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a b s t r a c t

This paper proposes a non-radial Malmquist CO2 emission performance index (NMCPI) for measuring
dynamic changes in total-factor CO2 emission performance over time. This index enables the
consideration of non-radial slacks in the conventional Malmquist CO2 emission index (MCPI). The
NMCPI is calculated based on a non-radial directional distance function derived by several data
envelopment analysis (DEA) models. Furthermore, NMCPI could be decomposed into an efficiency
change (EC) index and technological change (TC) index. A bootstrapping approach is conducted to
introduce statistical inferences into the NMCPI and its decompositions. Based on the proposed indices,
the dynamic CO2 emission performance change and its decompositions of the Chinese regional
transportation industry from 2002 to 2010 are investigated. The empirical results demonstrate that
the total-factor carbon emission performance of the transportation industry as a whole decreased by
32.8% over the period, and this reduction was primarily caused by technological decline.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Climate change has become one of the most challenging issues
facing the world. Increasing numbers of countries are concerned
with reducing energy consumption and CO2 emissions while
increasing the efficiency and productivity of the industrial sectors.
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Policy makers have realized the importance of reducing CO2 emissions
in formulating national economic and energy policies, which requires
understanding of the patterns of CO2 emissions and monitoring
emission performance. Among all sectors, the transportation sector
emits approximately one quarter of the world’s CO2 emissions [1],
thereby playing an important role in achieving energy consumption
reductions and CO2 emissions mitigation.

Ten years ago, energy consumption in China was only half of
that in the United States, but China became the world’s largest
energy consumer in 2010 [2]. To address this issue, China seeks a
“green and low-carbon development” mode by announcing sev-
eral new carbon and energy targets based on 2010 emission levels,
especially for the transportation industry. An emission offset plan
issued by China’s Ministry of Transport (MOT) aims to reduce
energy consumption and CO2 emissions per traffic volume for road
transport operators by 10% and 11% by 2015 based on 2005
emission levels, respectively. The five-year plan involves several
major projects including promoting the use of energy-saving and
new energy vehicles, as well as the use of natural gas for taxis and
buses; all of these projects would improve the CO2 emissions
performance in the Chinese transportation industry.

To measure energy and CO2 emissions performance, data envel-
opment analysis (DEA) has gained considerable popularity [3]
because it evaluates the performance within a total-factor produc-
tion framework, which is more appropriate than a single-factor
indicators approach.

Recognizing the importance of evaluating energy and CO2

emissions efficiency, a number of studies have attempted to
address these issues for China based on efficiency measurement
via DEA models. For instance, a number of studies have empha-
sized the province-level. Hu and Wang [4] first employed basic
DEA to measure energy efficiency for provinces. Chang and Hu [5]
measured energy productivity growth in the dynamic perspective.
However, those studies did not consider the undesirable output
carbon emissions which are the byproduct of energy use. Several
other studies incorporate undesirable outputs into energy or
carbon efficiency analysis for Chinese provinces [6–12].

As the industrial sector contributes large carbon emissions,
several studies focused on an energy efficiency analysis for the
Chinese industrial sector [13–15]. A number of studies analyzed
energy efficiency for the Chinese iron and steel industry; for
example, Wei et al. [16] analyzed static energy efficiency without
considering undesirable output. Smyth et al. [17] estimated the
substitutability between energy and classical inputs. He et al. [18]
measured energy efficiency and productivity together. Lee and
Zhang [19] examined the Chinese manufacturing industries.
Several other studies researched the power generation industry
[20–23] based on an efficiency analysis.

Although energy and CO2 emissions efficiency in many sectors
have been widely analyzed in China, few studies have focused on the
transportation industry [24,52]. Zhou et al. [24] used the undesirable
output-oriented DEAmodels with different returns to scale tomeasure
carbon emission performance for the regional transportation sector;
they showed that the number of efficient regions has decreased since
2004, hitting the lowest record in 2006, and improving slightly
afterwards. Chang et al. [52] used the SBM-DEA to measure carbon
emissions and potential reductions for the regional transport sector;
the results indicated that most of the provinces in China do not have
an eco-efficient transportation industry. Zhou et al. [53] analyzed
energy efficiency and potential energy savings for the Chinese trans-
port industry using the DEA approach. Cui and Li [54] also focused on
energy efficiency in the Chinese transport industry by proposing a
three-stage virtual frontier DEA.

Nevertheless, these studies also have a number of shortcomings
in that they used a static relative carbon performance measure
without considering the dynamic performance change. No studies

have been conducted on dynamic CO2 emissions performance
change measurement for China’s transportation industry. The
primary objective of this paper is to analyze the dynamic CO2

emissions performance change for China’s transportation industry.
As mentioned above, most previous studies related to China’s CO2

emission performance efficiency in different industries are within a
cross-sectional, rather than a time series, framework. Therefore, we
cannot obtain insight regarding the dynamic change of CO2 emission
performance. For measuring the dynamic change of the total-factor
CO2 emission performance, Zhou et al. [25] develop a Malmquist CO2

emission performance index (MCPI) based on the Shephard carbon
distance function. However, this study did not consider the slack
variables; thus, the Malmquist index may lead to a biased estimation
[26]. Thus, this study proposes a non-radial Malmquist CO2 emission
performance index (NMCPI) by considering slacks based on a non-
radial directional distance function. In addition, because NMCPI is a
deterministic approach that measures performance relative to an
estimate of the true and unobservable production technology, one
cannot know whether the CO2 performance change is statistically
significant or not. Therefore, the study adopts the bootstrapping
method proposed in Ref. [27] to provide a statistical interpretation
of the NMCPI and its decompositions for the Chinese transportation
industry.1 In summary, the contributions of this paper can be divided
into two parts: Methodologically, we propose a new approach called
the Bootstrapped Non-radial Malmquist index for the first time.
Empirically, we first conduct a dynamic CO2 emission performance
change analysis for the Chinese transport industry.

The remainder of this paper is organized as follows. Section 2
presents the methodology, which consists of the concept of
environmental production technology and the development of
NMCPI. In Section 3, we use the proposed approach to study the
CO2 emission performance of the Chinese transportation industry
from 2002 to 2010. Finally, Section 4 presents the conclusions.

2. Methodology

2.1. Environmental production technology

This paper uses non-radial directional distance function to
model a transportation technology that jointly produces a desir-
able and an undesirable output. Following [28], one may think of a
transportation system as a production model. Suppose a transpor-
tation process where each transport firm employs capital stock
(K), labor force (L), and energy (E) as inputs to generate the gross
product (Y) of transportation as a desirable output and CO2

emissions (C) as an undesirable output. The production technology
set can be defined as:

T ¼ K; L; E;Y ;Cð Þ : K; L; Eð Þ can produce Y ;Cð Þ� � ð1Þ
In production economic theory, the environmental production

technology (T) is usually assumed to be a closed and bounded set,
which indicates that finite inputs can only generate finite outputs.
Additionally, inputs and desirable outputs are supposed to be
strongly or freely disposable. To model a production technology
reasonably that produces both desirable and undesirable outputs,
two additional assumptions (i.e., weak disposability and null-
jointness) need to be imposed [29]. Technically, the assumptions
can be formulated as

(I) If ðK ; L; E;Y ;CÞAT and 0oθr1, then ðK; L; E;θY ;θCÞAT .
(II) If ðK ; L; E;Y ;CÞAT and C ¼ 0, then Y ¼ 0.

1 As this study is based on the non-parametric approach, an interesting
extension to this study would be the use of parametric DDF to conduct a
comparative study in the future [51].
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The weak disposability assumption (i) implies that the abate-
ment of undesirable outputs is not free but costly in terms of a
proportional reduction in desirable outputs. The null-jointness
assumption (ii) implies that producing CO2 emissions are inevi-
table in fossil-fuel electricity generation and the only way to
remove all the CO2 emissions is to stop transportation activities.
With these assumptions, the production technology for modeling
the joint production of Yand C has been well-defined conceptually
but cannot be directly employed in empirical analysis. A common
practice is to characterize the production technology within a
nonparametric framework, which can be performed using the
piecewise convex combinations (DEA-type) of the observed
data. Suppose that there are n¼ 1;2;…;N firms and for firm i,
the vector of inputs, desirable outputs, and undesirable outputs is
ðKn; Ln; En;Yn;CnÞ. The environmental production technology (T) for
N transportation firms exhibiting constant returns to scale (CRS)
can be formulated as follows:

T ¼ f K ; L; E;Y ;Cð Þ : ∑
N

n ¼ 1
znKnrK ∑

N

n ¼ 1
znLnrL ∑

N

n ¼ 1
znEnrE ∑

N

n ¼ 1
znYn

ZY ∑
N

n ¼ 1
znCn ¼ C znZ0;n¼ 1;2;…;Ng ð2Þ

where Zn is an intensity variable for constructing the environmen-
tal production technology (T) by convex combination. Once the
environmental production technology is well-constructed, the
directional distance functions can be used to calculate the CO2

emission performance.

2.2. Non-radial directional distance function

The directional distance function (DDF) was originally devel-
oped by Chambers et al. [30] and applied by Chung et al. [31] in
environmental studies. It is a relatively new methodology for
performance and efficiency measurement. The traditional DDF is
defined, as it seeks the maximal increase in desirable outputs
while reducing the undesirable outputs at the same rate simulta-
neously:

D
!

K ; L; E;Y ;C; gð Þ ¼ sup β : K; L; E;Y ;Cð Þþg � βÞ� �
AT

� � ð3Þ

The conventional DDF reduces undesirable outputs (inputs) and
increase desirable outputs at the same rate, which may still be
regarded as a radial efficiency measure with several limitations.
One of the limitations is that the radial measure may overestimate
the efficiency when non-zero slacks exist [26]. Non-radial effi-
ciency measures are often advocated to overcome this limitation
in energy and environmental performance measurement due to its
advantages [5,8,32–34]. Recently, Zhou et al. [35] provided a
formal definition of the non-radial DDF considering undesirable
outputs. Following [35], we define the non-radial directional
distance function (NDDF) as follows:

ND
!

K; L; E;Y ;C; gð Þ ¼ sup wTβ : K ; L; E;Y ;Cð Þþg � diag β� �� �
AT

� �
ð4Þ

where wT ¼ ðwK ;wL;wE;wY ;wCÞT denotes the normalized weight
vector relevant to the number of inputs and outputs, g ¼
ð�gK ; �gL; �gE; gY ; �gCÞ is the explicit directional vector, the
symbol diag means the diagonal matrices, and β¼ ðβK ;βL;βE ;

βY ;βCÞT Z0 denotes the vector of the scaling factors representing
the individual inefficiency measure for each input and output.
To measure the CO2 emission performance of transportation, it is
better to fix non-energy inputs because capital and labor do not
contribute to emissions directly. By setting the directional vector as
g¼ ð0;0; �gE; gY ; �gCÞand the weight vector as (0, 0, 1/3, 1/3, 1/3),

we remove the diluting effects of capital and labor from the
objective function and constraints.

The value of NDDF of a specific firm n0 denoted as ND
!

ðK ; L; E;Y ;C; gÞ can be calculated by solving the following DEA-
type model:

ND
!

K; L; E;Y ;C; gð Þ ¼ max wEβEþwYβY þwCβC

s:t: ∑
N

n ¼ 1
znKnrKn0

∑
N

n ¼ 1
znLnrLn0

∑
N

n ¼ 1
znEnrEn0 �βEgE

∑
N

n ¼ 1
znYnZYn0 þβYgY

∑
N

n ¼ 1
znCn ¼ Cn0 �βCgC

znZ0;n¼ 1;2;…;N

βK ;βL;βE ;βY ;βCZ0

ð5Þ

The directional vector g can be set in various ways based on
different policy goals of emission reduction. If ND

!ðK ; L; E;Y ;C; gÞ ¼ 0,
it means that the observation to be evaluated is located at the
frontier of best practice in g direction.

Because the weight vector as (0, 0, 1/3, 1/3, 1/3) and the
directional vectors are set asg¼ ð0;0�E;Y ; �CÞ, we follow [35]
to define the total-factor CO2 emission performance index (TCPI)
as the ratio of potential target carbon intensity to actual carbon
intensity (C/Y). Suppose that βn

c and βn

Y are the optimal solutions
corresponding to the CO2 emissions and the product output of
transportation in model (5), the TCPI can be formulated as:

TCPI¼
C�βn

CC
� �

= Yþβn

YY
� �

C=Y
¼ 1�βn

C

1þβn

Y

ð6Þ

Eq. (6) seeks to measure the maximal possible reduction in
carbon intensity, which can be used to measure the CO2 emissions
performance of each transportation firm for a certain period of
time. Clearly, TCPI lies between zero and unity; further, the higher
the TCPI, the better is the CO2 emission performance.

To study the dynamic change in CO2 emissions performance
over time by considering non-radial slacks, we propose a non-
radial Malmquist CO2 emissions performance (NMCPI) in the next
sub-section.

2.3. Non-radial Malmquist CO2 emission performance index

The Malmquist productivity index was first developed by [36]
as a ratio of two distance functions for the measurement of
productivity. Färe et al. [37] extended it by considering technical
inefficiency in productivity measurement within a nonparametric
framework. For environmental studies, Chung et al. [31] first
proposed a Malmquist index with undesirable outputs named
the Malmquist–Luenberger (ML) index to measure environmen-
tally sensitive productivity growth. The ML index has been widely
used in environmental studies, and empirical studies of ML index
application could be found in Refs. [38,40–43]. The MCPI devel-
oped by Ref. [25] could be regarded as a special case of ML index,
which is a CO2 emission sub-vector ML index.

Following the spirit of the nonparametric Malmquist productivity
index, we propose a NMCPI for assessing the change in CO2 emission
performance over time. Let t and s (tos) denote two time periods.
Assume that TCPItðKt

n; L
t
n; E

t
n;Y

t
n;C

t
nÞ and TCPIsðKt

n; L
t
n; E

t
n;Y

t
n;C

t
nÞ are

the total-factor CO2 emission performance index (TCPI) of firm n based
on its inputs and outputs at period t for the production technology at t
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and s, respectively. Further assume that TCPItðKs
n; L

s
n; E

s
n;Y

s
n;C

s
nÞ and

TCPIsðKs
n; L

s
n; E

s
n;Y

s
n;C

s
nÞ are the TCPI of firm n based on its inputs and

outputs at period s for the production technology at t ands, respec-
tively. We define the NMCPI as follows:

NMCPIn t; sð Þ ¼ TCPIt Ks
n; L

s
n; E

s
n;Y

s
n;C

s
n

� �� TCPIs Ks
n; L

s
n; E

s
n;Y

s
n;C

s
n

� �
TCPIt Kt

n; L
t
n; E

t
n;Y

t
n;C

t
n

� �� TCPIs Kt
n; L

t
n; E

t
n;Y

t
n;C

t
n

� �
" #1=2

ð7Þ
NMCPInðt; sÞ can be used to measure the change in the total-factor

CO2 emissions performance of firm n from period t to period s.
NMLCPInðt; sÞ41 (orNMLCPInðt; sÞo1) means that the CO2 emis-
sions performance has improved (or deteriorated). Similar to the
Malmquist productivity index, NMCPI can be decomposed into two
components (i.e., efficiency change and technological change) and
expressed as:

EFFCHn t; sð Þ ¼ TCPIs Ks
n; L

s
n; E

s
n;Y

s
n;C

s
n

� �
TCPIt Kt

n; L
t
n; E

t
n;Y

t
n;C

t
n

� � ð8Þ

TECHCHi t; sð Þ ¼ TCPIt Ks
n; L

s
n; E

s
n;Y

s
n;C

s
n

� �� TCPIt Kt
n; L

t
n; E

t
n;Y

t
n;C

t
n

� �
TCPIsðKs

n; L
s
n; E

s
n;Y

s
n;C

s
nÞ � TCPIs Kt

n; L
t
n; E

t
n;Y

t
n;C

t
n

� �
" #1=2

ð9Þ
The efficiency change term (EC) in Eq. (8) is a measure of the catch-

up effect in terms of the technical efficiency change of CO2 emissions
within a specific group during two time periods (t, s). EC captures how
close an observation moves towards the environmental production
technology. EC4(or o) 1 means efficiency gain (or loss).

The technological change (TC) component measures the
frontier-shift effect, which quantifies the shift in the production
technology of observation n over time, from period t to period s.
TC4(or o) 1 means technological progress gain (or loss).

To calculate NMCPI and its two compositions, four non-radial

directional distance functions must be solved (i.e.D
!l1 ðKl2 ; Ll2 ;

El2 ;Yl2 ;Cl2 ; gÞ, l1; l2Afs; tg). According to Eq. (5) and the environ-
mental production technology given by Eq. (2), we compute

ND
!l1 ðKl2 ; Ll2 ; El2 ;Yl2 ;Cl2 ; gÞ by solving the following DEA-type model:

ND
!l1 Kl2 ; Ll2 ; El2 ;Yl2 ;Cl2 ; g

� �
¼max wEβEþwYβY þwCβC s:t: ∑

N

n ¼ 1
znK

l1
n

rKl2
n0 ∑

N

n ¼ 1
znL

l1
nrLl2 n0 ∑

N

n ¼ 1
znE

l1
n

rEl2n0 �βEgE ∑
N

n ¼ 1
znY

l1
nZYl2

n0

þβYgY ∑
N

n ¼ 1
znC

l1
n ¼ Cl2

n0 �βCgC znZ0;

n¼ 1;2;…;N βK ;βL;βE ;βY ;βCZ0

ð10Þ
Note that Eq. (10) is based on the environmental production

technology with constant returns to scale, which is the most
commonly adopted practice in the literature. Once the NDDFs are
solved, we can obtain the four corresponding TCPI defined in (6),
that is, TCPIl1 ðKl2 ; Ll2 ; El2 ;Yl2 ;Cl2 Þ l1; l2Afs; tg.

According to Ref. [44], the Malmquist productivity index based on
the constant returns to scale production technology can be inter-
preted as a total-factor productivity change index. As a result, the
NMCPI can be interpreted as a total-factor CO2 emission performance
change index.

2.4. Bootstrapping NMCPI

Because NMCPI is derived from the non-radial DDF that are
calculated based on the estimate of the true production frontier, it

will be subject to uncertainties due to the sampling variation of
the obtained production frontier. Therefore, it is meaningful to
introduce the statistical inference for NMCPI with respect to the
sampling variation by bootstrapping the index. The theory and
algorithm of bootstrapping Malmquist are developed by [27].

We use the algorithm developed by Simar and Wilson [27] to
bootstrap NMCPI. The simplified process for bootstrapping NMCPI is
summarized as follows:

(1) Calculate NMCPIiðt; sÞ for i¼ 1;2;…;N by using Eqs. (7) and (10).
(2) Based on the bivariate kernel density estimator and the reflection

method suggested by [27], we generate two pseudo datasets
fðKt

i ; L
t
i ; E

t
i ;Y

t
i ;C

tn
i Þ; i¼ 1;2;…;Ngand fðKs

i ; L
s
i ; E

s
i ;Y

s
i ;C

sn
i Þ; i¼

1;2;…;Ngwith the normal reference rule of bandwidth.
(3) Compute the bootstrap estimate of NMCPIni;bðt; sÞ of NMCPIiðt; sÞ

for i¼ 1;2;…;N by solving Eqs. (7) and (10) using the envir-
onmental production technologies constructed from the
pseudo datasets obtained in Step 2.

(4) Repeat Steps 2–3 B times (B¼2000) to provide bootstrapped
estimates fNMCPIni;bðt; sÞ; b¼ 1;2;…;Bg for i¼ 1;2;…;N.

(5) From sorting the bootstrapped B estimates of NMCPI, by
setting the preferred percentiles, we can construct confidence
intervals of NMCPI.

For a specific decision making unit (DMU, hereafter), if one
does not fall between the confidence intervals of NMCPI, the
improvement or deterioration in the total-factor carbon emission
performance index of this DMU is significantly different from
unity, under the desired significance level. Similarly, we can also
use the estimates to test the significance of the contributing
components of NMCPI, such as technical efficiency change (EC)
and technological change (TC).

3. Empirical study

3.1. Data

The models described in Section 2 have been applied to
examine the total-factor CO2 emission performance change and
its sources in the provincial transportation industry of China2 from
2002 to 2010. Because the energy data for Tibet cannot be
obtained, our dataset covers thirty provinces. The data on gross
product (Y)3 and employees (L) of the transportation industry can
be found in Ref. [45]. Total fixed assets in the transportation
industry are used for capital stock (K).

The fixed assets of the regional transportation industry were
calculated by the perpetual inventory method. Following this
method, fixed assets can be calculated as follows:

Ft ¼ Itþ 1�δ
� �

Ft�1 ð11Þ

where Ft, It and δ represent the fixed assets, investment in fixed
assets, and depreciation rate at time t, respectively. Additionally,
Ft�1 means the fixed assets at time t�1. Because the research
period starts in 2002, we use the fixed assets in 2002 of each
province as the initial fixed assets, which can be found in Ref. [46].
The depreciation rate for each province’s transportation shown in

2 According to the classification of Ref. [45], the transportation industry of
China is an integrated industry that includes road transportation, water transporta-
tion (inner and sea) and air transportation, as well as the post industry. Therefore,
only the data of the integrated transportation industry is available.

3 Zhou et al. [24] use cargo-km and passenger-km as the good outputs. Our
data is from the integrated transportation industry and thus, cargo/passenger-km
could be regarded as the intermediate output that can be eventually transformed
into gross product value.
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Ref. [46] is adopted and the data related to the investment in fixed
assets is selected from Ref. [45].

All of the monetary variables, including gross product and
capital stock, have been converted into 2002 prices with GDP
deflectors. Energy consumption (E) is selected as the energy input,
which includes all types of energy, such as coal, oil, and gas [47].
All of these have been converted into tons of standard oil
equivalent (TOE), in terms of the corresponding energy folding
standard. The official data on provincial CO2 emissions (C) in the
transportation industry is not available in China. Following [24],
we employ the fuel-based carbon calculation model described in
Refs. [48,49] to estimate the provincial transportation CO2 emis-
sions. The descriptive statistics of the regional data in the trans-
portation industry are shown in Table 1.

3.2. Dynamic CO2 emission performance change analysis

To assess the dynamic CO2 emission performance change of the
Chinese provincial transportation industry, we compute the
NMCPI for each of the thirty provinces. When solving a mix-
period LP problem, the environmental technology constructed by

the observations from a period may not enclose all the observa-
tions from another period. As a result, some infeasible solutions
occur. We therefore follow Ref. [39] to use the three-year “win-
dows” approach to construct the environmental production tech-
nologies. Having calculated the NMCPI results for eight two-year
pairs from 2002 to 2010 for each province, we use the boot-
strapping technology to construct the confidence intervals of the
original NMCPI values for testing their significant differences from
unity. Table 2 shows the original NMCPI estimates and the
statistically significant results.

The NMCPI results indicate a decrease in the total-factor CO2

emission performance for the period of 2002 to 2010. On average,
the total-factor CO2 emission performance of China’s transportation
industry decreases by approximately 5.7% under the NMCPI. This
result means that on average, the ratio of target carbon intensity to
actual carbon intensity decreases by 5.7% per year over the sample
period. At the province level, only Ningxia province shows an increase
in CO2 emission performance. All eight two-year periods (i.e., 2002–
2003 to 2009–2010) show a decrease in CO2 emission performance.
This indicates that although the incentive policy has allowed the
transportation industry to achieve remarkable progress in terms of
gross product, transportation was mainly fueled by carbon-intensive
development; low-carbon development for the transportation indus-
try has been neglected. The bootstrapping results also confirmed that
in most cases, the decrease in CO2 emission performance is significant.
For instance, during 2004–2005, almost all provinces show a signifi-
cant decrease of NMCPI, except for Inner Mongolia and Shanghai.
In other two-year periods, over half of the provinces are found to be a
significant DMU of NMPCI below unity.

To investigate the sources of CO2 emission performance
change, the NMCPI estimates have been decomposed into their
efficiency change (EC) and technological change (TC) components
(Eqs. (8) and (9)) with their bootstrapping results. The efficiency

Table 1
Descriptive statistics of variables (N¼270).

Variable Units Mean StDev Min Max

L 103 persons 262.4 235.1 28.1 1659.0
K 109 Yuan 47.0 42.2 1.4 207.3
E 103 t 4136.0 3392.0 160.0 17865.0
Y 109 Yuan 18.4 13.6 1.3 67.5
C 103 t 12675.0 10165.0 517.0 53079.0

Table 2
Changes in NMCPI of provincial transportation industry, 2002–2010.

Provinces Area 2002–2003 2003–2004 2004–2005 2005–2006 2006–2007 2007–2008 2008–2009 2009–2010 Mean

Beijing E 1.105* 0.697* 1.083* 0.899* 0.887 0.876* 1.000 0.973 0.940
Tianjin E 1.185* 0.632* 0.949* 0.982 1.020 0.955 1.000 1.001 0.966
Hebei E 0.998 0.844* 0.692* 1.087* 1.022* 1.014* 1.048* 1.012 0.965
Shanxi C 1.042 0.929* 0.991* 0.968* 1.029 0.678* 0.978* 1.003 0.991
Inner Mongolia W 0.997 0.738* 1.104 1.000 0.945 1.000 0.926 0.818 0.941
Liaoning E 1.054* 1.031* 0.673* 0.983* 0.831* 0.991 0.967* 0.956* 0.936
Jilin C 0.889 0.974 0.798* 0.935* 0.872* 0.860 0.891* 0.830* 0.881
Heilongjiang C 0.868 0.893* 0.805* 0.872* 0.921* 0.999 0.930 0.966 0.907
Shanghai E 0.947* 0.938* 0.999 0.973* 0.934* 0.972* 0.843* 1.101* 0.963
Jiangsu E 0.877 0.913 0.892* 0.710* 1.377* 0.995 1.123 1.082 0.996
Zhejiang E 0.893 1.049 0.905* 1.000 1.000 0.957 0.976 0.898 0.960
Anhui C 0.980 0.955* 0.957* 0.959 0.888* 0.987 0.867* 0.945* 0.942
Fujian E 1.010 0.872* 0.737* 1.009 1.019 0.877* 0.954* 0.999 0.935
Jiangxi C 0.923* 1.072* 0.945* 0.926* 0.981* 1.031* 0.893 0.843* 0.952
Shandong E 0.633* 1.334* 0.698* 1.075 0.970 1.108 0.847 0.938 0.950
Henan C 0.996 0.673* 0.904* 1.000 0.936* 0.974 0.791* 0.900n 0.897
Hubei C 0.951* 1.021* 0.843* 0.991* 0.979* 1.004 1.023* 0.925* 0.967
Hunan C 1.000 0.953* 0.814* 0.996* 0.957* 1.107* 0.963* 0.941* 0.966
Guangdong E 0.965 0.914 0.645* 0.977* 0.931* 0.965* 0.953* 0.962* 0.914
Guangxi W 0.971 0.865* 0.932* 0.950* 0.984* 0.994 0.916* 0.996 0.951
Hainan E 1.047 0.895* 0.894* 0.976* 0.997* 0.911* 0.908* 1.018* 0.956
Chongqing W 1.009 0.569* 1.140* 0.990 0.835* 0.987* 1.062* 0.910* 0.938
Sichuan W 0.809* 0.920 0.811* 0.920 0.814* 0.990 0.936 1.280* 0.935
Guizhou W 0.650* 0.918* 0.926* 0.909* 0.933* 0.900* 1.284* 0.907* 0.928
Yunnan W 0.990* 1.245* 0.488* 0.925* 0.936* 1.004* 0.812* 0.822* 0.903
Shaanxi W 0.715* 0.959* 0.735* 0.968* 0.892* 0.871* 0.922* 0.926* 0.874
Gansu W 0.994 1.039* 1.143* 0.984 0.938* 1.029 0.892 0.867* 0.986
Qinghai W 0.936* 0.959* 0.775* 0.959 0.693* 0.799* 0.972* 0.951* 0.881
Ningxia W 0.952* 1.270* 0.720* 0.927* 0.951* 1.004 1.329* 1.002 1.032
Xinjiang W 0.908* 0.974* 0.818* 0.945* 0.961* 0.971* 0.997 0.930* 0.938
Mean 0.943 0.938 0.861 0.960 0.948 0.970 0.967 0.957 0.943

n The NMCPI index is significantly different from unity at the 5% significant level.
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change (EC) components and corresponding bootstrap results are
shown in Table 3. The average efficiency change (EC) index of CO2

emission performance is 1.012 under our NMCPI framework, showing
an average annual increase in efficiency of 1.2%. This result indicates
that the movement of these provinces toward the environmental
technology frontier over the study period reflects the catch-up effect.

For individual provinces, 17 regions show an increase in
efficiency change of CO2 emission performance, whereas 10
provinces show a decrease. Ningxia shows the highest efficiency
change (average growth rate¼9.0%), whereas Fujian, the lowest
efficiency change (average¼0.950%), indicating a 5.0% decrease in
efficiency change of CO2 emission performance.

However, the bootstrapping results lead to a different story.
During 2008–2009 and 2009–2010, the original EC index of NMCPI
estimates indicates that over half of the provinces have an
improvement in their CO2 emission efficiency change. Neverthe-
less, the bootstrapping results show that in most cases, the
increase is not significant. Only two provinces are found to have
significant DMUs in 2008–2009 and 2009–2010.

The TC component of NMCPI is shown in Table 4; it is found
that the average TC index is approximately 0.935 under the
NMCPI, indicating a decrease in the technological change of CO2

emission performance. This implies a technological decline in CO2

emissions reduction in China’s transportation industry during the
research period. Almost all provinces show a state of technological
decline under the NMCPI, whereas only Zhejiang province shows
technological progress. This result suggests a lack of technological
innovation in low-carbon technology within the transportation
industry during the sample period.

The bootstrapping TC index shows some interesting results.
Before the 2005–2006 period, bootstrapping results confirm the

results of the technological decline of CO2 emission performance
because over half of the provinces show a significant decrease of TC
on CO2 emission performance. Especially during 2004–2005, almost
all provinces are found to be significant in the technological decline
of CO2 emission performance. However, after 2006, the bootstrap-
ping results show that in most cases, the technological decline is
not significant. For instance, during the 2007–2008 period, only two
provinces are found to be significant in the technological decline of
CO2 emissions. In addition, in the 2009–2010 period, no provinces
have significant technological decline, whereas two provinces were
determined to have significant technological progress of CO2 emis-
sion performance. It seems that the trend of the technological
decline of CO2 emissions reduction had been controlled.

This interesting phenomenon might emerge from a paradigm
shift in China’s low-carbon policies. Before 2006, the rapid growth
of transportation was fueled, which required considerable
amounts of energy that lead to huge CO2 emissions. During the
11th five-year plan (2006–2010), the Chinese government set a
reduction target for energy consumption and CO2 emissions.
Therefore, the transportation industry was under considerable
pressure to reduce its CO2 emissions. The pause of technology
decline after 2006 might support the Porter hypothesis [50],
which posits that a stricter environmental regulation means not
only cost increases but also improvements in innovation for more
environment-friendly production processes. However, additional
empirical work is required to accurately test the Porter hypothesis.

We examine the trends in the cumulative total-factor CO2

emission performance and its decomposition by setting the 2002
value equal to 1 for the transportation industry. Fig. 1 shows the
cumulative changes in CO2 emission performance and the decom-
posed sources based on the NMCPI. For the total-factor CO2

Table 3
Efficiency change component of NMCPI, 2002–2010.

Provinces Area 2002–2003 2003–2004 2004–2005 2005–2006 2006–2007 2007–2008 2008–2009 2009–2010 Mean

Beijing E 1.139 0.953 1.222* 1.000 1.000 1.000 1.000 1.000 1.039
Tianjin E 1.264* 0.699* 1.331* 1.000 1.000 1.000 1.000 1.000 1.037
Hebei E 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Shanxi C 1.224* 1.090 1.229* 1.007 1.114 0.677* 1.023 1.067* 1.054
Inner Mongolia W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.833 0.979
Liaoning E 1.151* 1.240* 0.861* 1.024 0.889* 0.981 1.004 1.009 1.020
Jilin C 1.000 1.000 1.000 1.000 1.000 0.850 1.023 0.941 0.977
Heilongjiang C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Shanghai E 0.964 1.035 1.294* 0.892 0.910 0.965 0.817* 1.167 1.006
Jiangsu E 1.018 0.997 1.251 0.697* 1.344* 1.051 1.024 1.000 1.048
Zhejiang E 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.744 0.968
Anhui C 1.134 1.149 1.357* 0.942 0.924 0.986 0.869* 1.018 1.047
Fujian E 1.000 1.000 1.000 0.910 0.960 0.865 0.899 1.023 0.957
Jiangxi C 1.030 1.197* 1.289* 0.940 1.037 1.082 0.929 0.925 1.054
Shandong E 0.701* 1.427* 1.000 1.000 1.000 1.000 1.000 1.000 1.016
Henan C 1.186 0.777* 1.288* 1.000 0.974 0.990 0.798* 0.978 0.999
Hubei C 1.045 1.133* 1.033 1.009 1.030 0.993 1.069* 0.982 1.037
Hunan C 1.105 1.110 1.157 0.950 0.976 1.102* 0.950 1.012 1.045
Guangdong E 1.270 1.000 0.807 0.956 0.937 1.019 0.823* 0.862 0.959
Guangxi W 1.097 0.953* 1.124* 0.973 1.027 0.990 0.933 1.061 1.020
Hainan E 1.120* 0.947 1.262* 0.874* 0.941 0.902 0.815* 1.012 0.984
Chongqing W 1.046 0.820* 1.348* 0.914 0.832* 0.976 0.996 0.982 0.989
Sichuan W 1.000 1.000 1.000 0.936 0.786* 1.060 0.843 1.520* 1.018
Guizhou W 0.774* 1.027 1.161* 0.947* 0.986 0.893* 1.738* 0.930 1.057
Yunnan W 1.028 1.382* 0.595* 0.932* 0.977 0.992 0.825* 0.871* 0.950
Shaanxi W 0.799* 1.140 0.951 1.032 0.996 0.858* 0.977 0.988 0.968
Gansu W 0.996 1.231* 1.339* 1.047 1.065 1.004 1.000 0.993 1.084
Qinghai W 1.030 1.136 1.000 1.000 0.730* 0.785* 1.028 1.025 0.967
Ningxia W 0.944 1.255* 0.936* 0.944 1.017 0.989 1.631* 1.000 1.090
Xinjiang W 0.950 1.085 0.991 0.970 1.033 0.953 1.043 0.992 1.002
Mean 1.043 1.035 1.013 0.979 0.996 0.986 0.984 0.981 1.012

E: eastern area, C: central area, and W: western area.
n The EC index is significantly different from unity at the 5% significant level.
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emission performance, the NMCPI shows values less than unity,
indicating a decrease in CO2 emission performance. It is found that
the sample provinces as a whole show a decrease in CO2 emission
performance by approximately 32.8% from 2002 to 2010.

The EC index of CO2 emissions for the 2002–2010 periods shows a
value greater than unity, indicating good catch-up performance. The
TC index for the NMCPI for the whole 2002–2010 period is less than
unity, indicating a period of technological decline, whereas for the
2005–2010 periods, the decrease trend of technology seems to be
controlled and treated. Taken together, these results indicate that the
decrease in the total-factor CO2 emission performance is primarily
caused by technological decline.

The Chinese government announced the mandatory goal of a
40 to 45% decrease in carbon intensity (CO2 emissions per GDP) by
2020 compared to the 2005 level. The transportation sector will be
under considerable pressure to reduce its CO2 emissions. In this
regard, it is crucial for the transportation industry to improve its
CO2 emission performance, not only for reducing CO2 emission
regulation risks but also for increasing “climate change competi-
tiveness” in the future. Because the decrease in the total-factor CO2

emission performance of the Chinese transportation is caused
mainly by technological decline, it is suggested that the govern-
ment might invest in low-carbon technology for the transporta-
tion industry to improve its innovation ability of CO2 emission
performance.

The total-factor CO2 emission performance change and its
decomposition have been compared at the provincial level.
Chinese regional classifications are divided into three parts: east,
central, and west. The east area is composed of 11 regions:
8 coastal provinces (e.g., Shandong, Jiangsu, and Guangdong) and
3 municipalities (Beijing, Tianjin, and Shanghai). The central area is
composed of 8 inland provinces (e.g., Heilongjiang, Jilin, and
Hunan). The west area includes 1 municipality (Chongqing) and
11 regions (e.g., Inner Mongolia, Qinghai, Xinjiang, and Sichuan).4

Compared to the other two areas, this area has the lowest
population density and is the least developed region in China.

Fig. 2 demonstrates the MMCPI and its decompositions for each
group. From this figure, it is observed that all three areas show a
drop in CO2 emission performance. The eastern area shows the

Table 4
Technological change component of NMCPI, 2002–2010.

Provinces Area 2002–2003 2003–2004 2004–2005 2005–2006 2006–2007 2007–2008 2008–2009 2009–2010 Mean

Beijing E 0.971 0.627* 0.688* 0.899* 0.887* 0.876* 1.000 0.973 0.840
Tianjin E 1.194 0.904 0.664* 0.982 1.020 0.955 1.000 1.001 0.965
Hebei E 0.998 0.844* 0.692* 1.087 1.022 1.014 1.048 1.012 0.965
Shanxi C 0.850* 0.852* 0.694* 0.961 0.923 1.001 0.955 0.940 0.897
Inner Mongolia W 0.997 0.738* 1.104 1.000 0.945 1.000 0.926 0.982 0.962
Liaoning E 0.916 0.832* 0.781* 0.960 0.934* 1.010 0.963 0.947 0.918
Jilin C 0.889 0.974 0.798* 0.935 0.872* 1.012 0.871* 0.882 0.904
Heilongjiang C 0.868* 0.893* 0.805 0.872* 0.921 0.999 0.930 0.966 0.907
Shanghai E 0.982 0.907 0.772* 1.091 1.027 1.008 1.032 0.944 0.970
Jiangsu E 0.862* 0.916 0.713* 1.018 1.025 0.946 1.097 1.082 0.957
Zhejiang E 0.893 1.149 0.905 1.000 1.000 0.957 0.976* 1.208* 1.011
Anhui C 0.864 0.831* 0.705* 1.017 0.961 1.001 0.998 0.928 0.913
Fujian E 1.010 0.872* 0.737* 1.110 1.062 1.014 1.061 0.977 0.980
Jiangxi C 0.896 0.896* 0.733* 0.985 0.946* 0.953 0.961 0.912 0.910
Shandong E 0.903 0.935 0.698* 1.075 0.970 1.108 0.847* 0.938 0.934
Henan C 0.840* 0.867* 0.702* 1.000 0.961 0.984 0.992 0.921 0.908
Hubei C 0.910 0.901 0.816* 0.982 0.951 1.011 0.957 0.942 0.934
Hunan C 0.905 0.859* 0.703* 1.049 0.981 1.005 1.014 0.930 0.931
Guangdong E 0.760* 0.914 0.799* 1.023 0.994 0.948 1.158 1.116 0.964
Guangxi W 0.885* 0.908* 0.829* 0.976 0.958 1.004 0.982 0.939 0.935
Hainan E 0.935 0.945 0.709* 1.117 1.059 1.010 1.114 1.006 0.987
Chongqing W 0.965 0.693* 0.692* 1.083 1.003 1.011 1.067 0.927 0.930
Sichuan W 0.809* 0.920 0.811* 0.983 1.036 0.934* 1.110 1.105* 0.963
Guizhou W 0.840* 0.894 0.798* 0.960 0.947* 1.008 0.969 0.976 0.924
Yunnan W 0.964 0.859* 0.820* 0.992 0.959 1.012 0.985 0.943 0.942
Shaanxi W 0.895* 0.842* 0.772* 0.938* 0.896* 1.015 0.944 0.938 0.905
Gansu W 0.999 0.843* 0.794* 0.940 0.881* 1.025 0.893 0.873 0.906
Qinghai W 0.908 0.844* 0.775* 0.959 0.949 1.019 0.946 0.928 0.916
Ningxia W 1.009 0.881* 0.770* 0.982 0.935 1.015 0.938 1.002 0.941
Xinjiang W 0.955 0.898* 0.825* 0.974 0.931 1.019 0.956 0.937 0.937
Mean 0.922 0.875 0.763 0.998 0.965 0.996 0.990 0.973 0.935

E: eastern area, C: central area, and W: western area.
n The TC index is significantly different from unity at the 5% significant level.
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Fig. 1. Trends of cumulative NMCPI and its decomposition, 2002–2010.

4 There are 12 regions in the west area in this study. Tibet is not included
because energy data is not available. Therefore, we get 11 regions in the west area
in the empirical analysis.
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highest NMCPI, with an average annual decrease rate of �16.1%; the
central and eastern areas also show negative growth in NMCPI with
decrease rates of �23.5% and �24.4%, respectively. This finding
indicates that all areas experienced CO2 emission performance loss.

In Fig. 3, the central area shows the highest efficiency changes
(EC) of CO2 emissions with an average growth rate of 23.6%,
whereas the east and west areas also enjoy the efficiency gain.
Regarding the technological change (TC) in Fig. 4, all areas show a
technical decline with a similar decrease rate. After 2005, the
decrease rate has slowed down. The east area began to increase its
technological change after 2008. In general, all the areas suffer
from a deterioration of technology in CO2 emission performance.
This suggests that low-carbon innovation has neglected policy
formulation related to the transportation industry.

The TC index only indicates the technologically improved
provinces. According to Refs. [25,37], the three conditions for
determining the regional innovative provinces are as follows:

TC41 ð12aÞ

TCPIt Ktþ1
i ; Ltþ1

i ; Etþ1
i ;Ytþ1

i ;Ctþ1
i

� �
41 ð12bÞ

TCPItþ1 Ktþ1
i ; Ltþ1

i ; Etþ1
i ;Ytþ1

i ;Ctþ1
i

� �
¼ 1 ð12cÞ

Eq. (12a) requires a TC41. This suggests that the environmental
technology frontier should be shifted towards the direction of more
products and less CO2 emissions to become a regional innovative
province. Eq. (12b) means that the production activities of innova-
tive provinces at period tþ1 should be outside the environmental
frontier of the period t. In other words, the technology at period t
cannot produce the output at period tþ1. Eq. (12c) provides the
condition that the innovative provinces should be on the environ-
mental technology frontier at the period, tþ1.

Table 5 lists the innovative provinces for every period. Hebei
province is found to be an innovator five times. Beijing, Fujian,
Zhejiang and Inner Mongolia are registered as innovative provinces
only once. The resulting innovators may provide some implications
for regional policy makers and policymaking. Non-innovative pro-
vinces can target innovative provinces to improve their carbon
performance by ranging their scope for low-carbon development.

Finally, a statistical analysis is carried out to determine any
significant methodological differences between the NMCPI pro-
posed in this study and the MCPI developed by Ref. [27]. We
employ the Wilcoxon–Mann–Whitney rank-sum test and compare
the difference in decomposition results between the NMCPI and
the MCPI shown in Table 6. The results of NMCPI (MCPI) and TC

reject the null hypothesis at least at the 5% level, indicating that
the results for the two methods show significant differences
in rankings in terms of CO2 emission performance and TC
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Fig. 2. Trends of cumulative NMCPI at the area level.
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Fig. 4. Trends of cumulative TC in area level.

Table 5
innovators of low-carbon technology

Period Innovators

2002–2003 Beijing, Fujian
2003–2004 Zhejiang
2004–2005 Inner Mongolia
2005–2006 Hebei
2006–2007 Hebei
2007–2008 Hebei
2008–2009 Hebei
2009–2010 Hebei

Table 6
Wilcoxon–Mann–Whitney rank-sum test for the MCPI and the NMCPI.

Null hypothesis (Ho) Wilcoxon statistics p-Value

MCPI NMCPI¼MCPI 67411.0 0.022
EC EC of NMCPI¼EC of MCPI 63849.0 0.160
TC BPC of NMCPI¼TC of MCPI 62461.0 0.002
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component. However, the significant differences are not observed
in the EC component. The average of MCPI is higher than that of
NMCPI, which might stem from the lack of non-radial slacks for all
the variables. The MCPI approach might lead to the overestimation
of CO2 emission performance in this case.

The kernel density plot in Fig. 5 also indicates some differences
in the distribution pattern between the two indices. In addition,
the Fan–Ullah test verifies significant differences in the distribu-
tion pattern between the NMCPI and the MCPI.

4. Conclusions

By incorporating non-radial slacks into the previous MCPI
approach, the study presents the new NMCPI method, which
could be interpreted as a non-radial total-factor CO2 emission
performance index because it is constructed from the perspective
of the total-factor production efficiency framework. The NMCPI is
derived by solving several non-radial DEA-type models and
decomposing the NMCPI into the EC and TC indices. The study
utilizes bootstrapping NMCPI to perform statistical inferences on
non-radial total-factor CO2 emission performance.

The study employs the proposed approach to analyze the
changes in the total-factor CO2 emission performance of the
regional transportation industry in China for the period of 2002
to 2010. The results indicate a 33% cumulative decrease in the
total-factor CO2 emission performance during the sample period.
The reduction in CO2 emission performance is caused by techno-
logical decline, which is also confirmed by the bootstrapping
NMCPI. The results suggest that the government should develop
low-carbon technology for the transportation industry to improve
its CO2 emission performance.

This study also has several limitations. The empirical analysis is
based on data from 2002 to 2010; therefore, future research
should consider a longer period. Because the empirical work is
based on whole transportation industry, consideration in more
specific transportation sectors, such as the trucking industry or
seaport industry, may be needed. In addition, the second stage
regression could also be used to investigate the determinants of
CO2 emission performance.
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