing plants within a specific group, and metafrontier innovators
can be found in innovative plants from an integrated perspective.
According to Färe et al. (1994) and Oh (2010), the three conditions for
determining group innovative plants are
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Eq. (12a) suggests that the contemporaneous environmental tech-
nology frontier should shift toward the intertemporal environmental
technology frontier to become a group innovative power plant.
Eq. (12b) indicates that the production activity of innovative plants in
period t + 1 should be outside the contemporaneous frontier in period
t. In otherwords, the technology inperiod t cannot produce the required
quantity of outputs in period t + 1. Eq. (12c) provides the condition
that an innovative plant should be along the contemporaneous technol-
ogy frontier in period t + 1.

To choose metafrontier innovative power plants, we include two
additional conditions in Eqs. (12a)–(12c):

TGCN1; ð13aÞ

D
!G

Ktþ1
; Ltþ1

; Ftþ1
; Etþ1

;Ctþ1
� �

¼ 0: ð13bÞ

Eq. (13a) states that a metafrontier innovative power plant should
be among technologically leading plants, which implies a decrease in
the gap between the intertemporal technology frontier and the global
technology frontier. Condition (13b) suggests that a metafrontier inno-
vative plant should be located along the global environmental technol-
ogy frontier.

Table 4 shows the innovative power plants for each two-year period.
In the central group, group innovators vary across periods. In the local
group, Huayang Houshi (Fujian) is an innovator twice. Jiangsu Ligang
and Zhejiang Taizhou are metafrontier innovators from 2008 to 2009
and from 2009 to 2010, respectively. The results for group and nation-
wide innovators have some important implications for policymakers
regarding power generation. That is, non-innovating power plants
can benchmark innovating ones to improve their CO2 emission
performance.

Finally, we conduct a statistical analysis to determine any significant
methodological differences between the MNMCPI and the MCPI. For
this, we employ theWilcoxon–Mann–Whitney rank-sum test and com-
pare the difference in decomposition results between the MNMCPI and
theMCPI (Table 5). The results reject the null hypothesis at the 5% level,
indicating that the results for the two methods show significant differ-
ences in rankings in terms of CO2 emission performance and its
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decomposition. The kernel density plot in Fig. 5 indicates some differ-
ences in the distribution pattern between the two indices. In addition,
the Fan–Ullah test verifies significant differences in the distribution pat-
tern between the MNMCPI and the MCPI.
5. Conclusions

By incorporating group heterogeneity and non-radial slack into the
MCPI, we present the MNMCPI, which could be interpreted as a



Table 4
Group and metafrontier innovators.

Year Group innovator Metafrontier
innovator

Central group Local group

2005–2006 – – –

2006–2007 Shitongkou 2nd
(Shanghai)

Huayang Houshi
(Fujian)
Baosteel (Shanghai)
Zhangze (Shanxi)

–

2007–2008 – – –

2008–2009 Fuzhou power
(Fujian)

Ligang (Jiangsu)
Huayang Houshi
(Fujian)

Ligang (Jiangsu)

2009–2010 Beilun (Zhejiang)
Beicang (Zhejiang)
Banshan (Zhejiang)

Taizhou (Zhejiang)
Jiahua (Zhejiang)
Taizhou (Zhejiang)

Taizhou (Zhejiang)

Table 5
Wilcoxon–Mann–Whitney rank-sum test for the MCPI and the MNMCPI.

Null hypothesis (Ho) Wilcoxon statistics p-Value

MCPI MNMCPI = MCPI 7774.0 0.0121
EC EC of MNMCPI = EC of MCPI 10081.0 0.0002
TC BPC of MNMCPI = TC of MCPI 10126.0 0.0001
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metafrontier total-factor CO2 emission performance index because it is
constructed from the perspective of total-factor metafrontier produc-
tion efficiency framework. We derive the MNMCPI by solving several
non-radial DEA-type models and decompose the MNMCPI into the EC,
BPC, and TGC indices.

We employ the proposed approach to analyze the changes in the
total-factor CO2 emission performance of 93 fossil fuel power plants in
China for the 2005–2010 period. The results indicate a 0.38% increase
in total-factor CO2 emission performance during the sample period.
CO2 emission performance shows a U-shaped pattern, providing
support for the Porter hypothesis. The increase in CO2 emission perfor-
mance from 2005 to 2006 is drivenmainly by improvements in efficien-
cy, whereas it is driven by technological advances from 2008 to 2010.
The central group shows better catch-up performance, whereas the
local group, better technological innovation performance. The central
group plays a key role in the national economy but lacks innovation
and technological leadership. This suggests a missing link in the role
of the central government in promoting performance-oriented gover-
nance for CO2 emission efficiency. Thus, the central government should
facilitate increased innovation and leadership for its power enterprises.

This study has some limitations. The empirical analysis is based on
data only for the 2005–2010 period. Therefore, future research should
consider a longer period, by considering a broader plant-level data set,
future research can better assess the total-factor CO2 emission
0
10

20
30

40
50

60

0.98 1.00 1.02 1.04 1.06 1.08 1.00 1.

0
10

20
30

40
50

MNMCPI: 
This study 

MCPI 
Zhou et al.(2010) 

EC

Fig. 5. Kernel density estimation fo
performance of fossil fuel power plants in China. This paper's criterion
for grouping power plants is based on the type of ownership. In this
regard, future research should consider a wider range of criteria such
as generation technologies (e.g., steam, nuclear, and combined cycles)
to better reflect different characteristics of power plants in China. An in-
teresting empirical extension to this studywould be a regression analy-
sis on the determinants of CO2 emission performance for fossil fuel
power plants or test the Porter hypothesis deeply by statistical analysis.
Methodologically, this paper could be further extended in two more
directions. One is to bootstrapMNMCPI in order to perform the statisti-
cal inference for total-factor CO2 emission performance and its decom-
positions. Another is relevant to the decomposition of MNMCPI based
on the production-theoretical decomposition analysis (PDA) which
has received increasing attention in carbon decomposition analysis
(Zhou and Ang, 2008). As MNMCPI incorporates both meta-frontier
and non-radial concepts, it could be decomposed in a more detailed
way which could be considered as the potential research topic.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.eneco.2013.08.012.
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