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Abstract

In this paper, we will propose a slacks-based measure (SBM) of efficiency in Data Envelopment Analysis (DEA).
This scalar measure deals directly with the input excesses and the output shortfalls of the decision making unit (DMU)
concerned. It is units invariant and monotone decreasing with respect to input excess and output shortfall. Further-
more, this measure is determined only by consulting the reference-set of the DMU and is not affected by statistics over
the whole data set. The new measure has a close connection with other measures proposed so far, e.g., Charnes—
Cooper—Rhodes (CCR), Banker—Charnes—Cooper (BCC) and the Russell measure of efficiency. The dual side of this
model can be interpreted as profit maximization, in contrast to the ratio maximization of the CCR model. Numerical
experiments show its validity as an efficiency measurement tool and its compatibility with other measures of efficien-

cy. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the innovative work by Charnes et al.
(1978), studies in Data Envelopment Analysis
(DEA) have been extensive: more than 1000 pa-
pers by 1996. One of the main objectives of DEA is
to measure the efficiency of a Decision Making
Unit (DMU) by a scalar measure ranging between
zero (the worst) and one (the best). This scalar
value is measured through a linear programming
model. Specifically, the Charnes—Cooper—Rhodes
(CCR) model deals with the ratio of multiple in-
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puts and outputs in an attempt to gauge the rela-
tive efficiency of the DMU concerned among all
the DMUs. This fractional program is solved by
transforming it into an equivalent linear program
using the Charnes—Cooper transformation. The
optimal objective value (6%) is called the ratio (or
radial) efficiency of the DMU. The optimal solu-
tion reveals, at the same time, the existence, if any,
of excesses in inputs and shortfalls in outputs
(called slacks). A DMU with the full ratio effi-
ciency, 6" = 1, and with no slacks in any optimal
solution is called CCR-efficient. Otherwise, the
DMU has a disadvantage against the DMUSs in
its reference-set. Therefore, in discussing total
efficiency, it is important to observe both the ratio
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efficiency and the slacks. Some attempts have been

made to unify 0* and slacks into a scalar measure,

see Tone (1993) and Pastor (1995) among others.

Meanwhile, Charnes et al. (1985) developed the
additive model of DEA, which deals directly with
input excesses and output shortfalls. This model
has no scalar measure (ratio efficiency) per se.

Although this model can discriminate between ef-

ficient and inefficient DMUs by the existence of

slacks, it has no means of gauging the depth of
inefficiency, similar to 6" in the CCR model. In an
attempt to define inefficiency based on the slacks,

Russell (1985, 1988), Pastor (1996), Lovell and

Pastor (1995), Torgersen et al. (1996), Cooper and

Pastor (1997), Cooper and Tone (1997), Thrall

(1997) and others have proposed several formulae

for finding a scalar measure. The following prop-

erties are considered as important in designing the
measures.

o (P1) Units invariant: The measure should be in-
variant with respect to the units of data.

e (P2) Monotone: The measure should be mono-
tone decreasing in each slack in input and out-
put.

o (P3) Translation invariant: The measure should
be invariant under parallel translation of the co-
ordinate system applied (Ali and Seiford, 1990;
Pastor, 1996).

In this paper, we further emphasize the original

property of DEA:

o (P4) Reference-set dependent. The measure
should be determined only by consulting the ref-
erence-set of the DMU concerned.

Given that DEA employs piece-wise linear efficient

frontiers which are spanned by efficient DMUs,

and that an inefficient unit is ‘inefficient’ with re-
spect to DMU s in its reference-set, the measure of
efficiency should be determined by the reference-
set dependent values, as in the CCR and BCC

(Banker et al., 1984) models. It should not be in-

fluenced by the extreme values, e.g., the minimum

and the maximum of the data set, or by statistics
covering the whole data set.

The new measure proposed in this paper satis-
fies the properties (P1), (P2) and (P4).

The rest of the paper is organized as follows.

Section 2 proposes a new measure of efficiency

(SBM) based on input excesses and output short-

falls, along with the computational scheme for
solving the fractional program that defines SBM.
We will show that the SBM can be interpreted as a
product of input and output inefficiencies. The
relationship with the CCR model is described in
Section 3. The dual side of the SBM model is
presented in Section 4, where it is shown that the
model maximizes the virtual profit instead of the
virtual ratio of the CCR model. This enables us to
introduce economic aspects into the SBM: we can
embed information on costs and prices into it.
Furthermore, by restricting the feasible region of
the dual variables (virtual costs and prices), we can
make interpretations which are close to reality,
similar to those using the assurance region method
of Thompson et al. (1986) for the radial type
models, e.g. the CCR and the BCC. In Section 5,
an illustrative example is exhibited which com-
pares the SBM with other CCR-type models. In
Section 6, we will relax the positivity assumption
of the data set. Finally, in Section 7, comparisons
between the SBM and the Russell graph measure
of technical efficiency (Russell, 1988; Fare et al.,
1978, 1985) will be discussed from technical and
economic viewpoints.

2. A slacks-based measure of efficiency

The definition of a slacks-based measure (SBM)
of efficiency will be given, along with its interpre-
tation as a product of input and output ineffi-
ciencies.

2.1. Definition and computational scheme of SBM

We will deal with » DMUs with the input and
output matrices X = (x;) € R™" and Y = (y;) €
R**", respectively. We assume that the data set is
positive, i.e. X > 0 and Y > 0. (This assumption
will be relaxed in Section 6.)

The production possibility set P is defined as

P:{(xvy”x)X}“vng}'v 120]3 (1)

where 4 is a nonnegative vector in R”. (We can
impose some constraints on 4, such as 377 | 1, =1
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(the BCC model), if it is needed to modify the
production possibility set.)

We consider an expression for describing a
certain DMU (x,, y,) as

x,=XA+s, (2)
Yo =Yi—s", (3)

with 4>0, s >0 and s >0. The vectors
s~ € R" and s* € R’ indicate the input excess and
output shortfall of this expression, respectively,
and are called slacks. From the conditions X > 0
and 4 > 0, it holds

X, =95 . (4)
Using s~ and s*, we define an index p as follows:

L=/ S s /x
U (1/s) 320185 /3o
It can be verified that p satisfies the properties (P1)

(units invariant) and (P2) (monotone). Further-
more, from (4), it holds

(5)

0<p<l. (6)

In an effort to estimate the efficiency of (x,,y,), we
formulate the following fractional program in
A, s~ and s*.

[SBM]

minimize P =T Do s

subject to x, = XA+, )
y,=YA— st
1120, 37>Oa S+>0-

[SBM] can be transformed into a linear program
using the Charnes—Cooper transformation in the
similar way as the CCR model. (See Charnes and
Cooper, 1962; Charnes et al., 1978.)

Let us multiply a scalar variable #(> 0) to both
the denominator and the numerator of (7). This
causes no change in p. We adjust ¢ so that the
denominator becomes 1. Then this term is moved
to constraints. The objective is to minimize the
numerator. Thus, we have

[SBM{]

minimize T=1—L1 3" ts X

subject to 1 =14+13" 157 /),
x,=XA+s,
y,=Yi—s",

A=0, s=0 st=0 ¢>0.

®)

The problem given above is a nonlinear pro-
gramming problem since it contains the nonlinear
term ts7 (r=1,...,s). However we can transform

it into a linear program as follows. Let us define
S =t, ST=t" and A=1i

Then, [SBMt] becomes the following linear pro-
gramin ¢, S, S* and 4:

[LP]
minimize T=1t—L3" S /X
subject to 1 =14+13" 8" /y,,
tx,=XA+ 8",
ty,=YA—-S",
A=0, S =0, S">0, >0.

)
Let an optimal solution of [LP] be
(5,6, 47,87, 8™).
Then, we have an optimal solution of [SBM] as
defined by
p* — T*, l* — A*/t*, s—* — S**/t*’
st =87/t (10)

Based on this optimal solution, we determine a
DMU as being SBM-efficient as follows:

Definition 1 (SBM-efficient). A DMU (x,,y,) is
SBM-efficient if p* = 1.

This condition is equivalent to s =0 and
s™ =0, ie., no input excesses and no output
shortfalls in any optimal solution.

For an SBM inefficient DMU (x,,y,), we have
the expression:

X, =X\ +s577,
y, =Y\ —s.
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The DMU (x,,y,) can be improved and be-
come efficient by deleting the input excess and
augmenting the output shortfall as follows:

*

Xo <— X, — 8§ , (11)
yo Hyo +S+*. (12)

This operation is called the SBM-projection.
Based on A", we define the reference-set to
(x,,y,) as follows:

Definition 2 (Reference-set). The set of indices
corresponding to positive 4}s is called the refer-
ence-set to (x,,y,).

In the occurrence of multiple optimal solutions,
the reference-set is not unique. We can choose any
one for our purpose.

The reference-set R, is

R():{j }‘;>0} (je{lavn}) (13)

Using R,, we can express (x,,y,) by

X, = ij/l; +57, (14)
JER,

Yo=Y ¥ -5 (15)
=

Since the SBM p* depends only on s~ and s**, i.e.,
the reference-set dependent values, p* is not affected
by values attributed to other DMUs not in the
reference-set. In this sense, p* proposed in this pa-
per is different from other efficiency measures which
incorporate statistics over the whole data set.

2.2. Interpretation of SBM as product of input and
output inefficiencies

The formula for p in (5) can be transformed
into

1
_ 1 - xio_si_ 1 . yr0+sj
”‘(%Z v )(‘ZT> -

i=1 r=1

In the first term on the right-hand side, the ratio
(xio — 877)/x;, evaluates the relative reduction rate
of input i and hence the first term corresponds to

the mean reduction rate of inputs or input ineffi-
ciency. Similarly, in the second term, the ratio
(3o +51) /¥ evaluates the relative expansion rate
of output r and (1/s) > (e + ) /v is the mean
expansion rate of outputs. Its inverse, the second
term measures output inefficiency. Thus, SBM p
can be interpreted as the product of input and
output inefficiencies.

2.3. Imposing bounds on the slacks

The projection formulas (11) and (12) may re-
sult in a large reduction (enlargement) in inputs
(outputs) of the DMU (x,,y,), which may not be
allowed in the actual situations. In order to avoid
such a difficulty, we can impose bounds on the
slacks s~ and s*, such as

s <s,® and s <P, (16)

where the vector ;% (s/%) is the upper bound of
input reduction (output enlargement) of the DMU
and should be specified for each DMU. Restricting
the feasible region of slacks in this manner will
give the efficiency measure a score not less than the
original SBM score p*.

3. Relationship with the CCR model

In this section, we will demonstrate that the
SBM p* is not greater than the CCR efficiency
measure (0°) and that a DMU is SBM-efficient if
and only if it is CCR-efficient.

3.1. SBM and the CCR measure

The (input-oriented) CCR model can be for-
mulated as follows:

[CCR]

minimize 0

subject to Ox, =Xp+1t, (17)
Vo=Yu—1t", (18)

u=0, t =0 +t">0.
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Definition 3 (CCR-efficient). A DMU (x,,p,) is
CCR-efficient, if the optimal objective value 0" is
equal to one and the optimal slacks ¢t~ and #** are
zero for every optimal solution of [CCR].

For an inefficient DMU (x,,y,), the CCR pro-
Jection is defined as

X, <= 0x, —t7%, (19)

yo = yn + t+*'

Let an optimal solution of [CCR] be
(0", p*,t*,¢t™). From (17), it holds

X, =Xu +t7+ (1 -0)x,, (20)

y,=Yp —t. (21)
Let us define

P (22)
T=t"+(1-0)x,, (23)

st =1 (24)

Then, (4,s7,s") is feasible for [SBM] and its ob-
jective value is
= (U/m){3 1 [xio + m(1 = 0%)}
1+ 1/S iflr/ym
_ (1/1”’1 i= 1 1 /xlo
1+ 1/S rY 1 r /ym

We have the following theorem.

Theorem 1. The optimal SBM p* is not greater
than the optimal CCR 6".

Proof.

0*_(1/’” lll /'xm 0*
1+ l/S r=1 I /ym

_%;t;*/xioge*. O

pr<p=

Notice that the coefficient 1/(m x;,) of the input
excess s; in p plays a crucial role in validating
Theorem 1.

Conversely, for an optimal solution (p*, 4",
s, 5™) of [SBM], let us transform the constraints
as

Ox, =X+ (0—Dx,+s7, (26)

y,=YA —s™. (27)

Further, we add the constraint
@—-1Dx,+s=0. (28)

Then, (O, u=4"t =(0— Dx, +s %t =s) is
feasible for [CCR].

3.2. SBM-efficiency and CCR-efficiency

The relationship between CCR-efficiency and
SBM-efficiency is demonstrated by the following
theorem.

Theorem 2. A DMU (x,,y,) is CCR-efficient, if
and only if it is SBM-efficient.

Proof. Suppose that (x,,y,) is CCR-inefficient.
Then, we have either 6" <1 or (0"=1 and
(t7*, 1) # (0, 0)). From (25), in both cases, we
have p < 1 for a feasible solution of [SBM]. Hence,
(x,,»,) is SBM-inefficient.

On the other hand, suppose that (x,,y,) is
SBM-inefficient. Then, it holds (s, s™*) # (0,0).
By the statements (26) and (27), (6, p= 47,
t=(0—-1x,+s"t" =s7) 1is feasible for
[CCR], provided (0 —1)x,+s* > 0. There are
two cases.

Case 1 (0=1 then (¢ =s*t"=s5")#
(0, 0)). In this case, an optimal solution for [CCR]
is CCR-inefficient.

Case 2 (0 < 1). In this case, (x,,y,) is CCR-
inefficient.

Therefore, CCR-inefficiency is equivalent to
SBM-inefficiency. Since the definitions of efficient
and inefficient are mutually exclusive, we have
proved the theorem. [

4. Observations on the dual problem

One of the important characteristics of DEA is
its dual side, as represented by the dual program of
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the original linear program. This links the effi-
ciency evaluation with the economic interpreta-
tion.

4.1. The dual program of the SBM model as profit
maximization

The dual program of the problem [LP] in Sec-
tion 2 can be expressed as follows, with the dual
variables £ € R, v € R” and u € R’:

[DP]
maximize ¢ (29)
subject to ¢+ vx, —uy, =1, (30)
—vX +uY <0, (31)
1
v = a[l/xo], (32)
¢
wz {1y, (33)

where the notation [1/x,] designates the row vec-
tor (1/x10,1/%20, -y 1/Xm0)-

By Eq. (30), we can eliminate £. Then, this
problem is equivalent to the following:

[DP]

maximize uy, — vx, (34)
subject to uY —vX <0, (35)
1
= —[1/x,], 36
v (1%, (36)
1 —vx, +uy,
> ————[l/y]. (37)

The dual variables v € R" and u € R’ can be in-
terpreted as the virtual costs and prices of input
and output items, respectively. The dual problem
aims to find the optimal virtual costs and prices for
the DMU (x,,y,) so that the profit uy; — vx; does
not exceed zero for any DMU (including (x,,y,)),
and maximizes the profit uy, — vx, for the DMU
(x,,y,) concerned. Apparently, the optimal profit
is at best zero and hence ¢* = 1 for the SBM effi-
cient DMUs.

Constraints (32) and (33) restrict the feasible v
and u to the positive orthant. Using this frame-
work, we can incorporate other important devel-

opments related to the virtual dual variables into
the SBM model, e.g. the assurance region methods
(Thompson et al., 1986, 1997, Thompson and
Thrall, 1994), and the cone-ratio models (Charnes
et al., 1990; Tone, 1997), among others. These
modifications will contribute to the enhancement
of the potential application of the model sub-
stantially. We will introduce this subject in Section
4.3.

4.2. Comparisons of dual programs in CCR and
SBM models

The dual program of the CCR model can be
expressed as

[DCCR]

maximize #ny, (38)

subject to  &x, =1, (39)
=0, n=0. (41)

This program originates from the ratio form CCR
model (Charnes et al., 1978) below:

maximize :,‘,sz (42)
subject to i <l (V), (43)
éxj
E=0, n>0. (44)

Thus, the CCR model tries to find the virtual costs
¢ and prices 5 so that the ratio ny,/&x, is maxi-
mized, subject to the ratio constraint ny;/¢x; <1
for every DMU ;.

The SBM model proposed in this paper deals
with the profit instead of the ratio in the CCR
model.

4.3. Taking account of costlprice information

Some may question the rationale behind max-
imizing the objective function (5) to evaluate the
efficiency of DMU,. The SBM will project the
DMU to a “furthest” point on the efficient fron-
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tiers in the sense that the objective function is to be
minimized by finding the maximal slacks. The
upper bounds of slacks introduced in Section 2.3
will go some way to correspond to this question.
However, the dual problem given above will con-
tribute to making the SBM understandable in the
economic interpretation. Since the dual variables v
and u can be interpreted as the virtual costs and
prices of the corresponding inputs and outputs, we
can embed cost/price information into the dual
problem. A similar situation occurs in the assur-
ance region model of Thompson et al. (1986). In
many applications, information on costs and
prices is unavailable, or is subject to change by
chance. Hence it may be reasonable to set the
lower and upper bounds of the ratio of virtual
costs of two items as follows:

l; < % < Uy (45)
A

Similarly, for outputs, we can impose the lower

(upper) bound on the ratio of the virtual prices of

outputs i to j as follows:

Ly< 2 <U;. (46)

U;
Thus, we have an SBM with an assurance region
of (v,u) as follows:

[DP"]

maximize uy, — vx, (47)

subject to  uY —vX <0, (48)

1

> Z[l/x(,], (49)
wp LWy ) (50)
vP <0, (51
uQ <0, (52

where

P=

ly —un Ly —ups

-1 1 0 0
0 0 -1 1

and
Q p—
Ly —-Up Lz —-Up
—1 1 0 0
0 0 -1 1

The matrices P and Q have dimensions m x n; and
s X ny, respectively, where n; and n, are deter-
mined by the number of assurance region con-
straints imposed.

The dual of the abovesaid program can be ex-
pressed, using € R, S € R", ST e R’, 4 € R",
@ c R", II € R™ as variables, as below.

[SBM-AR]
L I &K
minimize 7 =/ —— ;S,- /%o (53)

1 N
bjectto 1=1¢+- St /Yo
subject to +s;,/y

tx,=XA+S — PP,
ty,=YA—-S"+0Il,
A=0, S =0, S >0,
t>0, >0, II1>0.

Let an optimal solution of [SBM-AR] be
(n*,t, A", 8,87, @ IT"). Then we have an op-
timal solution of the SBM under the assurance
region constraints (51) and (52) as defined by

p>:< — 7’]*7 l* — A*/I*, s—* — S_*/t*7
s =8/t ¢t =@, m=II"/t".  (54)
A DMU is called “SBM-AR efficient” if and only

if p* = 1. The SBM projection under the assurance
region constraints can be attained by

X, —x,— 8§ — PP (=X1), (55)
fohyo+s+*+Qn*(: Y}’*) (56)

5. An illustrative example

In this section, we compare the SBM with the
CCR model using a simple illustrative problem
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Table 1
Two inputs and two outputs data
DMU Inputl Input2 Outputl Output2
A 4 3 2 3
B 6 3 2 3
C 8 1 6 2
D 8 1 6 1
E 2 4 1 4

consisting of five DMUs with two inputs and two
outputs. The data set is exhibited in Table 1.

5.1. Comparisons with the CCR model

First, we compare the results obtained by ap-
plying the input-oriented CCR model with those
using the SBM, as displayed in Table 2. The no-
tations in the table correspond to those in (17),
(18) and (7). Hence, ¢t~ and t* denote the optimal
slacks for the CCR model, while s~ and s denote
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has the full efficiency score 0 = 1, although it has a
shortfall of £ = 1 in Output2 against C. However,
when this factor was taken into account, the SBM
score of D came down to p = 0.667. Similarly, the
SBM scores of A and B were worse than those in
the CCR model due to the existence of slacks.
Finally, CCR-efficient C and E remained at the
efficient status under SBM evaluations, as claimed
by Theorem 2.

The optimal weights of both models are ex-
hibited in Table 3.

5.2. Comparisons with the CCR model under
assurance region constraints

In order to compare the change in efficiency
owing to the addition of assurance region con-
straints, we augmented the following ratio con-
straints to the pairs of inputs and outputs for the
abovesaid sample problem:

1 1e 9 radi v u
those for the SBM. Since the CCR score is a radial 05< u <1 and 05< uy <1. (57)
measure and takes no account of slacks, DMU D U2 U
Table 2
Comparisons with the CCR model
DMU CCR SBM
Score Slack Score Slack
0 t ty tf t5 p sy S5 sy 3
A 0.9 0 0 0.4 0 0.798 0 0.357 0.714 0
B 0.833 0 0 1.5 0 0.568 0 0.643 2.286 0
C 1 0 0 0 0 1 0 0 0 0
D 1 0 0 0 1 0.667 0 0 0 1
E 1 0 0 0 0 1 0 0 0 0
Table 3
Comparisons of optimal weights
DMU CCR SBM
Score Weight Score Weight
0 & & M 5] p U1 U2 uy L)
A 0.9 0.04 0.28 0 0.3 0.798 0.181 0.167 0.199 0.207
B 0.833 0.037 0.260 0 0.278 0.568 0.135 0.167 0.142 0.199
C 1 0.104 0.167 0.111 0.167 1 0.063 0.5 0.083 0.25
D 1 0.125 0 0.167 0 0.667 0.062 0.5 0.056 0.333
E 1 0.125 0.188 0.125 0.219 1 0.411 0.125 0.5 0.205
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Similarly, we imposed the same weight con-
straints to & and # for the CCR model in (38)-(41)
as follows:

05< <1 and 05<M <1,

2 M (58)

Comparisons of the results of these problems
under the assurance region constraints, i.e.,
CCR-AR and SBM-AR, are exhibited in Table 4.
In the CCR model, the complementary slack-
ness conditions between slacks and weights assert
that

& =0 (Vi) and it =0

r

(Vr).

Hence, it is observed that DMUs A and B have
n; =0 and D has #; = 0. This means that Out-
putl was not accounted for efficiency evaluations
of A and B. On the other hand, the SBM has the
following complementarity conditions at opti-

mality:
e )sr=0 W)
vl — st = i
i m X, i
and
* p* +x — 0 v
(-2} 0 on

where p* is the SBM score. Thus, v; and u’ are
bounded below by 1/(mx;,) and p*/(s,), re-
spectively, and are all positive. Furthermore, the
weighted input satisfies the relation vjx;, > 1/m
(Vi) and the weighted output satisfies u*y,, = p*/s

K. Tone | European Journal of Operational Research 130 (2001) 498-509

(Vr). It can be concluded that in the SBM all
inputs and outputs contribute to evaluation of
efficiency, at least at the levels mentioned above.

It is observed that in the CCR-AR, A, B and D
showed reduced scores. This was caused by the
addition of the assurance region constraints. C and
E remained at the status of full efficiency. On the
other hand, in the SBM-AR, even E dropped from
the status of efficiency by dint of these assurance
region conditions. This was also caused by the
difference of the models, i.e., the ratio maximiza-
tion and the profit maximization.

6. How to deal with zeros in data

So far, we have assumed that the data set is
positive, i.e., X > 0 and Y > 0. In this section, we
relax this assumption and show how to deal with
zeros in the input/output data and even negative
output data. This will considerably expand the
applicability of the SBM to real world problems,
which essentially involve systematic zeros in the
input/output data matrix.

6.1. Zeros in input data

If x, has zero elements, we can neglect the
slacks corresponding to these zeros. Suppose, for
example, that x;, = 0. Then, the first constraint
leads to:

n
E x4+ 857 =x1,=0.
J=1

Table 4
Comparisons with the CCR model under assurance region constraints
DMU CCR-AR SBM-AR
Score Weight Score Weight
0 & & M > P Uy 02 u u
A 0.857 0.111 0.186 0.107 0.214 0.667 0.167 0.333 0.167 0.333
B 0.702 0.091 0.152 0.088 0.175 0.5 0.125 0.25 0.125 0.25
C 1 0.111 0.111 0.125 0.125 1 0.25 0.5 0.25 0.5
D 0.875 0.111 0.111 0.125 0.125 0.5 0.25 0.5 0.25 0.5
E 1 0.167 0.167 0.182 0.205 0.667 0.333 0.667 0.333 0.667
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Hence, we have s; = 0 for every feasible solution.
Thus, we can delete s from the set of variables to
be determined by the model. Correspondingly, in
the objective function, the term sy /xj, is removed
and m should be reduced by 1 (m — m — 1). Notice
that the abovesaid constraint should be kept in the
set of constraints.

6.2. Zeros in output data

Suppose that y, has y,, =0. Then, the first
output-constraint leads to

ZJ’L/;&/ —5 =y, =0.

=1

There are two important cases to be considered:

Case 1. The target DMU possesses no function
to produce the first output. In this case, we can
delete the term s| /y1, from the objective function,
since s{ has no role in evaluating the efficiency of
the DMU. The number of terms (s) in the objective
function should be reduced by 1 (s — s — 1).

Case 2. The target DMU has a function with
the potential of producing the first output but does
not ulilize it. In this case, we may replace y;, by a
small positive number or by

Vio H%min{yu |y; >0, j=1,...,n}.
It should be remembered that the term s /yj, in
the objective function has the role of a penalty in
this case, and that 1/y;, should be sufficiently
large.

Finally, negative output data can be dealt using
the same approach adopted for handling zeros in
output data.

7. Comparisons with the Russell measure of effi-
ciency

The Russell graph measure of technical effi-
ciency (Fare et al., 1985) is defined as follows:

[Russell]

1 & - 1
inimi — 0; — 59
minimize m—f—s(; +;¢r> (59)
subject to  Oxi, > Y xydy (i=1,...,m),
=1

(rbrym< Zy"j;“j (}’: 13"'7‘9)7
r=1

0<01<17 ¢>IVi7r7
Let wus change notations by introducing

5,(=0)(i=1,...,m)ands (=0) (r=1,...,s),
which satisfy the relations

. - ) +
o,="0 S (<1) and ¢, =221 (> 1),

Xio Yro

Then, after some mathematical manipulations, the
abovesaid Russell formulation comes to

[Russell’]

minimize

> 1
+) — (60)
; 1+ sjo/ym>
subject to  x, = XA+ s,

+
0

y,=YA—s
420

The SBM measure is similar to Russell’s in that
both deal directly with slacks and give an efficiency
measure between 0 and 1. Also both are monotone
decreasing with respect to slacks. However, the
SBM differs from the Russell measure in the fol-
lowing ways.

1. The Russell measure needs to be solved using a
nonlinear programming problem, while the
SBM can be solved using the linear program
technology.

2. The Russell measure is an average of an arith-
metic mean and a harmonic mean, and its
meaning is unclear, while the SBM can be inter-
preted as explained in Section 2.2.

3. More importantly, the Russell measure has no
definite dual program and it is difficult to attain
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an economic interpretation. Hence it is also not
fitted for embedding cost/price information into
the model, whereas the SBM has a well-defined
dual program which can be interpreted as a vir-
tual profit maximization problem as described
in Section 4.

4. Fare et al. (1978, 1994) introduced the input
(output) oriented Russell measure, which is
equivalent to the input (output) oriented
SBM, if we deal with only the numerator (de-
nominator) of the SBM in (7).

8. Conclusion

This article proposed a scalar measure SBM of
efficiency in DEA. In contrast to the CCR and
BCC measures, which are based on the propor-
tional reduction (enlargement) of input (output)
vectors and which do not take account of slacks,
the SBM deals directly with input excess and
output shortfall. Although the additive model has
the (weighted) sum of slacks as its objective and
can discriminate between efficient and inefficient
DMUs, it has no means to gauge the depth of
inefficiency per se. In this framework, the SBM
shows a sharp contrast to CCR, BCC and, other
measures proposed so far.

The SBM satisfies such properties as unit in-
variance and monotone with respect to slacks.
Furthermore, it is reference-set dependent, i.e. the
measure is determined only by its reference-set and
is not affected by statistics over the whole data set.
Also, this model can be modified to cope with in-
put or output-orientation as special cases. These
cases are the same as those used in the input
(output) oriented Russell measure of technical ef-
ficiency. The dual program revealed that SBM
tries to find the maximum virtual profit, unlike the
CCR model, which attempts to find the maximum
ratio of virtual output over virtual input.

The numerical example demonstrated the
compatibility of SBM with other measures and its
potential applicability for practical purposes.

Although this study concentrated on the basic
characteristics of the proposed model, further
theoretical research and applications should be
developed in diverse areas, including studies in the

combinations of this method with other recent
developments in DEA.
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