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We highlight endogeneity issues, recent advances in generalized panel data stochastic fron-

tier models, nonparametric estimation of the frontier, quantile estimation and distribution
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coverage, while details are left for further reading in the abundant (although not limited to)

list of references provided.
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1. Introduction and Overview

The primary goal of this chapter is to introduce the wide audience of this Handbook

to the range of methods, developed over the last four decades, within one of the most

popular paradigms in modern productivity analysis - the approach called Stochastic Frontier

Analysis, often abbreviated as SFA.

The first, and one of the most important, questions a reader might wonder about is why a

researcher on productivity should ever care about SFA in general and especially about such

an enormous variety of different types of SFA models that have been proposed over the last

four decades. Our goal in writing this chapter was to provide a reader with a good answer

to this important question. Here, we strive to outline the essence of major types of SFA

methods, providing minimal and the most essential details, and focusing on advantages and

disadvantages of each method for dealing with various aspects that arise in practice. We hope

that upon finishing reading this chapter a reader who is barely or even not at all familiar

with SFA gets a general understanding of the importance and relevance of different SFA

methods, along with useful/key references for further details on each method. Of course, the

reader also deserves to get a quick answer now, to decide if it is worth it for a productivity

researcher to read this chapter further - we try to give such a quick answer in this section.

The Nobel Laureate Paul Krugman was hardly exaggerating when he once quipped that

“Productivity isn’t everything, but in the long run, it’s almost everything.” The root of

this statement can be seen when looking at various theoretical models of economic growth,

e.g., starting from Solow’s growth model, the related variations of more advanced growth

theory models or empirical growth accounting approach to productivity measurement, as

well as from the more sophisticated measurements of productivity. Regardless of how the

productivity is measured, it is inevitably tied to measuring production relationships. Such

relationships are usually modeled through the so-called production functions or, more gen-

erally, transformation functions (e.g., Shephard’s distance functions, Directional distance
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functions), cost functions, etc. In the classical growth accounting approach (Solow 1957),

all the variation in growth apart from the variation of inputs is attributed to the so-called

Solow’s residual, which under certain restrictions measures what is referred to as the change

in total factor productivity (TFP).

A well known problem of simple growth accounting is that it piles up and hides many

sources for growth, the most obvious of which is the statistical error. Standard regression

methods can and are often used to, basically, estimate average relationships conditional on

various factors (inputs, demographic and geographic factors, etc.) to filter out the effect of

statistical noise. All the deviations from the estimated regression curves in such approaches

are attributed to the statistical error, and all the decision making units (DMUs) represented

in the data as observations (e.g., firms, countries, etc.), are typically assumed to be fully

efficient or on the frontier of the production relationship. Such full efficiency assumption

certainly simplifies the measurement complexity, but is it really an innocent assumption?

Indeed, while many economic models admit the assumption that all firms are efficient, the

reality that one can observe in practice usually suggest there are quite a bit of inefficiencies

in this world. Such inefficiencies could arise, for example, because of asymmetric information

or more generally, the problem of incomplete markets (e.g., see Stiglitz & Greenwald 1986),

which to some extent is present almost in every aspect of our lives. Differences in in-

efficiencies (or in relative productivity levels)1 across firms or countries can also arise due

different managerial practices (e.g., see Bloom et al. 2016), which could in turn be implied by

the asymmetric information problem, different cultural beliefs, traditions and expectations

(Benabou & Tirole 2016). Does accounting for such inefficiency matter for productivity mea-

surement? Vast literature on the subject suggests that it indeed often matter substantially,

1Despite the variety of definitions, intuitively, production efficiency can be understood as a relative measure
of productivity. In other words, production efficiency is a productivity measure that is being normalized
(e.g., to be between 0 and 1 to reflect percentages) relative to some benchmark, such as the corresponding
frontier outcome, optimal with respect to some criteria: e.g., maximal output given certain level of input and
technology in the case of technical efficiency, or minimal cost given certain level of output and technology in
the case of cost efficiency.
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as have been documented in thousands of articles in the last four decades. The difference is

in the approach - SFA, data envelopment analysis (DEA), free disposable hull (FDH), etc.

- and the goal of this chapter is to give a sense of a few major approaches within the SFA

paradigm.

In a nutshell, the main premise of the SFA approach is a recognition that whether all

DMUs are efficient or not is an empirical question that can and should be statistically

tested against the data, while allowing for a statistical error. To enable such testing, the

SFA approach provides a framework where production relationship is estimated also as a

conditional average (of outputs given inputs and other factors, in the case of production

function) but the total deviation from the regression curve is decomposed into two terms

- statistical noise and inefficiency. Both of these terms are unobserved by a researcher but

with relatively mild assumptions the different approaches within SFA allow the analyst to

estimate them for the sample as a whole (e.g., representing an industry) or for each individual

DMU.

Importantly, SFA approach also allows for the inefficiency term to be statistically insignif-

icant, if the data might suggest so, thus encompassing the classical approach with a naive

assumption of full efficiency as a special case and, importantly, allowing for this assumption

to be tested. Moreover, the SFA approach also encompasses the other extreme where one

assumes no statistical noise with all the deviations treated as inefficiency to the frontier.

Thus, the SFA approach is a natural compromise between approaches that make two ex-

treme assumptions, yet also encompass them as special cases, which can still be followed if

the data and the statistical tests from SFA would not recommend otherwise. If the tests sup-

port (or at least cannot reject) the full efficiency hypothesis then one can proceed with the

standard regression techniques, or even with the Solow’s growth accounting, but if not then

accounting for possible inefficiency could be critical for both quantitative and qualitative

conclusions and, perhaps more importantly, for the resulting policy implications. Indeed, if

statistical tests reject the hypothesis of full efficiency of DMUs, then it can be imperative
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to decompose the productivity (be it Solow’s residual or any other productivity measure)

further - to estimate the inefficiency component for the sample (e.g. representing an indus-

try) and for each individual DMU. Moreover, the SFA also provides a framework to analyze

the sources of production inefficiency or in variation of productivity levels, which can give

important insights into how to reduce the inefficiency. We discuss these interesting and im-

portant issues in this chapter. While some of the stylized facts we present here can be also

found in previous reviews (Lovell 1993, Kumbhakar & Lovell 2000, Greene 2008, Parmeter

& Kumbhakar 2014, Kumbhakar, Wang & Horncastle 2015), and it is impossible to give a

good review without following them to some degree, here we also summarize many of (what

we believe to be) the key recent developments as well as (with their help) shed some novel

perspectives onto the workhorse methods. So, all in all, our belief is that there is much value

added for the reader to complement what was done well in earlier reviews on this theme.

The rest of the chapter is structured as follows: Sections 2-4 focus on stochastic frontier

models (SFM) for cross-sectional variation in efficiency (relative productivity), where Section

2 covers the foundation laid by Aigner, Lovell & Schmidt (1977) and some closely related

research, with Section 3 discussing endogeneity issues and Section 4 focuses on modeling

the determinants of inefficiency. Section 5 focuses on SFA models for analyzing variation

of efficiency (or relative productivity) not only across firms but also over time, i.e., in the

panel data context. Section 6 reviews several prominent semi- and nonparametric approaches

to SFA. Section 7 briefly discusses a recent vein of literature focusing on quantile estima-

tion of the SFM. Section 8 presents some further extensions of the SFM, while Section 9

briefly summarizes some of the available software to estimate SFMs in practice. Section 10

concludes.

2. The Benchmark SFM

One of the main approaches to study productivity and efficiency of a cross-section of firms

is the SFM, independently proposed by Aigner et al. (1977) (ALS hereafter) and Meeusen
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& van den Broeck (1977a) (MvB hereafter).2 Using conventional notation, let Yi be the

single-output for observation (e.g., firm) i and let yi = ln(Yi). The SFM can be written for

a production frontier3 as

(2.1) yi = m(xi;β)− ui + vi = m(xi;β) + εi.

Here m(xi;β) represents the production frontier of a firm (or more generally a DMU), with

given input vector xi. Our use of β is to clearly signify that we are parametrically specifying

our production function.4 The main difference between a standard production function setup

and the SFM is the presence of two distinct error terms in the model. The ui term captures

inefficiency, shortfall from maximal output dictated by the production technology, while the

vi term captures stochastic shocks. The standard neoclassical production function model

assumes full efficiency – so the SFM embraces it as a special case, when ui = 0, ∀i, and

allows the researcher to test this statistically.5

One shortcoming of the benchmark SFM is that the appearance of inefficiency in (2.1)

lacks any specific structural interpretation. Where is inefficiency coming from? It could

stem from inputs being used sub-optimally: workers may not put forth full effort or capital

may be improperly used, e.g., due to asymmetric information or other reasons hidden to the

researcher or even the firm. Without a specific structural link it is difficult to know just how

to treat inefficiency in (2.1). Thus, to estimate the model, several assumptions need to be

imposed. First, it is commonly assumed that inputs are independent of u and v, ui ⊥ x and

vi ⊥ x ∀x.6 Second, u and v are assumed to be independent of one another. Next, given

2Battese & Corra (1977) and Meeusen & van den Broeck (1977b), while appearing in the same year, are
applications of the methods.
3Our discussion in this chapter will focus on a production frontier, as it is the most popular object of study,
while the framework for dual characterizations (e.g., cost, revenue, profit) or other frontiers is similar and
follows with only minor changes in notation.
4See Section 6 for a discussion on relaxing parametric restrictions on the production frontier in the SFM.
5Prior to the development of the SFM, approaches which intended to model inefficiency typically ignored vi
leading to estimators of the SFM with less desirable statistical properties: see the work of Aigner & Chu
(1968), Timmer (1971), Afriat (1972), Dugger (1974), Richmond (1974), and Schmidt (1976).
6See Section 3 for a discussion on estimation of the SFM when some inputs are allowed to be endogenous.
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that ui leads directly to a shortfall in output it must come from a one-sided distribution

implying that E[εi|x] 6= 0. This has two effects if one were to estimate the SFM using OLS.

First, the intercept of technology would not be identified, and second, without any additional

information, nothing can be said about inefficiency. Additionally, if ui is an independently

and identically distributed random variable, there is no policy implication behind it given

that nothing can directly increase or decrease inefficiency. That is, the conclusions of such

a study would be descriptive (reporting presence or absence of inefficiency) rather than

prescriptive or normative.7.

Denote E[u] as µu and ε∗i = vi − (ui − µu), the benchmark SFM can be rewritten as

(2.2) yi = m(xi;β)− µu − (ui − µu) + vi ≡ m∗(xi;β) + ε∗i

and E[ε∗i |x] = 0. The OLS estimator could be used to recover mean inefficiency adjusted

technology m∗(xi;β) = m(xi,β) − µu in this case. However, rarely is the sole focus of

an analysis of productivity on the production technology. It is more likely that both the

production technology and information about inefficiency for each DMU are the targets of

interest; more structure is required on the SFM in this case.

ALS’ and MvB’s approach to extract information on inefficiency, while also estimating

technology, was to impose distributional assumptions on ui and vi, recovering the implied

distribution for εi and then estimating all of the parameters of the SFM with the maximum

likelihood estimator (MLE). vi was assumed to be distributed as a normal with mean 0

and variance σ2
v by both sets of researchers, while the distribution of ui differed across the

papers; Aigner et al. (1977) assumed that ui was generated from a half-normal distribution,

N+(0, σ2
u), whereas MvB assumed ui was distributed exponentially, with parameter σu.

8

Even though the half-normal and exponential distributions are distinct, they possess sev-

eral common aspects. Both densities have modes at zero and monotonically decay (albeit at

7See Section 4 for models handling determinants of inefficiency
8ALS also briefly discussed the exponential distribution, but its use and development is mainly attributed
to MvB.
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different speeds) as ui increases. The zero mode property is indicative of an industry where

there is a tendency for higher efficiency for the majority of the DMUs. Both densities are

what are classified as single parameter distributions, which means that the mean and vari-

ance both depend on the single parameter, and these distributions also possess the scaling

property, which we will discuss in section 4.3.

2.1. The Distribution of ε. Estimation of the SFM in (2.1) with maximum likelihood

requires that the density of ε, f(ε), is known. f(ε) can be determined through the distribu-

tional assumptions invoked for v and u. Not all pairs of distributional assumptions for v and

u will lead to a tractable density of f(ε), permitting estimation via maximum likelihood.

Fortunately, the half-normal specification of Aigner et al. (1977) and the exponential speci-

fication of MvB (along with the normal assumption for v), produce a density for ε that has

a closed form solution; direct application of maximum likelihood is straightforward in this

setting. For brevity we report the density of the composed error for the normal-half-normal

specification.

(2.3) f(ε) =
2

σ
φ(ε/σ)Φ(−ελ/σ),

where φ(·) is the standard normal probability density function (pdf), Φ(·) is the standard

normal cumulative distribution function (cdf), with the parameterization σ =
√
σ2
u + σ2

v and

λ = σu/σv. λ is commonly interpreted as the proportion of variation in ε due to inefficiency.

The density of ε in (2.3) can be characterized as that of a skew normal random variable

with location parameter 0, scale parameter σ and skew parameter −λ.9 This connection

has only recently appeared in the efficiency and productivity literature (Chen, Schmidt &

Wang 2014).

9The pdf of a skew normal random variable x is f(x) = 2φ(x)Φ(αx). The distribution is right skewed if α > 0
and is left skewed if α < 0. We can also place the normal, truncated-normal pair of distributional assumptions

in this class. The pdf of x with location ξ, scale ω, and skew parameter α is f(x) = 2
ωφ
(
x−ξ
ω

)
Φ
(
α
(
x−ξ
ω

))
.

See O’Hagan & Leonard (1976) and Azzalini (1985) for more details.
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From f(ε) in (2.3), along with independence assumptions on ui and vi the log-likelihood

function is

(2.4) lnL = ln

(
n∏
i=1

f(εi)

)
= −n lnσ +

n∑
i=1

ln Φ(−εiλ/σ)− 1

2σ2

n∑
i=1

ε2
i ,

where εi = yi −m(xi;β). The SFM can be estimated using the traditional maximum likeli-

hood estimator (MLE). The benefit of this is that under the assumption of correct distribu-

tional specification of ε, the MLE is asymptotically efficient (i.e., consistent, asymptotically

normal and its asymptotic variance reaches the Cramer-Rao lower bound). A further benefit

is that a range of testing options are available. For instance, tests related to β can easily be

undertaken using any of the classic trilogy of tests: Wald, Lagrange multiplier, or likelihood

ratio. The ability to readily and directly conduct asymptotic inference is one of the major

benefits of stochastic frontier analysis over DEA.10

2.2. Alternative Specifications. The half-normal assumption for the one-sided ineffi-

ciency term is almost without question the most commonly distribution for inefficiency in

practice. This stems partly from posterity, partly from the closed form solution of the

likelihood function, and partly from the availability of software to estimate the model for

applied researchers. However, none of these reasons are sufficient for blind application of the

half-normal density for inefficiency in the SFM.

2.2.1. The Exponential Distribution. The exponential assumption on inefficiency is also pop-

ular. The exponential density is

(2.5) f(u) =
1

σu
e−u/σu , u ≥ 0.

10This in no way suggests that inference cannot be undertaken when the DEA estimator is deployed; rather,
the DEA estimator has an asymptotic distribution which is much more complicated that the MLE for the
SFM, and so direct asymptotic inference is not available; bootstrapping techniques are required for many of
the most popular DEA estimators (Simar & Wilson 2013, Simar & Wilson 2015).
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For the normal-exponential distributional pair, the density of ε is

(2.6) f(ε) =
1

σu
Φ(−ε/σv − σv/σu)eε/σu+σ2

v/2σ
2
u ,

with likelihood function

(2.7) lnL = −n lnσu + n

(
σ2
v

2σ2
u

)
+

n∑
i=1

ln Φ(−εi/σv − σv/σu) +
1

σu

n∑
i=1

εi.

Like the half-normal specification for u, the exponential specification monotonically de-

creases in u, suggesting that larger levels of inefficiency are less likely to occur than small

levels of inefficiency. Both the half-normal and exponential specifications for inefficiency

stem from what are known as single parameter distributions; single parameter distributions

are the simplest distributions and an unfortunate (yet sometimes very convenient) property

of them is that all of their moments depend on this single parameter, which can restrict the

shape that the density can potentially take.11

2.2.2. The Truncated Normal Distribution. To allow more generality into the SFM, while

guarding against distribution misspecification, a variety of one-sided distributions have been

proposed for modeling ui in the SFM. Stevenson (1980) proposed the truncated-normal

distribution as a generalization of the half-normal distribution; whereas the half-normal

distribution is the truncation of the N(0, σ2
u) at 0, the truncated-normal distribution is the

truncation of the N(µ, σ2
u) at 0. The pre-truncation mean parameter, µ, affords the SFM

more flexibility in the shape of the distribution of inefficiency.

The truncated-normal density is

(2.8) f(u) =
1√

2πσuΦ(µ/σu)
e
− (u−µ)2

2σ2u , u ≥ 0.

This density reduces to the half-normal distribution when µ = 0 and thus provides a gen-

eralization (more specifically a nesting structure), and an opportunity for inference on µ.

11See Parmeter & Kumbhakar (2014) for a more detailed analysis of the SFM with u distributed exponentially.
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An intuitive appeal of deploying truncated-normal distribution in practice is that, unlike

the half-normal and exponential densities, the truncated-normal density has mode at 0 only

when µ ≤ 0, but otherwise has a mode at µ. When µ > 0, the implication is that producers

in a given market would tend to have inefficiency ui near µ > 0 rather than near 0. This

connotation may be more realistic in some settings (e.g., the regulatory environment) than

the half-normal assumption, where the probability of being less efficient is much larger than

of being grossly inefficient.

For the normal-truncated-normal distributional pair, the density of ε is

(2.9) f(ε) =
1

σ
φ

(
ε+ µ

σ

)
Φ

(
µ

σλ
− ελ

σ

)/
Φ(µ/σu).

The corresponding log-likelihood function is

(2.10) lnL = −n lnσ −
n∑
i=1

(
εi + µ

σ

)2

− n ln Φ(µ/σu) +
n∑
i=1

ln Φ

(
µ

σλ
− εiλ

σ

)
.

2.2.3. Other Distributions. Aside from the truncated-normal specification for the distribu-

tion of u, a variety of alternatives have been proposed throughout the literature. Greene

(1980a, 1980b) and Stevenson (1980) both proposed a gamma distribution for inefficiency.

The gamma distribution generalizes the exponential distribution in much the same way that

the truncated-normal distribution nests the half-normal distribution. Ritter & Simar (1997)

advocate against use of the gamma specification in practice noting that large samples were

required to reliably estimate the parameters of the gamma distribution due to computa-

tional identification problem with the constant of the regression. Lee (1983) proposed a four

parameter Pearson density for the specification of inefficiency; unfortunately, this distribu-

tion is intractable for applied work and until now has not appeared to gain popularity. Li

(1996) proposed use of the uniform distribution for inefficiency noting an intriguing feature
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of the subsequent composed error density: that it could be positively skewed.12 Another

specification for inefficiency appears in Carree (2002), who assumes the distribution of u

follows a binomial specification; this allows the skewness of the composed error to be pos-

itive or negative. Gagnepain & Ivaldi (2002) specify inefficiency as being Beta distributed

when inefficiency can be defined as a percentage (scaled between 0 and 1), while Almanidis,

Qian & Sickles (2014) further generalize Stevenson’s (1980) framework by assuming a doubly

truncated-normal distribution for inefficiency. This distributional assumption also allows the

convolved error term to be either positively or negatively skewed.

A common theme of all of the papers just mentioned is that they focus exclusively on the

distribution of inefficiency inside the SFM. A recent literature has shed light on the features

of f(ε) for the SFM when both the density of v and the density of u are changed. Horrace &

Parmeter (2014) study the behavior of the composed error when v is distributed as Laplace

and u is distributed as truncated Laplace. Nguyen (2010) considers the Laplace-Exponential

distributional pair as well as the Cauchy-Half Cauchy pair for the two error terms of the

composed error. While these alternative distributional pairs do provide different insights

into the behavior of the composed error, it remains to be seen if they will be regularly

adopted in practice and whether they provide substantially different conclusions than the

most frequently adopted distributional pairs (normal-half-normal for example); see Section

2.4 for more discussion on the perceived importance of distributional assumptions regarding

estimation of the SFM.

It is important to note that the main idea behind the SFM is that nearly any pair of

distributions can be used to model u and v. The advantage of the normal-half-normal pair

that is dominant in the literature is that the likelihood function has an easily to evaluate

expression. In general this should not be expected. More likely than not, for a range

12Prior to Li (1996) all of the previously proposed distributions always produced a composed error density
that was theoretically negatively skewed. Note that if u is distributed uniformly over the interval [0, b],
inefficiency is equally likely to be either 0 or b.
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of distributional assumptions the likelihood function will contain one or more intractable

integrals, complicating estimation.13

2.2.4. Alternative Estimation Approaches of the SFM. Given the focus on inefficiency in

the SFM, and the impact that the distributional assumption on u is likely to have on the

MLE, studying the behavior of the SFM across a range of distributional assumptions is

desirable. However, outside of a few specifications (half-normal, exponential, truncated-

normal for ui and normal for vi), the composed error density will not have a likelihood

function that lends itself for easy evaluation. In these cases it can be difficult to estimate

all of the parameters of the SFM, but several approaches exist, ranging in complexity, to

estimate the SFM when direct estimation of the likelihood function is not feasible. The

simplest approach, dubbed corrected OLS (COLS) by Olson, Schmidt & Waldman (1980),14

recognizes that OLS estimation of the SFM produces consistent estimates of the coefficients

of the frontier function aside from the intercept. The intercept is biased downward by the

expected level of industry inefficiency E [u] =
√

2/πσu. Olson et al.’s (1980) insight was that

for a given pair of distributional assumptions (normal-exponential, say), the central moments

of the OLS residuals could be used to construct consistent estimators of the parameters of

the convolved error. Once these were estimated, expected inefficiency could be estimated

and the bias in the intercept corrected. The beauty of COLS from the applied perspective

is that OLS can be used and difficult likelihood functions do not have to be derived nor

estimated.15

13Note that the likelihood function for the normal-half-normal pair is dependent upon the cdf of the normal
distribution, Φ(·) which contains an integral, but this can be quickly and easily evaluated across all modern
software platforms.
14See also Greene (1980a, pg. 31-32). Richmond (1974) also proposed adjusting the intercept from OLS
estimation, however, his model differs from that of Olson et al. (1980) by assuming the presence of inefficiency
(which follows a gamma distribution) but no noise.
15There exists some confusion over the terminology COLS as it relates to another method, modified OLS
(MOLS). Beginning with Winsten (1957), and discussed in Gabrielsen (1975) and Greene (1980a, pg. 32-
34), MOLS shifts the estimated OLS production function until all of the observations lie on or below the
‘frontier’. At issue is the appropriate name of these two techniques. Greene (2008) called the bounding
approach COLS, crediting Lovell (1993, pg. 21) with the initial nomenclature, and referred to MOLS as
the method which bias corrects the intercept based on a specific set of distributional assumptions. Further,
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Several newer approaches exist as well. One that is becoming popular is maximum simu-

lated likelihood (MSL) estimation (McFadden 1989). Greene (2003) used MSL estimation to

estimate the parameters of the SFM for the normal-gamma convolution. The key to imple-

mentation of the SFM when the composed error does not produce a tractable likelihood is to

notice that the integrals that commonly remain in the density (from integrating u out of the

density) can be treated as expectations and evaluated by simulation rather than analytic op-

timization. Given that the distribution of u is assumed known (up to unknown parameters),

for a given set of parameters, draws can be taken and the expectation evaluated, can then

replace the integral. Optimization proceeds by searching over the parameter space until a

global maximum is found.

An even more recent approach to evaluating intractable likelihoods is found in Tsionas

(2012) who suggested estimation of the parameters of the SFM through the characteristic

function of the composed error. The reason that this will work is that the characteristic func-

tion is a unique representation of a distribution (whether the density does or does not exist),

and following from the convolution theorem, the characteristic function of two independent

random variables (here v and u) added together is the product of the individual charac-

teristic functions. The characteristic functions for all of the densities described above are

known, and so, using the Fast Fourier Transform, the estimated characteristic function can

be mapped to the underlying density, and subsequently, the likelihood function. Tsionas’s

(2012) method is somewhat computationally complicated, but it offers another avenue to

estimate the SFM under alternative distributional assumptions on both v and u.

Kumbhakar & Lovell (2000, pg. 70-71) also adopted this terminology. However, given that Olson et al. (1980,
pg. 69) explicitly used the terminology COLS, in our review we will adopt COLS to imply bias correction of
the OLS intercept and MOLS as a procedure that shifts up (or down) the intercept to bound all of the data.
The truth is both COLS and MOLS are the same in the sense that the OLS intercept is augmented, it is just
in how each method corrects, or modifies, the intercept that is important. While we are departing from the
more mainstream use of COLS and MOLS currently deployed, given the original use of COLS, coupled with
myriad papers written by Peter Schmidt and coauthors that we discuss here, we will use the COLS acronym
to imply a bias corrected intercept.
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2.3. Estimation of Individual Inefficiency. Once the parameters of the SFM have been

estimated, estimates of firm level productivity and efficiency can be recovered. Observation-

specific estimates of inefficiency are one of the main benefits of the SFM relative to neo-

classical models of production. Firms can be ranked according to estimated efficiency; the

identity of under-performing firms as well as those who are deemed best practice can also be

gleaned from the SFM. All of this information is useful in helping to design more efficient

public policy or subsidy programs aimed at improving the market, for example, insulating

consumers from the poor performance of heavily inefficient firms.

As a concrete illustration, consider firms operating electricity distribution networks that

typically possess a natural local monopoly given that the construction of competing net-

works over the same terrain is prohibitively expensive.16 It is not uncommon for national

governments to establish regulatory agencies which monitor the provision of electricity to

ensure that abuse of the inherent monopoly power is not occurring. Regulators face the task

of determining an acceptable price for the provision of electricity while having to balance

the heterogeneity that exists across the firms (in terms of size of the firm and length of

the network). Firms which are inefficient may charge too high a price to recoup a profit,

but at the expense of operating below capacity. However, given production and distribution

shocks, not all departures from the frontier represent inefficiency. Thus, measures designed

to account for noise are required to parse information from εi regarding ui.

Alternatively, further investigation could reveal what it is that makes these establishments

attain such high levels of performance. This could then be used to identify appropriate gov-

ernment policy implications and responses or identify processes and/or management prac-

tices that should be spread (or encouraged) across the less efficient, but otherwise similar,

16The current literature is fairly rich on various examples of empirical values of SFA for the estimation and
use of efficiency estimates in different fields of research. For example, in the context of electricity providers,
see Knittel (2002), Hattori (2002), and Kuosmanen (2012); for banking efficiency, see Case, Ferrari & Zhao
(2013) and references cited therein; for the analysis of the efficiency of national health care systems, see
Greene (2004) and a review by Hollingsworth (2008); for analyzing efficiency in agriculture, see Bravo-Ureta
& Rieger (1991), Battese & Coelli (1992, 1995), and Lien, Kumbhakar & Hardaker (2017), to mention just
a few.
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units. This is the essence of the determinants of inefficiency approach which we will discuss

in Section 4. More directly, efficiency rankings are used in regulated industries such that

regulators can set tougher future cost reduction targets for the more inefficient companies,

in order to ensure that customers do not pay for the inefficiency of firms.

The only direct estimate coming from the normal-half-normal SFM is σ̂2
u. This provides

context regarding the shape of the half-normal distribution on ui and the industry average

efficiency E[u], but not on the absolute level of inefficiency for a given firm. If we are only

concerned with the average level of technical efficiency for the population, then this is all the

information that is needed. Yet, if we want to know about a specific firm, then something

else is required. The main approach to estimating firm level inefficiency is the conditional

mean estimator of Jondrow, Lovell, Materov & Schmidt (1982), commonly known as the

JLMS estimator. Their idea was to calculate the expected value of ui conditional on the

realization of composed error of the model, εi ≡ vi−ui, i.e., E[ui|εi].17 This conditional mean

of ui given εi gives a point prediction of ui. The composed error contains individual-specific

information, and the conditional expectation is one measure of firm-specific inefficiency.

Jondrow et al. (1982) show that for the normal-half-normal specification of the SFM, the

conditional density function of ui given εi, f(ui|εi), is N+(µ∗i, σ
2
∗), where

(2.11) µ∗i =
−εiσ2

u

σ2

and

(2.12) σ2
∗ =

σ2
vσ

2
u

σ2
.

Given results on the mean of a truncated-normal density it follows that

E[ui|εi] = µ∗i +
σ∗φ(µ∗i

σ∗
)

Φ
(
µ∗i
σ∗

) .(2.13)

17Jondrow et al. (1982) also suggested an alternative estimator based on the conditional mode.
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The individual estimates are then obtained by replacing the true parameters in (2.13) with

MLE estimates from the SFM.

Another measure of interest is the Afriat-type level of technical efficiency, defined as

e−ui = Yi/e
m(xi)evi ∈ [0, 1]. This is useful in cases where output is measured in logarithmic

form. Further, technical efficiency is bounded between 0 and 1, making it somewhat easier

to interpret relative to a raw inefficiency score. Since e−ui is not directly observable, the

idea of Jondrow et al. (1982) can be deployed here, and E [e−ui |εi] can be calculated (Lee &

Tyler 1978, Battese & Coelli 1988). For the normal-half-normal model, we have

(2.14) E
[
e−ui |εi

]
= e(−µ∗i+

1
2
σ2
∗)

Φ
(
µ∗i
σ∗
− σ∗

)
Φ
(
µ∗i
σ∗

) ,

where µ∗i and σ∗ were defined in (2.11) and (2.12), respectively. Technical efficiency estimates

are obtained by replacing the true parameters in (2.14) with MLE estimates from the SFM.

When ranking efficiency scores, one should use estimates of 1 − E [ui|εi], which is the first

order approximation of (2.14). Similar expressions for the Jondrow et al. (1982) and Battese

& Coelli (1988) efficiency scores can be derived under the assumption that u is exponential

(Kumbhakar & Lovell 2000, p. 82), truncated-normal (Kumbhakar & Lovell 2000, p. 86),

and Gamma (Kumbhakar & Lovell 2000, p. 89); see also Kumbhakar et al. (2015).

2.3.1. Inference about the Presence of Inefficiency. Having estimated the benchmark SFM,

a natural hypothesis is whether inefficiency is even present. In this case the null hypothesis

of interest is H0 : σ2
u = 0 against H1 : σ2

u > 0.18 The direct way to test the H0 is through

a likelihood ratio test, keeping in mind that the unrestricted model is the assumed SFM

and the restricted model is the linear regression model (or more specifically the normal

regression model). There is a problem with implementation of this test however. Under H0

18One could test if other moments of the distribution where 0 as well, but most of the SFMs parameterize
the distribution of u with σu and so this seems the most natural.
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σ2
u is restricted to lie on the boundary of the parameter space and this precludes direct use

of a likelihood ratio test.

Coelli (1995) demonstrates that under H0 the likelihood ratio statistic in this setting is a

50:50 mixture of a χ2
1 distribution, the distribution of the ordinary likelihood ratio statistic

if the parameter were not on the boundary of the parameter space, and a χ2
0, known as

the chi-bar-square distribution, χ̄2, (Coelli 1995, Silvapulle & Sen 2005). This second piece

is what captures the potential presence of the σ2
u parameter to lie on the boundary of the

parameter space and creates a point mass in the asymptotic distribution of the likelihood

ratio statistic.

Calculation of the test statistic itself is invariant to whether the parameter lies on the

boundary under H0. What does change is how one goes about calculating either the p-value

or the critical value to assess the outcome of the test. In the case of the 50:50 mixture, the

critical values are determined by looking at the 2α-level critical value from a χ2
1 distribution.

For example, whereas the critical value for a 5% significance level is 3.841 for χ2
1, it is 2.706

for the 50:50 mixture. More specifically, Table 1 presents the critical values of both the χ2
1

and the 50:50 mixture for a range of significance levels.

[Table 1 about here.]

An alternative type of test for the presence of inefficiency is based on the skewness of the

residuals. A variety of tests for skewness exist, notably Ahmad & Li (1997), Kuosmanen

& Fosgerau (2009) and Henderson & Parmeter (2015b). Henderson & Parmeter (2015b)

proposed a bootstrap based version of Ahmad & Li’s (1997) asymptotic test, noting that

in finite samples the bootstrap version is likely to have superior performance. This test

involves estimating the SFM using OLS and then testing whether the distribution of the

OLS residuals is symmetric. Kuosmanen & Fosgerau’s (2009) test of symmetry is also based

on the bootstrap, but rather than focus on the estimated distribution of the OLS residuals,

their test focuses exclusively on the skewness coefficient of the residuals. Both of these tests of
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symmetry are appealing because they do not require parametric distributional assumptions

and can be implemented after having estimated the SFM using OLS.

2.3.2. Inference about the Distribution of Inefficiency. It is important to recognize, despite

the frequent misuse of terminology, that the JLMS or Battese-Coelli (or similar types) effi-

ciency estimators are not estimators of ui or e−ui , respectively and do not converge to them

for n → ∞. As n → ∞, the new observations represent different firms each with their own

level of inefficiency and noise (upon which JLMS conditions), rather than observations from

the same firm. Even more importantly, the JLMS estimator was not intended to estimate

unconditional inefficiency. The JLMS estimator is however, a consistent estimator for the

expected level of inefficiency conditional on the particular realizations of ε.19

The JLMS efficiency scores can be used to provide a (limited) test of the distribution

of inefficiency. The key insight to understand how a test can be constructed is that if the

distributional assumptions are correct, then the distribution of E[ui|εi] is completely known.

Hence a comparison of the distribution of Ê[ui|εi] to the true distribution of E[ui|εi] will

shed light into the statistical validity of the assumed distributions for u and v. Wang &

Schmidt (2009) derived the distribution of E[ui|εi] for the normal-half-normal SFM while

Wang, Amsler & Schmidt (2011) proposed χ2 and Komolgorov-Smirnov type test statistics

against this distribution.20

We caution readers regarding a rejection with use of this test. A rejection does not neces-

sarily imply the distributional assumption on u is incorrect, it could be that the normality

distributional assumption on v or some other assumptions about the SFM (e.g., the paramet-

ric form of m) is violated, and this is leading to the rejection. Similarly, one must be careful

in interpreting tests on the distribution of ε (or functionals of ε) when the distribution of

19The JLMS efficiency estimator is known as a shrinkage estimator; on average, it understates the efficiency
level of a firm with small ui while it overstates efficiency for a firm with large ui.
20See also Lee (1983) for a different test based off of the Pearson distributional assumption for u.
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v is also assumed to be normal. Alternative tests similar to Wang et al. (2011) could be

formulated using the Laplace-exponential SFM of Horrace & Parmeter (2014).

2.3.3. Predicting Inefficiency. Aside from testing for the appropriate distribution of ineffi-

ciency, one should also test, or present uncertainty, as it pertains to an individual efficiency

score. Each JLMS efficiency score is a prediction of inefficiency, and it is possible to cal-

culate prediction intervals. Interestingly, few applied papers cover in depth uncertainty of

estimated efficiency scores.

A prediction interval for E[ui|εi] was first derived by Taube (1988) and also appeared

in Hjalmarsson, Kumbhakar & Heshmati (1996), Horrace & Schmidt (1996), and Bera &

Sharma (1999) (see the discussion of this in Simar & Wilson 2010). The prediction interval

is based on f(ui|εi). The lower (Li) and upper (Ui) bounds for a (1 − α)100% prediction

interval are

Li =µ∗i + Φ−1

(
1−

(
1− α

2

)[
1− Φ

(
−µ∗i
σ∗

)])
σ∗,(2.15)

Ui =µ∗i + Φ−1

(
1− α

2

[
1− Φ

(
−µ∗i
σ∗

)])
σ∗,(2.16)

where µ∗i and σ∗ are defined in (2.11) and (2.12), respectively and replacing them with their

MLE estimates will give estimated prediction intervals for E[ui|εi].

Wheat, Greene & Smith (2014) derived minimum width prediction intervals noting that

the confidence interval studied in Horrace & Schmidt (1996) was based on a symmetric two

sided interval. Given that the distribution of ui conditional on εi is truncated (at 0) normal

and asymmetric, this form of interval is not minimum width. Parmeter & Kumbhakar (2014)

showed that depending upon the ratio of σu to σv, the difference in relative widths of Horrace

& Schmidt’s (1996) and Wheat et al.’s (2014) prediction intervals can be quite substantial.

It is thus recommended to use the intervals provided by Wheat et al. (2014) as these are

not based on symmetry. Note that although we could predict u and construct a prediction
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interval, this information is not that useful for policy purposes unless there are some variables

that affect inefficiency and such variables can be changed by a specific policy.

2.4. Do Distributional Assumptions Even Matter? An important empirical concern

when using the SFM is the choice of distributional assumptions made for v and u. The

distribution of v has almost universally been accepted as being normal in both applied

and theoretical work (a recent exception is Horrace & Parmeter 2014); the distribution

of u is more commonly debated, but relatively little work has been devoted to discerning

the impact that alternative shapes of the distribution can have. Moreover, choice of u is

often driven through available statistical software to implement the method rather than an

underlying theoretical link between a model of productive inefficiency and the exact shape

of the corresponding distribution.

A majority of applied papers studying productivity do not rigorously check differences in

estimates, or perform inference, across different distributional assumptions. Greene (1990)

is often cited as one of the first analyses to compare average inefficiency levels across several

distributional specifications (half-normal, truncated-normal, exponential, and gamma), and

he finds little difference in average inefficiency across 123 U.S. electric generation firms.

Following Greene’s (1990) investigation into the choice of distribution, Kumbhakar & Lovell

(2000) calculated the rank correlations amongst the JLMS scores from these same four

models, producing rank correlations as low as 0.75 and as high as 0.98.21

The intuition underlying these findings is that one’s understanding of inefficiency, as mea-

sured through the JLMS score, is robust to distributional choices, at least from a ranking

perspective. The reason for this can be found in the work of (Ondrich & Ruggiero 2001,

p. 438) who have shown that the JLMS efficiency scores are monotonic in ε provided that

21In a limited Monte Carlo analysis, Ruggiero (1999) compared rank correlations of stochastic frontier
estimates assuming that inefficiency was either half-normal (which was the true distribution) or exponential (a
misspecified distribution) and found very little evidence that misspecification impacted the rank correlations
in any meaningful fashion; Horrace & Parmeter (2014) conducted a similar set of experiments and found
essentially the same results.
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the distribution of v is log-concave (which the normal distribution is). The implication here

is that firm rankings can be obtained via the OLS residuals without the need of distribu-

tional assumptions whatsoever (Bera & Sharma 1999). Thus, in light of these insights, the

important aspect of distributional choice for u is the impact that it has on the correspond-

ing estimates of the production function; when these estimates are robust to distributional

choice, so too will be the inefficiency rankings. Thus, if interest hinges on features of the

frontier, then so long as inefficiency does not depend on conditional variables (see Section

4), one can effectively ignore the choice of distribution, as this only affects (usually but

not substantially) the level of the estimated technology, but not its shape - which is what

influences measures such as returns to scale and elasticities of substitution.

2.5. Finite Sample Identification of Inefficiency. An early analysis of the finite sample

performance of the normal-half-normal SFM by Olson et al. (1980) uncovered an interesting

phenomena, quite regularly the corrected OLS estimator would produce an estimate of σ2
u ≤

0. This was deemed a ‘Type I’ failure of the SFM; further Olson et al. (1980, pg. 70) noted

that “It is also true that, in every case of Type I failure we encountered, the MLE estimate

of [σ2
u] also turned out to equal zero. (This makes some sense, though we cannot prove

analytically that it should happen.)” Waldman (1982) provided the analytic foundation

behind this result, demonstrating that a stationary point of the log-likelihood function exists,

and this stationary point is a local maximum when the sign of the skewness of residuals

stemming from OLS estimation of the SFM is positive. This is broadly viewed as a deficiency

of the SFM as an estimate of σ2
u of 0 is literally interpreted as a finding of no inefficiency.

However, this is an unfortunate interpretation because it is purely a finite sample issue. If

in fact u is distributed half-normal, then as shown in Uekusa & Torii (1985), Coelli (1995),

and Simar & Wilson (2010), as n → ∞ the likelihood of drawing a random sample which

will have positive skewness decreases, and the rate of this decrease is directly related to

σ2
u/σ

2
v ; the larger this ratio the faster the decrease in the probability of observing a random
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sample with positive skew.22 The observance of OLS residuals with positive skew is, by

and of itself, of no concern. What is concerning is that for an applied researcher whose

focus is to study the efficiency level of firms, analysis of a sample where the residuals from

the SFM have positive skewness leads to conclusions of all firms being efficient and this

finding might be incongruent with either preconceptions about the industry or perceived

publication standards when applying these methods. This has often led to various forms

of respecification: using a different data set, trying an alternative functional form for the

production function, or most likely, deploying different distributional assumptions regarding

inefficiency.

As noted by Simar & Wilson (2010), none of these respecification approaches are ap-

propriate or warranted. Again, Table 1 in Simar & Wilson (2010) evinces that even when

everything about the SFM is correctly specified, positively skewed OLS residuals are still

a regular occurrence. Their suggestion is to use special resampling techniques based off of

bootstrapping to conduct inference on either overall inefficiency of the industry under study

or specific firms. The finding of OLS residuals with positive skewness is commonly denoted

the ‘wrong skew problem’, though it is not clear where this term initially originated. It is

unfortunate that this term has crept into the lexicon of productivity analysis as there really

is no problem at all, except for the problem of misinterpretation and mistreatment.

One reason why respecification is troubling is that classical statistical inference assumes

that model specification is selected independently of estimation. When specification searches

are conducted this introduces biases into the final parameter estimates. Further, there is

the concern in published research that if the researcher did encounter positive skew, that

this information is not provided to the reader. It is worth mentioning that not all SFMs are

plagued by this issue. In fact, some distributional combinations will lead to identification

of inefficiency regardless of the sign of the skewness of the OLS residuals. Examples include

22Note that the estimator of the skewness coefficient is distributed asymptotically standard normal so it is
feasible to have either negative or positive skewness in any finite sample.
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the normal-uniform SFM of Li (1996), the normal-Weibull SFM of Tsionas (2007), the

normal-binomial SFM of Carree (2002), and the normal-doubly truncated SFM of Almanidis

et al. (2014). Even more recently, Horrace & Parmeter (2014) demonstrated, in the style

of Waldman (1982) that the log-likelihood function of the Laplace-exponential SFM is not

dependent upon the sign of the skewness of the OLS residuals. This mainly stems from

the fact that as σ2
u → 0 that this model converges to a regression model with error term

distributed Laplace, for which the MLE is the least absolute deviations (LAD) estimator.

Despite the history behind the impact of the sign of the skewness of the OLS residuals

on the SFM, interest still abounds surrounding this issue. Recently, Hafner, Manner &

Simar (2016) presented a generalized method which always ensures that the SFM can be

identified, and that this model will converge to the traditional SFM model as n→∞ if the

traditional SFM is correctly specified. Bonanno, De Giovanni & Domma (2017) introduced

a generalized SFM which allows v to be distributed as a Type 1 generalized logistic which

introduces asymmetry in v, coupled with allowing dependence between u and v. These two

additional assumptions, similarly to Hafner et al. (2016), allow the parameters of the SFM

to be identified regardless of the sign of the OLS residuals. Feng, Horrace & Wu (2015)

describe a constrained MLE that uses the traditional normal-half-normal distributional pair,

but imposes a penalty in estimation to combat the potential for positive skewness of the OLS

residuals to lead to an estimate of σ2
u of 0. Finally, Horrace & Wright (2016) generalize the

theory of Waldman (1982) by studying the SFM without explicit distributional assumptions.

All told, this issue is one that still generates a substantial amount of interest in the academic

community and it is one that is not likely to fade any time soon (see the discussion in

Almanidis & Sickles 2011).

3. Handling Endogeneity in the SFM

A common assumption in the SFM is that x is either exogenous or independent of both

ui and vi. If either of these conditions are violated then the MLE will be biased and most
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likely inconsistent. Yet, it is not difficult to think of settings where endogeneity is likely

to exist. For example, if shocks are observed before inputs are chosen, then producers may

respond to good or bad shocks by adjusting inputs, leading to correlation between x and

v. Alternatively, if managers know they are inefficient, they may use this information to

guide their level of inputs, again, producing endogeneity. In a regression model, dealing

with endogeneity is well understood. However, in the composed error setting, these methods

cannot be simply transferred over, but require care in how they are implemented (Amsler,

Prokhorov & Schmidt 2016).

To incorporate endogeneity into the SFM in (2.1), we set m(xi;β) = β0 + x′1iβ1 + x′2iβ2

where x1 are our exogenous inputs, and x2 are the endogenous inputs, where endogeneity

may arise through correlation of x2 with u, v or both. To deal with endogeneity we require

instruments, w, and identification necessitates that the dimension of w is at least as large

as the dimension of x2. The natural assumption for valid instrumentation is that w is

independent of both u and v. Our following discussion here will center on the distributional

assumptions of ALS.

Why worry about endogeneity? Economic endogeneity means that the inputs in question

are choice variables and chosen to optimize some objective function such as cost minimization

or profit maximization. Statistical endogeneity arises from simultaneity, omitted variables,

and measurement errors. For example if the omitted variable is managerial ability, which

is part of inefficiency, inefficiency is likely to be correlated with inputs because managerial

ability affects inputs. This is the Mundlak argument for why omitting a management quality

variable (for us inefficiency) will cause biased parameter estimates. Endogeneity can also

be caused by simultaneity meaning that more than one variable in the model are jointly

determined.

One way to address the problem is to look at it as pure statistically and use instrumental

variables. The other solution is economic, that is address the economic issue that is causing

endogeneity. We consider first the statistical solution and then the economic solution. In
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many applied settings it is not clear what researchers mean when they attempt to handle

endogeneity inside the SFM. An excellent introduction into the myriad influences that endo-

geneity can have on the estimates stemming from the SFM can be found in Mutter, Greene,

Spector, Rosko & Mukamel (2013). Mutter et al. (2013) used simulations designed around

data based on the California nursing home industry to understand the impact of endogeneity

of nursing home quality on inefficiency measurement.

3.1. A Corrected Two Stage Least Squares Approach. The simplest approach to

accounting for endogeneity is to use a corrected two stage least squares (C2SLS) approach,

similar to the common COLS approach that has been used to estimate the SFM. This method

estimates the SFM using standard 2SLS with instruments w. This produces consistent

estimators for β1 and β2 but not β0, as this is obscured by the presence of E[u] (to ensure

that the residuals have mean zero). The second and third moments of the 2SLS residuals

are then used to recover estimators of σ2
v and σ2

u. Once σ̂2
u is determined, the intercept can

be corrected by adding
√

2
π
σ̂u.

This represents a simple avenue to account for endogeneity, and it does not require spec-

ifying how endogeneity enters the model, i.e. through correlation with v, with u or both.

However, as with other corrected procedures based off of calculation of the second and third

moments of the residuals, from Olson et al. (1980) and Waldman (1982), if the initial 2SLS

residuals have positive skew (instead of negative), then σ2
u cannot be identified and its es-

timator is 0. Further, the standard errors from this approach need to be modified for the

estimator of the intercept to account for the step-wise nature of the estimation.

3.2. A Likelihood Approach. The SFM with endogeneity has recently been studied by

Kutlu (2010), Karakplan & Kutlu (2013), Tran & Tsionas (2013), and Amsler et al. (2016).

Here we describe maximum likelihood estimation of the SFM under endogeneity. Our discus-

sion here follows Amsler et al. (2016) as their derivation of the likelihood relies on a simple

conditioning argument as opposed to the earlier work relying on the Cholesky decomposition.
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While both approaches lead to the same likelihood function, the conditioning idea of Amsler

et al. (2016) is simpler and more intuitive.

Consider the stochastic frontier system:

yi =xiβ + εi(3.1)

x2i =wiΓ + ηi(3.2)

where xi = (x1i,x2i), β = (β1,β2), wi = (x1i, qi) is the vector of instruments, ηi is

uncorrelated withwi and endogeneity of x2i arises through cov(εi,ηi) 6= 0. Here simultaneity

bias (and the resulting inconsistency) exists because ηi is correlated with either vi, ui or both.

The following assumptions are used by Amsler et al. (2016): ui ∼ N+(0, σ2
u), m(x1i,x2i;β1,β2) =

β0 + x1iβ1 + x2iβ2, and conditional on wi, ψi = (vi, ηi)
′ ∼ N(0,Ω), where

Ω =

 σ2
v Σvη

Σηv Σηηηi

 .

Amsler et al. (2016) focused on the setting where ui is independent of ψi =

 vi

ηi

. To

derive the likelihood function, Amsler et al. (2016) condition on the instruments, w. Doing

this yields f(y,x2|w) = f(y|x2,w) · f(x2|w). With the density in this form, the log-

likelihood follows suite: lnL = lnL1 + lnL2, where lnL1 corresponds to f(y|x2,w) and

lnL2 corresponds to f(x2|w). These two components can be written as

lnL1 =− (n/2) lnσ2 − 1

2σ2

n∑
i=1

ε̃2
i +

n∑
i=1

ln [Φ (−λcε̃i/σ)]

lnL2 =− (n/2) ln |Σηη| − 0.5
n∑
i=1

η′iΣ
−1
ηη ηi,

where ε̃i = yi − β0 − xiβ − µci, µci = ΣvηΣ
−1
ηη ηi, σ

2 = σ2
v + σ2

u, λc = σu/σc and σ2
c =

σ2
v −ΣvηΣ

−1
ηη Σηv. The subtraction of µci in lnL1 is an endogeneity correction while it should
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be noted that lnL2 is nothing more than the standard likelihood function of a multivariate

normal regression model (as in (3.1)). Estimates of the model parameters (β, σ2
v , σ

2
u,Γ,Σvη)

and Σηη can be obtained by maximizing the likelihood function lnL.

While direct estimation of the likelihood function is possible, a two-step approach is also

available (Kutlu 2010). However, as pointed out by both Kutlu (2010) and Amsler et al.

(2016), this two-step approach will have incorrect standard errors. Even though the two-step

approach might be computationally simpler, it is, in general, different from full optimization

of the likelihood function of Amsler et al. (2016). This is due to the fact that the two-step

approach ignores the information provided by Γ and Σηη in lnL1. In general full optimization

of the likelihood function is recommended as the standard errors (obtained in a usual manner

from the inverse of the Fisher information matrix) are valid.23

3.3. A Method of Moments Approach. In insightful avenue to deal with endogeneity

in the SFM that differs from the traditional corrected methods or maximum likelihood is

proposed by Amsler et al. (2016), who used the work of Hansen, McDonald & Newey (2010).

The idea is to use the first order conditions for maximization of the likelihood function under

exogeneity:

E
[
ε2

2/σ
2 − 1

]
= 0(3.3)

E

[
εiφi

1−Ψi

]
= 0(3.4)

E

[
xiεi/σ + λxi

φi
1− Φi

]
= 0,(3.5)

23Typically the standard errors can be obtained either through use of the outer product of gradients (OPG)
or direct estimation of the Hessian matrix of the log-likelihood function. Given the nascency of these methods
it has yet to be determined which of these two methods is more reliable in practice, though in other settings
both tend to work well. One caveat for promoting the use of the OPG is that since this only requires
calculation of the first derivatives, it can be more stable (and more likely to be invertible) than calculation
of the Hessian. Also note that in finite samples, the different estimators of covariance of MLE estimator can
give different numerical estimates, even suggesting different implications on the inference (reject or do not
reject the null hypothesis). So, for small samples, it is often advised to check all feasible estimates whenever
there is suspicion of ambiguity in the conclusions (e.g., when a hypothesis is rejected only at say around the
10% of significance level).
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where φi = φ(λεi
σ

) and Φi = Φ(λεi
σ

). Note that these expectations are taken over xi and yi

(and by default, εi) and solved for the parameters of the SFM.

The key here is that these first order conditions (one for σ2, one for λ and the vector for

β) are valid under exogeneity and this implies that the maximum likelihood estimator is the

generalized methods of moments estimator. Under endogeneity however, this relationship

does not hold directly. But the seminal idea of Amsler et al. (2016) is that the first order

conditions (3.3) and (3.4) are based on the distributional assumptions on v and u, not on

the relationship of x with v and/or u. Thus, these moment conditions are valid whether

x contains endogenous components or not. The only moment condition that needs to be

adjusted is (3.5). In this case the first order needs to be taken with respect to w, the

exogenous variable, not x. Doing so results in the following amended first order condition:

(3.6) E

[
wiεi/σ + λwi

φi
1− Φi

]
= 0,

where φi and Φi are identical to those in (3.5). It is important to acknowledge that this

moment condition is valid when εi and wi are independent. This is a more stringent require-

ment than the typical regression setup with E[εi|wi] = 0. As with the C2SLS approach, the

source of endogeneity for x2 does not need to be specified (through v and/or u).

3.4. Estimation of Individual Inefficiency. An interesting, and important finding from

Amsler et al. (2016) is that when there is endogeneity, one can potentially improve estimation

of inefficiency through the JLMS estimator. The traditional predictor of Jondrow et al.

(1982) is E(ui|εi). However, more information is available when endogeneity is present,

namely via ηi. This calls for a modified JLMS estimator, E(ui|εi,ηi). Note that even

though it is assumed that ui is independent from ηi (as in Amsler et al. 2016), because ηi

is correlated with vi, there is information that can be used to help predict ui even after

conditioning on εi.
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Amsler et al. (2016) showed that ηi is independent of (ui, ε̃i):

E(ui|εi,ηi) = E(ui|ε̃i,ηi) = E(ui|ε̃i).

and that the distribution of ui conditional on ε̃i = yi − β0 − xiβ − µci is N+(µ∗, σ
2
∗) with

µ∗ = −σ2
uε̃i/σ

2 and σ2
∗ = σ2

uσ
2
c/σ2, which is identical to the original JLMS estimator, except

that σ2
v is replaced with σ2

c and ε̃i taking the place of εi. The modified JLMS estimator in

the presence of endogeneity becomes E(ui|εi,ηi) = σ∗

(
φ(ξi)

1−Φ(ξi)
− ξi

)
with ξi = λε̃i/σ. Note

that E(ui|εi,ηi) is a better predictor than E(ui|εi) because σ2
c < σ2

v . The improvement in

prediction follows from the textbook identity for variances, where for any random vector

(X,Z), where X and Z are random sub-vectors, we have

var(X) = var[E(X|Z)]︸ ︷︷ ︸
Explained

+E(var[X|Z])︸ ︷︷ ︸
Unexplained

.

In this case, by conditioning on both εi and ηi the conditioning set is larger for and so it

must hold that the unexplained portion of E(ui|εi,ηi) is smaller than that of E(ui|εi). It

then holds that there is less variation in E(ui|εi,ηi) as a predictor than E(ui|εi), which is

a good thing. While it is not obvious at first glance, one benefit of endogeneity is that

researchers may be able to more accurately predict firm level inefficiency, though it comes at

the expense of having to deal with endogeneity. This improvement in prediction may also be

accompanied by narrower prediction intervals, however, this is not known as Amsler et al.

(2016) did not study the prediction intervals.

3.5. An Economic Approach to Deal with Endogeneity. An alternative to developing

valid instruments and correcting for endogeneity is to use what is known as a primal system

approach, when inputs are endogenous (Kumbhakar et al. 2015, chapt. 8). This setup

estimates the traditional SFM but appends the first order conditions stemming from cost

minimization (one could alternatively attach profit maximization or return to the outlay

conditions instead if this was a more representative behavior for the industry under study).
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That is, if a producer minimizes costs24

(3.7) min p′x, s.t. y = m(x;β) + v − u,

for input prices p, the first order conditions in this case are

(3.8)
mj(x;β)

m1(x;β)
=
pj
p1

, j = 2, . . . , J,

where mj(x;β) is the partial derivative of m(x;β) with respect to xj. These first order

conditions are exact, which usually does not arise in practice, rather, a stochastic term is

added, which is designed to capture allocative inefficiency. That is, our empirical first order

conditions are
mj(x;β)

m1(x;β)
=

pj
p1
eξj for j = 2, . . . , J where eξj captures allocative inefficiency

for the jth input relative to input 1 (the choice of input to compare to is without loss of

generality). The idea behind allocative inefficiency is that firms could be fully technically

efficient, and still have room for improvement due to over or under use of inputs, relative to

another input, given the price ratio. In general if firms are cost minimizers and one estimates

a production function, the inputs will be endogenous as these are choice variables to the firm.

Hence, a different approach is needed.

The primal system approach estimates the SFM as in (2.1) but also incorporates the

information in the J − 1 conditions in (3.8) with allocative inefficiency built in. Shephard’s

lemma in microeconomics dictates that the first order conditions are actually cost share

information, when the logarithm of the production function is taken, the first derivatives

represent the cost shares of the corresponding inputs,

(3.9)
mj(x;β)

m1(x;β)
=

∂ lnm
∂ lnxj

∂ lnm
∂ lnx1

=
sj/xj
s1/x1

.

24It is possible to treat a subset of x as endogenous; i.e., x = (x1,x2), where x1 is endogenous and x2 is
exogenous.
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When these are equated to the ratio of input prices, one obtains
sj/xj
s1/x1

=
pj
p1
eξj , which can be

rearranged to yield
sj
s1

=
pjxj
p1x1

eξj . Taking logarithms produces

(3.10) ln(sj)− ln(s1)− ln(pjxj) + ln(p1x1) = ξj.

If distributional assumptions are imposed on v, u and ξ, the parameters of the production

function can be estimated along with technical and allocative efficiency. An unfortunate

consequence of the primal system approach is that only for quite specific assumptions on the

production function are the input demand and cost functions analytically tractable (Cobb-

Douglas being one). In these cases a more complicated process is required to determine

the impact of technical and allocative inefficiency on costs (Kumbhakar & Wang 2006).

See Kumbhakar (2011, 2013) for more detailed discussion of these types of primal system

approaches to handle economic endogeneity across a ranges of settings.

4. Modeling Determinants of Inefficiency

Use of the SFM is exciting for productivity analysis because a prediction of firm level

efficiency can be obtained. However, in the benchmark SFM, ui is treated as completely

random, and so nothing connects the level of inefficiency to variables which might serve as an

explanation for the existence and the level of inefficiency. As the SFM has gained popularity

in applied productivity analysis, it has become common to introduce variables outside the

main production structure which influence output through their effect on inefficiency.25

As a concrete example, consider the study of productivity within the banking industry.

A researcher may want to know whether a bank’s level of efficiency is affected by the use of

information technology, the amount of assets the bank has access to, the type of bank, or

the type of ownership structure in place, corporate governance practices, etc. Similarly, the

25Reifschneider & Stevenson (1991) used the term ‘inefficiency explanatory variables’, while others call them
‘environmental variables’, but it is now common to refer to these variables as ‘determinants of inefficiency.’ A
variety of approaches have been proposed to model the determinants of inefficiency with the first pertaining
to panel data models (Kumbhakar 1987, Battese & Coelli 1992) (see Section 5).
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government might be interested in whether regulations (such as allowing banks to merge)

improve banks’ performance. To answer these questions, the relationship between efficiency

and its potential determinants needs to be modeled and estimated.

Consider estimating what influences firm level inefficiency in the benchmark SFM. This

model assumes that both vi and ui are homoskedastic. In a traditional linear regression,

heteroskedasticity has no impact on the bias/consistency of the OLS estimator. However, if

we were to allow σ2
u to depend on determinants of inefficiency, z, then ignoring this will lead

to, except in special settings, a biased and inconsistent estimator of the parameters of the

SFM. Both Kumbhakar & Lovell (2000, Section 3.4) and Wang & Schmidt (2002) provide

detailed accounts of the consequences of ignoring the presence of determinants of inefficiency

in the SFM.

Recall from Section 2, that E[u] =
√

2/πσu. Now imagine ignoring the composed structure

of ε and estimating the SFM via OLS. If it is the case that determinants of inefficiency are

present, so that σ2
u = σ2

u(z), this omission leads to biased parameter estimates of the SFM

given that the assumed model is

yi = m(xi;β) +
√

2/πσu + ε∗i ,

with ε∗i = εi −
√

2/πσu, whereas the true model is

yi = m(xi;β) +
√

2/πσu(zi) + ε∗i ≡ m̃(xi, zi;β, δ) + ε∗i .

The estimates of m(xi;β) are conflated with σu(zi), unless x and z are uncorrelated. The

reason that this issue presents itself is the fact that the mean of u, due to the truncation

at 0, must depend on the variance. Thus, it is not possible to allow u to be heteroskedastic

without the mean of u being a function of z as well. Notice here that we have specifically

separated the impacts of x and z on output, with x capturing pure production and z

capturing inefficiency. This is commonly known as the separability assumption. In some
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settings this assumption does not have to be made, but in other settings it is a necessity

for identification. See Parmeter & Zelenyuk (2016) for a more detailed discussion of the

separability assumption. Our use of it here is more for expositional clarity.

Exactly how to model the influence of z on inefficiency is unknown and at various points

in time practitioners have deployed a simpler, two step analysis to account for the presence

of determinants of inefficiency. This approach constructs JLMS predictions in the first step,

and then regresses these inefficiency estimates on z in the second step. Pitt & Lee (1981)

were the first to implement this type of approach (in a panel data setting) and many others

followed this two-step approach blindly (Ali & Flinn 1989, Kalirajan 1990, Bravo-Ureta &

Rieger 1991). However, this route to modeling determinants of inefficiency has been met

with criticism repeatedly, and for good reason.

As explained in Battese & Coelli (1995), the first stage model is misspecified if z is ignored.

Further, Wang & Schmidt (2002) note that if x and z are correlated then an omitted variable

bias exists in the the first step rendering the second step ineffectual. Even in the special case

where x and z are uncorrelated, ignoring the dependence of u on z will lead to the estimated

JLMS predictions in the first stage to have too little variation (see also Schmidt 2011) and,

subsequently, the estimator in the second stage regression will be biased downward. Caudill

& Ford (1993) provide Monte Carlo evidence on the impact that ignoring z on u has on the

estimator of the parameters of the SFM while Wang & Schmidt (2002) provide a detailed

analysis of the bias of the second stage parameter estimators.

As should be clear, the two stage approach to account for determinants of inefficiency in

the SFM has no statistical foundation and is widely agreed upon to yield poor insights on

the actual behavior of inefficiency, as such this approach should be strictly avoided; even

with these criticisms of the two-step approach, one will occasionally happen across research

that adopts this flawed two-step methodology.

While the two stage approach has undesirable statistical properties this does not mean

that determinants of inefficiency cannot be accounted for. Quite the contrary. The preferred
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approach to studying the exogenous influences on efficiency is a single-step procedure that

explicitly accounts for z.

4.1. Proper Modeling of the Determinants of Inefficiency. The first proper proposals

to model z in the SFM are Kumbhakar, Ghosh & McGuckin (1991) and Reifschneider &

Stevenson (1991), who used the normal truncated-normal SFM as the basis for estimation.26

While their focus was on the normal truncated-normal SFM, the key insights hold for the

normal-half-normal SFM, which is what we will base our discussion on here. The main idea

is to specify σ2
u as a parametric function of z.27 Formally, their parameterization of σ2

u is

(4.1) σ2
u = ez

′δ,

The log-likelihood function of the heteroskedastic model is the same as in (2.4), except that

we replace σ2
u with (4.1).28 Here all of the model parameters are estimated simultaneously

and once they are found, technical inefficiency can be computed using (2.13) or (2.14) with

the appropriate form of σ2
u substituted into the expressions.

If u follows a half-normal distribution, with the σ2
u function depending upon z then the

mean of ui is

(4.2) E[ui|zi] =
√

2/πez
′
iδ = e

1
2

ln(2/π)+z′iδ.

Note that the 1
2

ln(2/π) term can be absorbed by the constant term in z′iδ. Therefore, by

parameterizing σ2
u, we allow z to affect the expected value of inefficiency. More importantly,

however, is that the parameterization (4.1) produces maximum likelihood estimates of δ

which may not be very informative. This is because E[ui|zi] is nonlinear in z, and therefore

26Caudill & Ford (1993), Huang & Liu (1994), Battese & Coelli (1995), Caudill, Ford & Gropper (1995),
Hadri (1999), and Wang (2002) present alternative specifications as well.
27It is also possible to model σ2

v as a function of variables, but this poses fewer problems and we omit the
details here. See Parmeter & Kumbhakar (2014) and Simar, Van Keilegom & Zelenyuk (2017) for more
discussion.
28Actually, given the reparameterization of the log-likelihood function, the specification for σu implies a
particular specification for both λ and σ.
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the slope coefficients δ are not the marginal effects of z. For instance, assume the jth

variable in z has an estimated coefficient of 0.5. This number itself tells us very little about

the magnitude of the jth variable’s (marginal) effect on the inefficiency, though it does tell

us the direction of the effect on inefficiency. Also, the nonlinearity of the conditional mean

of u, implies that for different levels of z, there will be different expected levels of u. In these

instances the marginal effect of z may be useful for empirical purposes.

For the given parameterization of the normal-half-normal SFM, the marginal effect of the

jth variable of zi, zji on E[ui|zi] is

(4.3)
∂E[ui|zi]
∂zj

= δj
√

2/πσu,i

where
√

2/π is approximately 0.80. It is clear that (4.3) also implies

sign

(
∂E[ui|zi]
∂zj

)
= sign(δk)(4.4)

so that the sign of the coefficient reveals the direction of impact of zji on E[ui|zi]. This

property does not always hold across distributional assumptions, for example in the normal-

truncated-normal SFM the sign of the coefficient cannot be interpreted directly (Parmeter &

Kumbhakar 2014). In general, only in one parameter families for the pdf of u (exponential,

half-normal, etc.) does this correspondence hold; this suggests caution in directly interpreting

the impact that a particular variable zj has on inefficiency based purely on the sign of δj.

The nonlinear nature of the relationship of E[u|z] with z implies that for a sample of n

observations we have n marginal effects for each variable. A concise statistic to present is

the average partial effect (APE) on inefficiency or the partial effect of the average (PEA):

APE(zj) =(δuj
√

2/π)

(
n−1

n∑
i=1

σu,i

)
(4.5)

PEA(zj) =δuj
√

2/πez̄
′
uδ.(4.6)
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Either of these measures can be used to provide an overall sense for the impact of a given

variable on the level of inefficiency. However, these statistics should also be interpreted with

care. Neither necessarily reflects the impact of a given covariate for a given firm, but rather

on average and ceteris paribus, i.e., holding other covariates fixed; for example, it could be

that half of the sample has a very negative effect that is balanced by positive effects in the

other half of the sample, thus getting nearly zero on average, which might misrepresent the

phenomenon. It is also possible to standardize further by using elasticities, which will cancel

out the
√

2/π term, this occurs when the variables are measured in logarithms. It could also

prove useful to present the estimates of these at either quartiles or at particular points of

interest suggested by a particular empirical context (for example a specific regulation output

target).

4.2. Incorporating Determinants when u is Truncated-Normal. As we have dis-

cussed earlier, the truncated-normal distribution offers greater flexibility to model an array

of shapes of the true, but unknown, distribution of u. When determinants of inefficiency

are present and one elects to assume the truncated-normal distribution, several additional

modeling choices become available to the researcher. These additional choices are important

because, as with the choice of distributional assumption, there is typically little guidance on

how best to incorporate the determinants.

What do we mean? Consider again the truncated-normal density that would be assumed

for u, when determinants of inefficiency are present:

(4.7) f(u) =
1√

2πσu(z; δ1)Φ (µ(z; δ2)/σu(z; δ1))
e
− (u−µ(z;δ2))

2

2σu(z;δ1)
2 , u ≥ 0.

In this case the impact of z on u can be modeled through the pre-truncation mean, µ and

the pre-truncation standard deviation, σu. The issue with where to assume that z influences

u is that modelling either parameter as a function of z impacts all of the moments of u,

due to the truncation. Consider the conditional (on z) mean of a truncated normal random
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variable

(4.8) E[u|z] = σu(z; δ1)

[
µ(z; δ2)

σu(z; δ1)
+
φ( µ(z;δ2)

σu(z;δ1)
)

Φ( µ(z;δ2)
σu(z;δ1)

)

]
.

Regardless of whether σu or µ is constant, z still influences the mean of inefficiency unless

both are constant. This is what makes the choice of where to incorporate z thorny when

using the truncated normal distribution. Parametric specification of either σu or µ will allow

for z to influence expected inefficiency, but in different manners, and, in nonlinear fashion.

Given that µ can be positive or negative, it is common to model it in a linear fashion, i.e.

µ(z; δ2) = z′δ2 and to model σu(z; δ1) as ez
′δ1 , to ensure positivity of the pre-truncation

standard deviation.

When we assume that u has the half-normal distribution our choice is easy because only

a single parameter exists and it is clear where z enters. However, in the truncated-normal

setup we could elect to have z enter only through the pre-truncation mean, only through the

pre-truncation standard deviation, or both. In fact, various applied papers have used any

of these three approaches. Kumbhakar et al. (1991) and Reifschneider & Stevenson (1991),

modeled the impact of determinants of inefficiency through µ,29 while Caudill & Ford (1993)

incorporated determinants through σu.
30 Lastly, Wang (2002) modeled the determinants

through both µ and σu. The benefit of modelling both pre-truncation parameters jointly

as functions of z is that this leaves open little room for ambiguity and makes inference of

where z belongs a viable option. The costs are that the model is more complex to estimate

and may lead to identification problems, as raised in Ritter & Simar (1997). An alternative

approach, which we discuss next, is to invoke a special assumption on the distribution that

makes it more amenable to modelling the influence of determinants of inefficiency in the

SFM.

29See also Huang & Liu (1994) and Battese & Coelli (1995) for early approaches following this strategy.
30Other early approaches that followed this route include Caudill et al. (1995) and Hadri (1999).
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4.3. The Scaling Property. Many of the main proposals to incorporate determinants of in-

efficiency did so through the normal truncated-normal SFM. The two parameter nature of the

truncated-normal distribution implies that determinants could influence the pre-truncation

mean, µ, the pre-truncation variance, σ2
u, or both. Further still, different variables could

influence each parameter.

A popular simplification (Simar, Lovell & van den Eeckaut 1994, Wang & Schmidt 2002),

which encapsulates the normal-half-normal SFM, is to assume that inefficiency behaves as

(4.9) ui ∼ g(zi; δ)u∗i ,

where g(·) ≥ 0 is a function of the exogenous variables while u∗i ≥ 0 is a random variable.

This behavior is known as the scaling property. Single parameter distributions, such as

the half-normal and the exponential, automatically possess this property, but more flexible

distributions, such as truncated-normal or gamma, can have this property imposed. The key

feature of the scaling property is that u∗i does not depend on zi in any fashion; u∗i is known

as base inefficiency (Wang & Schmidt 2002, Alvarez, Amsler, Orea & Schmidt 2006).

When a distribution possesses the scaling property the shape of the distribution of ui is

the same for all firms, which can be viewed as an attractive feature. The scaling function,

g(·), expands or contracts the horizontal axis so that the scale of the distribution of ui

changes while preserving the underlying shape of the distribution. In comparison, the normal

truncated-normal SFM models allow different scalings for each ui, so that for some firms the

distribution of inefficiency is close to a normal (if the pre-truncation mean is large), while

for other firms the distribution of inefficiency is the extreme right tail of a normal with a

mode of zero (if the pre-truncation mean is negative). In comparison, for a model with the

scaling property the mean and the standard deviation of u change with zi, but the shape of

the distribution is fixed.
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Another advantage of the scaling property specification is the ease of interpretation of δ

when g(zi, δ) = ez
′
iδ,

∂ lnE[ui|z]

∂zj
= δj.(4.10)

That is, δj is the semi-elasticity (or elasticity if z is already measured on the logarithmic

scale) of expected inefficiency with respect to the jth element of z, and more importantly, this

interpretation is distinct from any distributional assumption placed on u∗. An interpretation

of this ilk is generally not available in other model specifications. Further, the sign of the

elements of δ can be directly interpreted.

The scaling property provides an attractive economic interpretation as well. u∗ can be

interpreted as a benchmark level of inefficiency of the firm (Alvarez et al. 2006). The scaling

function then allows a firm to exploit (or fail to exploit) these talents through other variables,

z, which might include experience of the plant manager, the operating environment of the

firm, or regulatory restrictions.

The scaling property is not a fundamental feature, rather, as with the choice of distribution

on u, it is an assumption on the features of the inefficiency distribution. As such it can be

tested against models that do not possess this property for the inefficiency distribution. As it

currently stands, all tests of the scaling property hinge on a given distributional assumption,

for example, estimating the normal truncated-normal SFM and then estimating a restricted

version of the same model, but imposing the scaling property. An important avenue for future

research is the development of a test (or tests) that do not require specific distributional

assumptions.

4.4. Estimation Without Imposing Distributional Assumptions. In settings where

the researcher is comfortable with imposing the scaling property on the distribution of in-

efficiency, the SFM can be estimated without distributional assumptions. This is perhaps
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the key benefit of invoking the scaling property. To understand how it is possible to esti-

mate the SFM without distributional assumptions we expound on the discussion of Simar

et al. (1994), Wang & Schmidt (2002), and Alvarez et al. (2006). The SFM with the scaling

property can be written as31

(4.11) yi = m(xi;β) + vi − ez
′
iδu∗i .

The conditional mean of y given x and z is

(4.12) E[y|x, z] = x′β − ez′δµ∗

where µ∗ = E[u∗] and E[v|x, z] = 0. The SFM is then

(4.13) yi = m(xi;β)− ez′iδµ∗ + vi − ez
′
iδ(ui − µ∗) = m(xi;β)− ez′iδµ∗ + ε∗i ,

with ε∗i = vi−ez
′
iδ(ui−µ∗), which, for a given parameterization of m(xi;β), can be estimated

using nonlinear least squares (NLS) as

(4.14)
(
β̂, δ̂, µ̂∗

)
= min
β,δ,µ∗

n−1

n∑
i=1

[
yi −m(xi;β) + µ∗ez

′
iδ
]2

.

The elegance of invoking the scaling property is that the SFM can be estimated in a distri-

bution free manner via NLS; the need for NLS stems from the fact that the scaling function

must be positive and if it was specified as linear this would be inconsistent with theoretical

requirements on the variance of the distribution.

Direct NLS will produce a consistent estimator of all of the terms of the SFM. However,

the error term ε∗i is heteroskedastic,

var(ε∗i |xi, zi) = σ2
v + σ2∗

u e
2z′iδ,

31Note here that we are making the implicit assumption that z is different from x. The nonlinearity of the
scaling function does allow z and x to overlap however.
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where σ2
v = var(vi) and σ2∗

u = var(u∗i ). As such, a generalized NLS estimator would be called

for to produce an efficient estimator (as similar to the MLE). Unfortunately, a generalized

NLS algorithm hinges on distributional assumptions to appropriately separate σ2
v and σ2∗

u . An

alternative, which allows valid inference to be undertaken, is to compute heteroskedasticity

robust standard errors for β and δ (White 1980).

An interesting extension of this idea was recently proposed by Paul & Shankar (2017) for

the setting where ui has already been converted into technical efficiency. In this case the

level of inefficiency must be bound between 0 and 1. To account for this Paul & Shankar

(2017) model the impact of z on the level of inefficiency through a probit function. Again,

given the nonlinear nature of the probit function, this necessitates use of NLS if one wishes

to eschew distributional assumptions.

With the wide range of statistical software that can quickly implement a NLS problem, it

is perhaps surprising that this avenue has not been exploited in applied research. Certainly

the scaling property is an assumption that requires judicious justification, but not more so

than distributional assumptions imposed on the composed error structure of the SFM. It is

also possible in this nonlinear setup that the calculation of expected firm efficiency can be

done without requiring distributional assumptions, leading to the potential for more robust

conclusions regarding observation specific inefficiency. It is also possible to estimate the SFM

in (4.13) without imposing assumptions on the scaling function, an issue we will discuss in

Section 6.

Currently no test of the scaling property exists without enforcing distributional assump-

tions. Alvarez et al. (2006) proposed standard tests of the scaling property by using the

nesting structure of the normal-truncated-normal distributional pair against the normal-

half-normal distributional pair. Unfortunately this testing facility requires distributional

assumptions on both vi and ui. A test of the statistical significance of the determinants

of inefficiency, using the NLS framework just described is available (Kim & Schmidt 2008).
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Under H0 :δ = 0 it follows that

yi = m(xi;β)− µ∗ez′iδ + ε∗i = m∗(xi;β)− µ∗(1− ez′iδ) + ε∗i ,

where m∗(xi;β) = m(xi;β) + c for a constant c. That is, one can only identify µ if at least

one element of δ is nonzero; note that under H0 : 1 − ez
′
iδ = 0, µ∗ cannot be separately

identified. This lack of identification creates issues for inference under the null hypothesis,

and invalidates the common asymptotic behavior of Wald and likelihood ratio tests. The

solution, which Kim & Schmidt (2008) proposed to avoid this problem, is to use the Lagrange

Multiplier (LM) test which involves estimation imposing the null hypothesis. A novel insight

of Kim & Schmidt (2008) is that the LM test they proposed has power in directions where

the scaling property does not hold. This is due to the fact that the model being tested H0 is

indifferent to ‘how’ inefficiency enters the model. Thus, while an explicit test of the scaling

property without requiring distributional assumptions would be a useful tool, the Kim &

Schmidt (2008) LM test is likely to be sufficient.

The LM test is based on the derivative of the NLS criterion function in (4.14) with respect

to δ, evaluated at the restricted estimates (δ = 0):

2

n

n∑
i=1

(yi −m(xi;β) + µ∗) (µ∗zi) .(4.15)

The test statistic is designed to determine how close the derivative of the NLS objection

function (with respect to the parameters under the null hypothesis) is to 0. If the parameter

restrictions are true then this should be close to 0. The reason that distributional assump-

tions are not needed for this test to work properly is that this test is identical to an F -test,

and F -tests are invariant to the scale of the covariates (Kim & Schmidt 2008). Thus, one

can simply set µ∗ = 1 and use NLS to regress y on (x, z) and test the significance of δ.
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4.5. Estimation When Determinants of Efficiency and Endogeneity Are Present.

Quite recently, attention has focused on estimation of the SFM when some of the deter-

minants of inefficiency may be endogenous (Amsler, Prokhorov & Schmidt 2017, Latruffe,

Bravo-Ureta, Carpentier, Desjeux & Moreira 2017). These models can be estimated using

traditional instrumental variables methods. However, given that the determinants of ineffi-

ciency enter the model nonlinearly, nonlinear methods are required. To begin, we consider

the model of Amsler, Prokhorov & Schmidt (2017),

(4.16) yi = x′iβ + vi − ui = x′iβ + vi − u∗i ez
′
iδ,

where the scaling property has been invoked. The covariates xi and zi are partitioned as

xi =

 x1i

x2i

 , zi =

 z1i

z2i

 ,
where x1i and z1i are exogenous and x2i and z2i are endogenous. The set of instruments

used to combat endogeneity are defined as

wi =


x1i

z1i

qi

 ,
where qi are the traditional outside instruments. Identification of all the parameters requires

that the dimension of q be at least as large as the dimension of x2 plus the dimension of z2

(the rank condition).

In the model of Amsler, Prokhorov & Schmidt (2017), endogeneity arises through corre-

lation between a variable in the model (x2 and/or z2) and noise, v. That is, both x and

z are assumed to be independent of basic inefficiency u∗. Given that E[ui] is not constant,

the COLS approach to deal with endogeneity proposed by Amsler et al. (2016) cannot be

used here. To develop an appropriate estimator, add and subtract the mean of inefficiency
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to produce a composed error term that has mean 0,

(4.17) yi = x′iβ − µ∗ez
′
iδ + vi − (u∗i − µ∗)ez

′
iδ.

Proper estimation through instrumental variables requires that the moment condition

(4.18) E
[
vi − (u∗i − µ∗)ez

′
iδ|wi

]
= 0.

The nonlinearity of these moment conditions would necessitate use of nonlinear two stage

least squares (NL2SLS) (Amemiya 1974).

Latruffe et al. (2017) have a similar setup as Amsler, Prokhorov & Schmidt (2017), us-

ing the model in (4.16), but develop a four step estimator for the parameters; additionally,

only x2 is treated as endogenous. Latruffe et al.’s (2017) approach is based off of Chamber-

lain (1987) on the construction of efficient moment conditions. The vector of instruments

proposed in Latruffe et al. (2017) is defined as

(4.19) wi(γ, δ) =


x1i

q′iγ

zie
z′iδ

 ,
where q′iγ captures the linear projection of x2 on the external instruments q. The four-stage

estimator is defined as

Step 1: Regress x2 on q to estimate γ. Denote the OLS estimator of γ as γ̂.

Step 2: Use NLS to estimate the SFM in (4.16). Denote the NLS estimates of (β, δ) as

(β̈, δ̈). Use the NLS estimate of δ and the OLS estimate of γ in Step 1 to construct

the instruments wi(γ̂, δ̈).

Step 3: Using the estimated instrument vector wi(γ̂, δ̈), calculate the NL2SLS esti-

mator of (β, δ) as (β̃, δ̃). Use the NL2SLS estimate of δ and the OLS estimate of γ

in Step 1 to construct the instruments wi(γ̂, δ̃).
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Step 4: Using the estimated instrument vector wi(γ̂, δ̃), calculate the NL2SLS esti-

mator of (β, δ) as (β̂, δ̂).

This multi-step estimator is necessary in the context of efficient moments because the

actual set of instruments is not used directly, rather wi(γ, δ) is used, and this instrument

vector requires estimates of γ and δ. The first two steps of the algorithm are designed to

construct estimates of these two unknown parameter vectors. The third step then is designed

to construct a consistent estimator of wi(γ, δ), which is not done in Step 2 as given that the

endogeneity of x2 is ignored (note that NLS is used as opposed to NL2SLS). The iteration

from Step 2 to Step 3 does produce a consistent estimator of wi(γ, δ), and as such, Step

4 produces consistent estimators for β and δ). While Latruffe et al. (2017) proposed a set

of efficient moment conditions to handle endogeneity, the model of Amsler, Prokhorov &

Schmidt (2017) is more general because it can handle endogeneity in the determinants of

inefficiency as well.

5. Panel Data

Our current discussion of the SFM has focused on having access to cross-sectional data.

When repeated observations of firms are available, then more useful information about ineffi-

ciency (and often with more flexibility) can be extracted and a range of panel data SFMs are

available to the applied researcher. Here we highlight some of the most prominent models.

The advantage of panel data is that more information on inefficiency and productivity can

be parsed, and in particular, shed light on changes in efficiency or productivity, which differs

from a cross-sectional setting, which can only provide a static portrayal of inefficiency.

While Pitt & Lee (1981) were the first to consider extending the cross sectional SFM to

the panel data setting, it was Schmidt & Sickles (1984) who brought prominence to the use

of models tailored exclusively to panel data. They raise three problems with cross-sectional

models that are used to measure inefficiency and productivity: First, if the MLE is used to

estimate the parameters of the SFM and inefficiency through JLMS, everything is contingent
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on distributional assumptions for both noise and inefficiency; Second, technical inefficiency

is assumed to be independent of the regressor(s).32; Third, the JLMS estimator is not a

consistent estimator of u, as E[u|ε] never approaches u as the number of cross-sectional

units approaches infinity (n → ∞). Access to panel data can, to varying degrees, mitigate

all of these issues. However, with panel data comes a range of additional assumptions that

the researcher needs to carefully consider before proceeding.

To begin, consider the benchmark linear panel data regression model:

(5.1) yit = m(xit;β) + ci + vit.

Aside from the indexing of our data by individual, i, and time, t, we have the presence

of firm specific heterogeneity, ci. The common dilemma facing application of the linear

panel data regression model is how to treat the relationship between ci and xit. Under the

fixed effects (FE) framework (Wooldridge 2010), xit is allowed to be correlated with ci and

the parameters of the model can be estimated consistently using the within transformation

(Baltagi 2013). Under the random effects (RE) framework, xit and ci are required to be

uncorrelated, leading to OLS being a consistent estimator, but ultimately inefficient given

that the variance-covariance matrix of the composed error term c+ v is no longer diagonal.

A feasible generalized least squares approach is available to obtain asymptotically efficient

estimators of the parameters of the regression model in this case.

Now, to think about where inefficiency enters the model in (5.1), we must characterize

the nature of inefficiency. If inefficiency is assumed to be constant over time, then it is likely

that ci might be augmented to also capture inefficiency. If inefficiency is time-varying then

we could include a second, one-sided error term to be convolved with vit in (5.1), in much

the same way we did in the benchmark SFM. Or, it could be that inefficiency is composed of

both a time-invariant component and a time-varying component. All told, the general panel

32If firms maximize profit, and inefficiency is known to the firm, then this assumption is unlikely to be true
as firms may adjust their inputs to account for inefficiency (e.g., see Mundlak 1961).
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data SFM is

(5.2) yit = m(xit;β) + ci − ηi + vit − uit = m(xit;β) + αi + εit,

where αi = ci− ηi with ci capturing time-invariant heterogeneity and ηi encapsulating time-

invariant inefficiency while εit = vit−uit with uit representing time-varying inefficiency. The

panel data SFM looks identical to the panel data regression model in (5.1), except that,

due to uit > 0, εit no longer has mean zero, and αi no longer solely captures individual

specific heterogeneity. Early approaches that studied inefficiency in panel data settings

placed restrictions on how inefficiency entered the panel data SFM. As time progressed,

fewer assumptions were made, especially as more advanced econometric techniques were

exploited.

5.1. Time-invariant Technical Inefficiency Models. When inefficiency in the panel

data SFM is assumed to be time-invariant, it is possible to estimate the model without

the need for distributional assumptions. To begin, we assume that uit does not exist in

(5.2) and all time-invariant unobserved heterogeneity is inefficiency, αi = ηi. With these

restrictions, the panel data SFM is written as

(5.3) yit = m(xit;β)− ηi + vit; i = 1, . . . , n; t = 1, . . . , T.

This model is termed the time-invariant SFM. Aside from the one-sided nature of ηi, this

model can be estimated with standard panel data regression techniques, once an assumption

on the underlying statistical relationship (either the FE or RE framework) between xit and ηi

is made. Which framework to deploy depends upon the relationship that one assumes exists

between the covariates of the model and firm level inefficiency. Under the FE framework

correlation is allowed between xit and ηi, whereas under the RE framework no correlation is

permitted between xit and ηi. Regardless of which framework is deemed appropriate, neither

requires distributional assumptions for η or v. This freedom from imposing a parametric
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assumption on the distribution of ηi (i.e., we have some statistical requirements on the

distribution but do not require a precise parametric form) has led to the time-invariant SFM

being referred to as a distribution free approach (Schmidt & Sickles 1984). To estimate

the time-invariant SFM respecting the one-sided nature of ηi, a simple transformation is

needed to interpret the individual effect as time-invariant inefficiency as opposed to pure firm

heterogeneity. One major limitation of the time-invariant SFM is that separate identification

of inefficiency and individual heterogeneity is not considered. Additionally, the production

technology is assumed to be time constant, which may be a further limitation depending

upon the time dimension one has access to.

We briefly discuss how to estimate the time-invariant SFM under the FE framework, which

was first proposed by Schmidt & Sickles (1984). For ease of exposition, we assume m(·) is

linear in xit. The time-invariant SFM is

yit =β0 + x′itβ + vit − ηi(5.4)

=(β0 − ηi) + x′itβ + vit

=ci + x′itβ + vit(5.5)

where ci ≡ β0 − ηi. Under the FE framework, ηi and thus αi, i = 1, . . . , n are allowed to

have arbitrary correlation with xit.

Given the similarity of the time-invariant SFM and a traditional panel data regression

model, Schmidt & Sickles (1984) used standard estimation methods to estimate the pa-

rameters of the model, namely, within estimation. The within transformation subtracts

cross-sectional means of the data from each cross section (e.g., replacing yit by yit − ȳi· and

xit by xit − x̄i·, where ȳi· = (1/T )
∑

t yit, etc.), thereby eliminating ci. OLS can then be

used to estimate the transformed model, essentially regressing transformed y on transformed

x. The OLS estimator with the transformed data, β̂, is a consistent estimator for β. An

estimator of ci, ĉi, is constructed from the mean of the residuals for each cross sectional
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unit, i.e., ĉi = ȳi· − x′i·β̂, but it is biased, because ηi > 0 ∀i. A simple transformation will

produce a consistent estimator of ηi. Once ĉi is determined, η̂i is estimated as (Schmidt &

Sickles 1984):

η̂i = max
i
{ĉi} − ĉi ≥ 0, i = 1, . . . , n.(5.6)

This formulation implicitly assumes that the most efficient firm/DMU in the sample is 100%

efficient. In other words, estimated inefficiency in the fixed-effects model is relative to the

best firm/DMU in the sample. If one is interested in estimating firm-specific technical

efficiency, it can be obtained from

T̂Ei = e−η̂i , i = 1, . . . , n.(5.7)

Operating under the FE framework may be more appropriate for empirical applications in

which inefficiency is believed to be correlated with the inputs used. A disadvantage of using

the time-invariant SFM under the FE framework is that no other time-invariant variables

can be included. For example, when T is short (say only a few periods), the gender of a

plant manager, or ownership status of the firm (if it does not change over the time frame),

and so effectively, their influence (if present in reality) will be accumulated in (and distort)

the estimates of inefficiency.

In settings where time-invariant variables are expected to be relevant regressors in the

production model, an alternative is to operate under the RE framework. Estimation of

the model still does not require distributional assumptions on v or η, but OLS on the

transformed model no longer represents an efficient estimator given that the composed error

term, vit−ηi no longer has a diagonal variance-covariance matrix, besides the requirement of

no correlation between inefficiency and inputs. Schmidt & Sickles (1984) discuss estimation

under the RE framework through generalized least squares as well. Another alternative, if

one was uncomfortable with the implications stemming from RE framework would be to make
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distributional assumptions, and estimate the model via maximum likelihood. This avenue

was suggested by Pitt & Lee (1981) and can allow time-invariant covariates to enter the

model while still identifying time-invariant inefficiency. The cost is the use of distributional

assumptions so that the likelihood function can be constructed. Following Aigner et al.

(1977), Pitt & Lee (1981) assume that ηi follows a half-normal distribution and vit follows a

normal distribution. Kumbhakar (1987) discussed estimation of inefficiency in such a model

by extending the JLMS formulation.

5.2. Time-varying Technical Inefficiency Models. The time-invariant SFM allows in-

efficiency to differ across individuals, but restricts any change over time. The implication

of this is that an inefficient firm could not improve productivity over time by lessening in-

efficiency. This may be unrealistic in a variety of applied settings, or where T is large. We

must consider models that allow both technology and inefficiency to change over time to

accommodate the idea of productivity and efficiency improvement at the firm level.

A nice feature of time-varying SFMs is that the time-invariant SFM is a special case

and, correspondingly, the time-invariant specification can be tested, opening up a variety of

inferential opportunities for empirical analyses. To introduce the time-varying SFM, recall

the model in (5.5):

(5.8) yit = ci + x′itβ + vit.

To allow ci to be time-varying, one may impose some reasonable and tractable structure,

e.g., Cornwell, Schmidt & Sickles (1990) suggested replacing ci by cit where

(5.9) cit = c0i + c1it+ c2it
2,

where t is the time trend variable. The parameterization in (5.9) allows the parameters to

be firm-specific. If the number of cross-sectional units (n) is not large, one can define n firm

dummies and interact these dummies with time and time squared. These variables along
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with the regressors (i.e., the x variables) are then used in a standard OLS regression. The

coefficients associated with the firm dummies and their interactions are the estimates of c0i,

c1i, and c2i. These estimated coefficients can be used to obtain estimates of cit, c̃it. Again, the

within estimator can be used to consistently estimate β along with the 3n parameters from

the parameterization of cit. Finally, ĉit (the estimator of relative inefficiency) is obtained

from

(5.10) ĉit = ĉt − c̃it where ĉt = max
j

(c̃jt) ∀t.

In this model efficiency is calculated relative to the best firm in each year. Since the firm

with the maximum c̃jt is likely to change over time, different firms may be fully efficient

(or inefficient at different levels) in different years. An alternative would be to calculate

ĉjt = maxjt(c̃jt), the maximum over all j and t and replace ĉt with this definition in (5.10),

then efficiency is relative to the firm that was the most efficient over the entire sample period.

The Cornwell et al. (1990) estimation procedure is easy to implement. It relies on the

standard panel data estimator with the FE framework. Note that since t appears in the

inefficiency function, it cannot also appear as a regressor in xit, which would be required

if one were to capture technical change, i.e., a shift in the production frontier, m(x). In

other words, the above model cannot separate inefficiency from technical change, which is

an obvious drawback of this approach. In general, if one wants to have both time-varying

inefficiency and technical change, then the distribution free route of Cornwell et al. (1990)

will not work. In this case distributional assumptions will be necessary to allow time (and

higher powers of it) to enter the model in various places.

In a model with large n and small T the model will have too many parameters (3n

parameters in the cit function alone). A somewhat parsimonious time-varying inefficiency

model was proposed by Lee & Schmidt (1993):

(5.11) yit = m(xit;β) + vit − uit = m(xit;β) + εit.



54 SUBAL C. KUMBHAKAR, CHRISTOPHER F. PARMETER, AND VALENTIN ZELENYUK

where uit = ui`t and `t represent time specific effects to be estimated. This model is quite

flexible in its ability to model time-varying inefficiency. However, the temporal pattern of

inefficiency is assumed to be exactly the same for all firms (`t). Under the FE framework,

this specification can be viewed as an interactive effects panel data model and estimation

can be undertaken by introducing both firm and time dummies. Though no distributional

assumptions are required by Lee & Schmidt (1993), the structure of inefficiency is similar to

that assuming the scaling property discussed above. Again, given that inefficiency depends

directly upon time it is difficult to model both time-varying inefficiency and technical change

in 5.11.

A similar idea was used prior to Lee & Schmidt (1993) in Kumbhakar (1990) and Battese

& Coelli (1992), who proposed time-varying SFMs, but made distributional assumptions

on both vit and uit and estimated the corresponding likelihood functions. Lee & Schmidt’s

(1993) model is more general than either the Kumbhakar (1990) or Battese & Coelli (1992)

models as both can be derived as special cases with appropriate parametric restrictions on

`t. Further still, the time-invariant SFM is also a special case: `t = 1 ∀ t. Once `t and ui

are estimated, inefficiency can be estimated from

ûit = max
j
{ûj ˆ̀t} − ûi ˆ̀t.(5.12)

So far, the time-varying models that we have discussed treat inefficiency in a fully de-

terministic fashion, i.e. no distributional assumptions are required. In the Lee & Schmidt

(1993) time-varying SFM, both ui and `t are deterministic. This model can also be estimated

treating the time component as deterministic, but the individual component as stochastic

(through a distributional assumption). The deviation from the Lee & Schmidt (1993) time-

varying SFM in (5.11) is that uit = G(t)ui with G(t) being a deterministic function of time

and ui ∼ N+(µ, σ2
u) (Kumbhakar 1990, Battese & Coelli 1992). The ideas discussed pertain-

ing to the scaling property appear here, where firms have a base level of inefficiency, and
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then, through time, become more or less efficient. The stochastic component, ui, utilizes the

panel structure of the data in this model. The G(t) component is common across individuals

(as in, but not limited to, Lee & Schmidt 1993).

Given ui ≥ 0, uit ≥ 0 is ensured by having G(t) > 0. Undoubtedly, the most popular form

of G(t) is that proposed by Battese & Coelli (1992)

(5.13) G(t) = exp [γ(t− T )] ,

where T is the terminal period of the sample. The specification for G(t) is a simplification of

the first attempt to introduce stochasticity into the time-varying SFM by Kumbhakar (1990)

that assumes a more general specification of G(t) given by

(5.14) G(t) =
[
1 + exp(γ1t+ γ2t

2)
]−1

.

The Battese & Coelli (1992) specification essentially enforces γ2 = 0 in the Kumbhakar

(1990) time-varying SFM. The popularity of the Battese & Coelli (1992) time-varying SFM

has been aided by the freely available statistical package Frontier V4.1 which implements

this model at the push of a button (see Section 9 as well). Other specifications for G(t)

have also been proposed, see Cuesta (2000) and Kumbhakar & Wang (2005) for more recent

examples. Little research has been done on comparing a variety of forms of G(t). Lastly,

modelling technical change in the Kumbhakar (1990) or Battese & Coelli (1992) framework

is trivial because the imposition of distributional assumptions allows inclusion of t (as a

deterministic time-trend, e.g., linear, quadratic, etc.) as a component of xit.

5.3. Models that Separate Firm Heterogeneity from Inefficiency. While the time-

invariant SFM is a standard panel data model where ci is the unobservable individual effect,

a notable drawback of this approach is that inefficiency is indistinguishable from individual

heterogeneity. All time-invariant heterogeneity is confounded with inefficiency, and there-

fore ĉi will capture heterogeneity in addition to, or even instead of, inefficiency (Greene
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2005b). An important question for practitioners using the time-invariant SFM is how to

view the time-invariant component. Should it be thought of as persistent inefficiency (as per

Kumbhakar 1991, Kumbhakar & Hjalmarsson 1993, Kumbhakar & Heshmati 1995, Kumb-

hakar & Hjalmarsson 1998) or is it more appropriate to think of it as individual heterogeneity,

capturing the effects of unobserved time-invariant covariates? If it is the latter, then the in-

sights from the time-invariant panel data SFMs are incorrect. A less rigid perspective is that

the truth lies somewhere in the middle; inefficiency may be decomposed into two components:

one that is persistent over time and one that varies over time.

Unless persistent inefficiency is disentangled from time-invariant individual heterogeneity,

practitioners need to choose between either the case in which ci represents persistent ineffi-

ciency or ci represents an individual-specific effect (heterogeneity). Here, we will discuss both

specifications. In particular, we will consider models in which inefficiency is time-varying

irrespective of whether the time-invariant component is treated as inefficiency or not. Thus,

the model we will describe is

yit = ci + x′itβ + vit − uit.(5.15)

Compared to a standard panel data model, we have the additional time-varying inefficiency

term, −uit, in (5.15). If one treats ci, i = 1, . . . , n as a random variable that may be

correlated with xit but does not capture inefficiency, then the above model becomes what

has been termed the ‘true fixed-effects’ panel SFM (Greene 2005a). The model is labeled

as the ‘true random-effects’ SFM when ci is treated as uncorrelated with xit. Note that

these specifications are of the same nature as the models proposed by Kumbhakar (1991),

Kumbhakar & Hjalmarsson (1993), Kumbhakar & Heshmati (1995), and Kumbhakar &

Hjalmarsson (1998). The difference is in the interpretation of the ‘time-invariant term’, ci.

Estimation of the model in (5.15) is not straightforward. When ci, i = 1, . . . , n, are

embedded in the FE framework, the model encounters the incidental parameters problem
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(Neyman & Scott 1948). The incidental parameters problem arises when the number of

parameters to be estimated increases with the number of cross-sectional units in the data,

which is the case with the ci in (5.15). In this situation, consistency of the parameter

estimates is not guaranteed even if n → ∞ because the number of ci increases with n.

Therefore, usual asymptotic results may not apply. In addition to this specific statistical

problem, another technical issue in estimating (5.15) is that the number of parameters to be

estimated can be prohibitively large for large nT .

For a standard linear panel data model (i.e., one that does not have −uit in (5.15)), the

literature has developed estimation methods to deal with this problem. These methods

involve transforming the model so that ci is removed before estimation. Without ci in the

transformed model, the incidental parameters problem no longer exists and the number of

parameters to be estimated no longer increases with the number of individuals. Methods

of transformation include conditioning the model on ci’s sufficient statistic33 to obtain the

conditional MLE, and the within-transformation model or the first-difference transformation

model to construct the marginal MLE (e.g., Cornwell & Schmidt 1992). For the basic panel

data SFM, this could be done by transforming the error term if assumptions on vit and

uit are such that the composed error term’s distribution is closed-skew normal (i.e., the

normal-half-normal distributional pair).

These standard methods, however, are usually not applicable to (5.15). For the conditional

MLE of (5.15), Greene (2005b) showed that there is no sufficient statistic for ci. For the

marginal MLE, the resulting model after the within or first-difference transformation usually

does not have a closed form likelihood function, if one uses standard procedures.34 In general

this would not pose an issue as regression methods can be easily applied. However, given

the precise interest in recovering estimates of the parameters of the distribution of ineffi-

ciency, maximum likelihood or specific moments of the distribution of the transformed error

33A sufficient statistic contains all the information needed to compute any estimate of the parameter.
34Colombi, Martini & Vittadini (2011) showed that the likelihood function has a closed form expression.
Chen et al. (2014) considered a special case of Colombi et al. (2011) and derived a closed form expression.



58 SUBAL C. KUMBHAKAR, CHRISTOPHER F. PARMETER, AND VALENTIN ZELENYUK

component are needed. This precipitates methods that can recover information regarding

uit.

Greene (2005b) proposed a tentative solution. He assumed uit follows a simple i.i.d. half-

normal distribution and suggested including n dummy variables in the model for ci, i =

1, . . . , n and then estimating the model by MLE without any transformation. He found that

the incidental parameters problem does not cause significant bias to the model parameters

when T is relatively large (e.g., T ≥ 10). The problem of having to estimate more than n

parameters is dealt with by employing an advanced numerical algorithm.

There are some recent econometric developments on this issue. First, Chen et al. (2014)

proposed a solution in the FE framework. They showed that the likelihood function of

the within transformed and the first-difference model have closed form expressions using

results in Domı́nguez-Molina, González-Faŕıas & Ramos-Quiroga (2003). The same theorem

in Domı́nguez-Molina et al. (2003) is used by Colombi, Kumbhakar, Martini & Vittadini

(2014) to derive the log-likelihood function in the RE framework.

Using a different approach, Wang & Ho (2010) solve the problem classified in Greene

(2005b) by proposing a class of SFMs in which the within and first-difference transformations

on the model can be carried out while also providing a closed form likelihood function. The

main advantage of such a model is that because the cis are removed from the model in (5.15),

the incidental parameters problem is avoided entirely. As such, consistency of the estimates

is obtained for either n→∞ or T →∞, which is invaluable for applied settings. A further

computational benefit is that the elimination of cis reduces the number of parameters to be

estimated to a manageable number. The catch is in the specification of inefficiency which is

the product of an i.i.d non-negative random component and a deterministic function of zit

(determinants of inefficiency). Formally, the Wang & Ho (2010) model is:

(5.16) yit = ci + x′itβ + εit,
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where εit = vit − uit with vit ∼ N(0, σ2
v) and uit = gitu

∗
i with u∗i ∼ N+(µ, σ2

u), which is

the now familiar scaling property model with a truncated-normal distribution for the basic

distribution of inefficiency.

For the scaling function Wang & Ho (2010) set git = g(z′itδ). What allows the model

transformation to be applied is the scaling property; the within and first-difference transfor-

mations leave this stochastic term intact as u∗i does not change with time. As Wang & Ho

(2010) showed that the within-transformed and the first-differenced models are algebraically

identical we have only provided discussion on the first-differenced model. However, a lim-

itation of their model is that it does not completely separate persistent and time-varying

inefficiency, a subject which we now turn our attention to. Lastly, as with the models of

Kumbhakar (1990) or Battese & Coelli (1992), the use of distributional assumptions allows

both time-varying inefficiency and technical change to be modeled in (5.16).

5.4. Models that Separate Persistent and Time-varying Inefficiency. Although sev-

eral models discussed earlier can separate firm-heterogeneity from time-varying inefficiency

(which is either modeled as the product of a time-invariant random variable and a deter-

ministic function of covariates or distributed i.i.d. across firms and over time), none of these

models consider persistent technical inefficiency. It is important to quantify persistent ineffi-

ciency, especially in short panels, as it captures the effects of inputs like management quality

(Mundlak 1961). Unless there is a change in something that affects management practices

at the firm (for example new government regulations or a change in ownership), it is unlikely

that persistent inefficiency will change. The importance of persistent inefficiency contrasts

with time-varying as this can change over time without requiring structural changes which

impact the firm.

This distinction between the time-varying and persistent components is important from a

policy perspective as each yields different implications. Colombi et al. (2014) refer to time-

varying inefficiency as short-run inefficiency and mention that it can arise due to failure in
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allocating resources properly in the short run. They argued that, for example, a hospital

with excess capacity may increase its efficiency in the short-run by reallocating the work

force across different activities. Thus, some of the physicians’ and nurses’ daily working

hours might be changed to include other hospital activities such as acute discharges. This

is a short-run improvement in efficiency that may be independent of short-run inefficiency

levels in the previous period, which can justify the assumption that uit is i.i.d. However,

this does not impact the overall management of the hospital and so is independent from

time-invariant inefficiency.

To help formalize this issue more clearly we consider the model35

(5.17) yit = β0 + x′itβ + εit = β0 + x′itβ + vit − (ηi + uit)

Technical inefficiency is represented as ηi + uit where ηi is the persistent, firm-specific com-

ponent (for example, time-invariant ownership or geographic location) and uit is the time-

varying component of technical inefficiency which is firm and time specific. Model (5.17)

generalizes the previously discussed models because it allows for firm heterogeneity, time-

invariant and time-varying inefficiency all at once.

Such a decomposition is desirable because, since ηi does not change over time, for a firm

to improve efficiency a structural change in policy or management would need to arise.

Additionally, ηi does not fully capture firm level inefficiency because it does not account for

learning over time since it is time-invariant; the time-varying component, uit can capture

this aspect. In (5.17) the level of overall firm inefficiency, as well as the components, are

important to know because they convey different types of information. Thus, for example,

it may be argued that if residual inefficiency for a firm is relatively large in a particular year

this is due to an event which is unlikely to occur in the following next year. Alternatively,

if persistent inefficiency is large, then a firm is expected to operate with a relatively high

35This is the model proposed by Kumbhakar & Hjalmarsson (1993), Kumbhakar & Heshmati (1995), and
Kumbhakar & Hjalmarsson (1998), among others.
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level of inefficiency over time, unless some changes in policy and/or management occur.

Therefore, a large value of ηi is more concerning in the long run given its persistent nature

than is a high value of uit.

The specification in (5.17) offers that advantage of testing for the presence of the persistent

nature of technical inefficiency without the imposition of a specific parametric form of time-

dependence. Furthermore, by including time in the xit vector, (5.17) has the ability to

separate exogenous technical change from technical inefficiency.

To estimate the model we rewrite (5.17) as

yit = αi + x′itβ + ωit = (β0 − ηi − E[uit]) + x′itβ + vit − (uit − E[uit]).(5.18)

The error, ωit, has zero mean and constant variance. Model (5.18) is a standard panel

data model with firm-specific heterogeneity (one-way error component model), and can be

estimated either by the within transformation (under the FE framework) or by generalized

least-squares (under the RE framework).

The SFM in (5.18) can be estimated under the FE framework using a step-wise procedure.

Step 1: The standard within transformation can be performed on (5.18) to remove αi

before estimation. Since both the components of ωit are zero mean and constant

variance random variables, the within transformed ωit will generate a random vari-

able that has zero mean and constant variance. OLS can be used on the within

transformed version of (5.18) to obtain consistent estimates of β.

Step 2: Given the estimate of β, β̂, from Step 1, construct the pseudo-residuals rit =

yit−x′itβ̂, which contain information on αi+ωit. Using these, we first estimate αi from

the mean of rit for each i. Then, we can estimate αi from maxi α̂i−α̂i = maxi{r̄i}− r̄i

where r̄i is the mean (over time) of rit for firm i. Note that the intercept, β0, and

ωit are eliminated by taking the mean of rit over time for a firm. The above formula

gives an estimate of αi relative to the best firm in the sample.
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Step 3: With our estimates of β and ηi, we calculate residuals eit = yit − x′itβ̂ + η̂i,

which contains information on β0 + vit − uit. At this stage additional distributional

assumptions are required to separate vit from uit. Here we follow convention and

assume vit ∼ i.i.d. N(0, σ2
v) and uit ∼ i.i.d. N+(0, σ2

τ ). MLE can be deployed here,

treating eit as the dependent variable, to estimate β0 and the parameters associated

with vit and uit. The log-likelihood for this setup is, letting N = nT ,

(5.19) lnL = −N lnσ +
n∑
i=1

T∑
t=1

ln Φ(−eitλ/σ)− 1

2σ2

n∑
i=1

T∑
t=1

e2
it

Note that the parameters to be estimated here are β0, σ2
ν and σ2

τ . Once these pa-

rameters have been estimated a JLMS conditional mean or median technique can be

used to estimate uit for each observation.

To summarize estimation under the FE framework, we estimate (5.18) using standard FE

panel data tools to obtain consistent estimates of β in Step 1. Step 2 estimates persistent

technical inefficiency, ηi. Lastly, Step 3 involves estimation of β0 and the parameters as-

sociated with the distributional assumptions imposed on the random components, vit and

uit. One can then use the JLMS formula to estimate the time-varying (residual) component

of inefficiency, uit. Note that no distributional assumptions are used in the first two steps.

Without further assumptions, residual inefficiency cannot be identified and hence, distribu-

tional assumptions are needed in the last step. This model can also be estimated under the

RE framework (see also Colombi et al. 2014).

5.5. Models that Separate Firm Effects, Persistent Inefficiency and Time-varying

Inefficiency. All of the panel data SFMs introduced so far have departed from the general

model introduced in (5.2) in some aspect pertaining to the four separate error components.

This is due to the fact, that until recently, it was not clear how to estimate the full panel

data SFM represented by (5.2). The models of Kumbhakar, Lien & Hardaker (2014) and

Colombi et al. (2014) overcome the limitations of the previous models by embracing the
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nature of the four component structure inherent in the general panel data SFM. In the

SFM represented in (5.2) the four components take into account different factors affecting

output, given the inputs. As in Greene (2005b, 2005a) the first component captures firms’

latent heterogeneity, which needs to be extricated from inefficiency; the second component

captures time-varying inefficiency, the third component captures time-invariant inefficiency

as in Kumbhakar & Hjalmarsson (1993), Kumbhakar & Heshmati (1995), and Kumbhakar &

Hjalmarsson (1998) while the fourth component captures stochastic shocks beyond control

of the firm.

The ability to estimate model (5.2) allows improvement over the previous models in several

ways. To begin, while some of the time-varying inefficiency models just described can ac-

commodate firm effects, these models fail to acknowledge the potential for factors that might

have time-invariant effects on firm inefficiency. Second, SFMs which allow time-varying in-

efficiency commonly assume that the inefficiency level of the firm at time t is independent of

its previous level of inefficiency; it is more reasonable to assume that a firm may eliminate

some of its inefficiency by mitigating short-run rigidities, while other sources of inefficiency

may remain over time. The former is captured by the time-invariant component, ηi, and

the latter by the time-varying component, uit. Finally, many panel SFMs do consider time-

invariant inefficiency, but do not simultaneously account for the presence of unobserved firm

heterogeneity. In doing so, these models confound time-invariant inefficiency with firm ef-

fects (heterogeneity). The models proposed by Greene (2005b, 2005a), Kumbhakar & Wang

(2005), Wang & Ho (2010) and Chen et al. (2014) decompose the error term in the production

function into three components: a firm-specific time-varying inefficiency term; a firm-specific

effect capturing latent heterogeneity; and a time- and firm-varying random error term. How-

ever, these models consider any producer-specific, time-invariant component as unobserved

heterogeneity. Thus, although firm heterogeneity is now accounted for, it comes at the cost of

ignoring long-term inefficiency. As before, latent heterogeneity is confounded with long-run

inefficiency.
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Estimation of the panel data SFM in (5.2) can be undertaken in a single stage MLE

method based on distributional assumptions on the four components (Colombi et al. 2011).

We first describe a simpler, multi-step procedure (Kumbhakar et al. 2014). For this, we

rewrite the model in (5.2) as

yit = β∗0 + x′itβ + αi + εit,(5.20)

where β∗0 = β0 − E[ηi] − E[uit]; αi = ci − ηi + E[ηi]; and εit = vit − uit + E[uit]. With this

specification both αi and εit are zero mean and constant variance random variables. (5.20)

is estimated in three steps.

Step 1: Standard random effect panel regression is used to estimate β̂ (since (5.20) is

a common panel data model). Predicted values of αi and εit, denoted by α̂i and ε̂it

are also available after estimating (5.20).

Step 2: Time-varying technical inefficiency, uit, is estimated using ε̂it from Step 1.

Since

εit = vit − uit + E[uit],(5.21)

by assuming vit is i.i.d. N(0, σ2
v) and uit is i.i.d. N+(0, σ2

u), which yields E[uit] =√
2/π σu, and ignoring the difference between the true and predicted values36 of εit,

we can estimate (5.21) using standard SFA techniques. Doing so produces predictions

of the time-varying technical inefficiency component uit, E [e−uit|εit], (i.e., Battese &

Coelli 1988), which we call relenting technical efficiency (RTE).

Step 3: Estimate ηi following a similar strategy as in Step 2. For this we use α̂i from

Step 1. Since

αi = ci − ηi + E[ηi],(5.22)

36Which is the standard practice in any two- or multi-step procedure.



65

by assuming ci is i.i.d. N(0, σ2
µ), ηi is i.i.d. N+(0, σ2

η), where E[ηi] =
√

2/π ση, es-

timate (5.22) using the standard normal-half-normal cross-section SFM and obtain

estimates of the persistent technical inefficiency component, ηi following JLMS. Per-

sistent technical efficiency (PTE) can then be estimated as PTE = e−ηi , where η̂i is

the JLMS estimator of ηi. Overall technical efficiency (OTE) is then constructed as

the product of PTE and RTE, i.e., OTE = PTE×RTE.

It is possible to extend this model (in steps 2 and 3) to include PTE and RTE that is

distributed as truncated-normal or exponential as opposed to half-normal.

While the multi-step approach of Kumbhakar et al. (2014) is straightforward to implement,

it is inefficient relative to full MLE. However, given the structure of the four separate errors,

deriving the likelihood function was previously seen as infeasible. However, using insights

related to the closed-skew normal distribution, as in Colombi et al. (2014), a tractable

likelihood function turned out to be easily obtainable.

Colombi et al. (2014) made skew normal distributional assumptions for both ci − ηi and

vit−uit in (5.20).37 Assuming vit is i.i.d normal and uit is i.i.d half-normal, the composed error

vit−uit has a skew normal distribution. The same set of assumptions can be used for ci and ηi.

Thus, model (5.2)’s likelihood, can be derived. Even though the log-likelihood for (5.2) can

be determined based on skew normal assumptions for the time-varying and time-invariant

error components, it can be daunting to implement. Greene & Fillipini (2014) recently

proposed a simulation based optimization routine which circumvents many of the challenges

associated with direct optimization. They used a trick suggested by Butler & Moffitt (1982),

conditioning on ci and ηi. This conditioning eliminates many of the computational hurdles

that direct optimization of the likelihood function presents.

5.6. The Four Component Panel Data SFM with Determinants of Inefficiency.

A further generalization of the four component model in (5.2) involves the inclusion of

37The skew normal distribution is a more general distribution than the normal distribution, allowing for
asymmetry (Azzalini 1985).
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determinants of inefficiency, either for the time-varying or the time invariant components.

An estimator for this model was recently proposed in Badunenko & Kumbhakar (2017),

(5.23) yit = m(xit;β) + ci − ηi + vit − uit,

where ηi ∼ N+(0, σ2
η,i), uit ∼ N+(0, σ2

u,it), ci ∼ N(0, σ2
c,i), and vit ∼ N(0, σ2

v,it). These

distributional assumptions are imposed so that the time invariant composed error and the

time-varying composed error both follow the closed skew normal distribution. Each of the

variance parameters of the four components is dependent upon a set of covariates and spec-

ified as an exponential function: σ2
η,i = σ2

ηe
z′η,iδη , σ2

c,i = σ2
ce
z′c,iδc , σ2

u,it = σ2
ue
z′u,itδu , and

σ2
v,it = σ2

ve
z′v,itδv . The time-constant and time-varying z vectors can overlap due to the as-

sumed distributional assumptions, that is zc,i can share elements with zη,i and zu,it can share

elements with zv,it.

To estimate this four component model Badunenko & Kumbhakar (2017) used the insights

of Greene & Fillipini (2014) and deployed simulated maximum likelihood techniques. The

benefit of this approach is that rather than having T integrals to evaluate, by conditioning

on ci − ηi, the likelihood function can be written as the product of T univariate integrals.

Simulation methods are required to construct draws of ci− ηi inside the convolution density.

The final log-likelihood function is

(5.24) L =
n∑
i=1

log

(
R−1

R∑
r=1

[
T∏
t=1

2

σit
φ

(
εitr
σit

)
Φ

(
εitrλit
σit

)])
,

where σit =
√
ez
′
u,itδu + ez

′
v,itδv , λit =

√
ez
′
u,itδu−z′v,itδv , εitr = εit−

(√
ez
′
c,iδcVir −

√
ez
′
η,iδη |Uir|

)
and εit = yit −m(xit;β). R is the number of draws over which to numerically evaluate the

integral (larger R increases accuracy but slows down the routine, smaller R leads to faster

computation but decreases accuracy). Lastly, both Vir and Uir are random draws from a

standard normal distribution. Implementation of this routine is straightforward if one has

access to a standard normal random number generator (which is typically available in any
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general statistical software). Once draws for Vir and Uir have been constructed, the likelihood

is evaluated for the current set of parameters (β, δu, δv, δη, δc). This process is then iterated

over different sets of parameter values. Naturally, one can impose constancy at various parts

of the error components by restricting δ` = 0 for ` ∈ {u, v, c, η}.

5.7. Inference Across the Panel Data SFM. The most general SFM in the panel con-

text is the model which allows for firm specific heterogeneity, persistent technical efficiency,

relenting technical inefficiency and individual-time specific idiosyncratic shocks. Colombi

et al. (2014) denote this model as TTT (True for having firm specific heterogeneity, True

for having time constant inefficiency and True for having time-varying inefficiency). The

majority of all panel data models that have appeared in the literature are special cases of

TTT. For example, the widely used true RE model of Greene (2005b) is a special case of

the TTT model. The same holds for all of the models we have discussed above. Naturally,

inference is necessary to determine the model which best fits the data at hand. One ben-

efit of nearly all of the panel data SFM discussed here is that standard panel data type

tests (coefficient significance, fixed versus random effects framework, serial correlation, etc.)

are easily implemented. This is similar to the benefits of the cross-sectional SFM that we

discussed earlier.

What is less straightforward is to test the most general TTT model against more restricted

versions. Testing any of the previous models against the most general TTT model is a non-

standard problem because, under the null hypothesis, one or more of the parameters of

interest lie on the boundary of the parameter space. Under reasonable assumptions the

asymptotic distribution of the log-likelihood ratio test statistic is χ̄2, as discussed in Section

2.3.1. For example, the model of Pitt & Lee (1981) could be tested against the TTT model

with the log-likelihood ratio test statistic but using the χ̄2 to determine the p-value, see

Table 1.
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Future research focusing on adapting testing procedures to the TTT framework is impor-

tant moving forward. As discussed earlier, the presence of both time-varying and invariant

efficiency yields different policy recommendations and so working with models that document

their presence, or lack of one, are important for proper analysis.

6. Nonparametric Estimation of the SFM

6.1. Early Attempts. In a nutshell, the semiparametric and nonparametric approaches to

SFA typically use the benchmark SFM of Aigner et al. (1977) as the stepping-stone, general-

izing it in different ways by relaxing all or some parametric assumptions by utilizing existing

semiparametric and nonparametric statistical methods, such as the Nadaraya-Watson esti-

mator, the local polynomial estimator or the likelihood (pseudo or local) estimators.

To facilitate further and more precise discussion recall that the benchmark SFM for a

sample of n DMUs is given by:

(6.1) yi = m(xi) + vi − ui = m(xi) + εi, i = 1, . . . , n,

where m(·) is the frontier of the production technology that can be used to transform vector

of inputs x ∈ Rq
+ into scalar output yi, perturbed by some statistical noise vi and adjusted

by technical inefficiency ui. As we discussed in Section 2, traditional parametric estimation

of the model begins by assuming a particular functional form for the production technology,

most commonly a Cobb-Douglas or a Translog, besides making distributional assumptions

on both vi and ui, which help to identify and estimate the unknown parameters via, say, the

maximum likelihood approach. All the asymptotic results (consistency, asymptotic normal-

ity) are conditional on these assumptions and if they happen to be incorrect then, strictly

speaking, all these results may be invalid. In such cases, the parametric MLE will be incon-

sistent or converging in probability not to the truth (e.g., true elasticities) but to some other

numbers, which can even be very far from the truth if the parametric assumption made on

a function is far from the true one.
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The early attempts to estimating SFM nonparametrically or semiparametrically go back to

at least Banker & Maindiratta (1992), Fan, Li & Weersink (1996) and Kneip & Simar (1996).

Specifically, Banker & Maindiratta (1992) proposed a nonparametric approach in the spirit of

the DEA estimator but embedded in a maximum likelihood framework, similar to parametric

SFA, and thus allow for modeling both the noise and the inefficiency. A few years later, Fan

et al. (1996) proposed estimating the production frontier in another flexible manner, using

nonparametric kernel regression methods embedded into the parametric maximum likelihood.

About the same time, Kneip & Simar (1996) suggested using the kernel regression estimator

(Nadaraya-Watson in particular) for the panel data SFM.

Importantly, note that the estimated conditional mean E[yi|x] of the production frontier

is a biased estimator when ignoring the inefficiency term. Indeed, a critical assumption for

consistent estimation of the production frontier in a regression setting is E[εi|x] = 0 and due

to the one-sided nature of ui, this assumption is not satisfied, because E[εi|x] = µu 6= 0 in

the simplest case when inefficiency is independent of the inputs, or more generally, E[εi|x] =

µu(x) 6= 0 ∀x. Therefore, the production frontier cannot be identified in the regression

setup, where one would estimate

(6.2) yi = m(xi) + εi = m(xi) + µu + (εi − µu) ≡ m∗(xi) + ε∗i .

Realizing this, Fan et al. (1996) proposed correcting the estimation bias of m(x) via a

three-stage semiparametric pseudo-likelihood estimation of the SFM. In this approach, at

the first stage, one estimates (6.2) non-parametrically.38 Results from this first stage are

then fed into the second stage, involving parametric MLE with particular assumptions on

the distribution of the noise and inefficiency that help identifying and disentangling the

two.39 Once the parameters of this symbiosis of MLE and kernel-regression are estimated,

38They used a local constant (Nadaraya-Watson) regression, although other consistent nonparametric esti-
mators can be used there too.
39In their work, the normal-half-normal assumption was used, but other assumptions we discussed above
can be used there too. Note however that for some alternative distributional assumptions on u, for example
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the estimated conditional mean can then, in the third stage, be corrected for the bias by

the estimated mean of inefficiency (as in COLS), µ̂u(xi) to get a consistent estimator m(xi)

given by

(6.3) m̂(xi) = m̂∗(xi)− µ̂u(xi),

Kneip & Simar (1996) also proposed a similar strategy for correcting for the bias occurring in

estimating (6.2) nonparametrically, but avoided using MLE due to possibility to disentangle

the noise from inefficiency without distributional assumptions, by utilizing the panel-data

SFA framework.

The approaches of Fan et al. (1996) and Kneip & Simar (1996) provided a useful framework

and formed a foundation on which many other approaches have been built.40 For example,

more recent approaches of Kuosmanen & Kortelainen (2012) and Parmeter & Racine (2012)

share some essence of Fan et al. (1996) except that they required the estimated produc-

tion frontier to obey traditional axioms of production, such as monotonicity and concavity,

something that Fan et al. (1996) did not accommodate in their approach. Specifically,

Parmeter & Racine (2012) employ the framework of Fan et al. (1996) but combine it with

constraint weighted bootstrapping (Hall & Huang 2001, Du, Parmeter & Racine 2013) to

ensure that monotonicity and concavity are enforced during estimation. More recently, Noh

(2014) made improvements to the approach of Parmeter & Racine (2012), which resulted in

small sample performance gains. On the other hand, Kuosmanen & Kortelainen (2012) used

an entirely different estimation approach, concave nonparametric least-squares (CNLS), to

impose monotonicity and concavity. Lastly, Martins-Filho & Yao (2015) showed that while

the estimator of Fan et al. (1996) is consistent, the parametric estimator for the parameters

of the density of the convolved error yields an asymptotic bias (when normalized by
√
n)

exponential or truncated-normal, a concentrated version of the log-likelihood function may not exist, causing
identification problems.
40See Parmeter & Zelenyuk (2016) for a more comprehensive review of this topic.
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and proposed an alternative estimator that estimates the distributional parameters and the

unknown frontier jointly.

6.2. Local Likelihood Methods. Local likelihood approach (Tibshirani & Hastie 1987)

is known to be a natural alternative to the semi-parametric pseudo-likelihood, and it was

first proposed in the SFA context by Kumbhakar, Park, Simar & Tsionas (2007). This ap-

proach closely resembles the parametric likelihood approach with the only (yet fundamental)

difference being the kernel-based weights (instead of the equal weights) used to weigh each

individual contribution to the likelihood, which help localizing the estimation in the direc-

tion of each continuous variable through the bandwidths. Specifically, for a given regression

error density, fε(ε, θ), we have the local log-likelihood function

(6.4) Ľn(θ(x),mx) = (n|h|)−1

n∑
i=1

ln fε(yi −m(xi); θ(x))Kix,

where mx captures the conditional mean of y given x (a q × 1 vector of covariates) and θ is

the vector of remaining parameters of fε, Kix =
q∏
s=1

h−1
s k

(
xis−xs
hs

)
is the standard product

kernel where k(·) is any second order univariate kernel (Epanechnikov, Gaussian, e.g.), hs

is the smoothing parameter for the sth covariate (and is the sth element of vector h), while

|h| = h1h2 · · ·hq.

Kumbhakar et al. (2007) used a local-linear approximation for the unknown production

function m(xi) combined with the assumption of a normal, half-normal convolved error term,

where parameters are also modeled as unknown functions of the covariates,

Ľn =(n|h|)−1

n∑
i=1

[
−0.5σ̈2

x(xi)− 0.5ε̈2
i e
−σ̈2

x(xi) + ln Φ
(
−ε̈ieλ̈x(xi)−0.5σ̈2

x(xi)
)]
Kix(6.5)

where ε̈i = yi − m̈x(xi), m̈x(xi) = m̈0 − m̈′1(xi − x), σ̈2
x(xi) = σ̈2

0 + σ̈2′
1 (xi − x), and

λ̈x(xi) = λ̈0 + λ̈′1(xi − x).41

41One could also use a quadratic approximation, but note that even in this local-linear case, there are already
3 + 3q parameters to estimate (i.e., optimize over) at each point of interest x: these are the three functional

estimates, m̈0, σ̈2
0 and λ̈0 and the 3q derivative estimates of the functions, m̈1, σ̈2

1 and λ̈1.
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Noting that often the main focus of interest is related to σu, Park, Simar & Zelenyuk

(2015) suggested directly parameterizing the local likelihood function in terms of lnσ2
v and

lnσ2
u which also impose positivity of σ2

v and σ2
u throughout the estimation, making it more

stable computationally. Park et al. (2015) also outlined an asymptotic theory for modeling

discrete variables in the context of the local-likelihood approach, which can be imperative for

many applications, since many covariates researchers have access to are categorical in nature

(regulated vs. non-regulated firms or industries, private vs. publicly owned companies, male

vs. female managers, etc.). The local-likelihood function in this case would be

Ľ(θ(xc,xd),mxc,xd) =(n|h|)−1

n∑
i=1

[
−0.5 ln

(
eσ̈

2
v(xci ,x

d
i ) + eσ̈

2
u(xci ,x

d
i )
)
− 0.5ε̈2

i /
(
eσ̈

2
v(xci ,x

d
i ) + eσ̈

2
u(xci ,x

d
i )
)

+ ln Φ
(
−ε̈ieσ̈

2
u(xci ,x

d
i )/2−σ̈2

v(xci ,x
d
i )/2/

√
eσ̈

2
v(xci ,x

d
i ) + eσ̈

2
u(xci ,x

d
i )
)]
KixcW

i(xdi ).(6.6)

where xci is a vector of continuous regressors while xdi is a vector of discrete regressors and

W i(xdi ) is an appropriate discrete kernel, e.g., the one proposed by Aitchison & Aitken

(1976) or its variations. The theory in Park et al. (2015) is derived for the case of kernel

from Racine & Li (2004), given by W i(xd) =
∏k

j=1 ω
I(xdij 6=xdj )

j , which is a standardized version

of Aitchison-Aitken kernel, standardized so that the bandwidths for a jth discrete variable,

here denoted as ωj, are always between 0 and 1, regardless of the number of categories.

However, this theory also extends (with some modifications) to cases with other discrete

kernels. For example, one might prefer the so-called discrete Epanechnikov kernels, which

are particularly useful and can be superior to others in case of sparse data (e.g., see Chu,

Henderson & Parmeter (2017) and the references cited therein). One can also use more

adaptive bandwidths, e.g., allow for bandwidths of some or all continuous regressors to differ

across categories of some or all discrete variables (e.g., see Li, Simar & Zelenyuk (2016) for

related discussion).

Standard optimization algorithms can be used here, but as with any nonlinear optimiza-

tion, careful choice of starting values is imperative, especially in selecting the bandwidths.
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For example, Kumbhakar et al. (2007) suggested starting with the local-linear least-squares

estimates for m̈0 and m̈1 and the global, parametric maximum likelihood estimates for σ2

and λ (from Aigner et al. 1977) so that m̈0 is properly corrected (as in Fan et al. 1996).

Selection of the bandwidths is a very important step here (as is true in general for kernel-

based methods) and many interesting general selection methods can be adapted to the cur-

rent context. One of the most popular approach is cross-validation.42 Kumbhakar et al.

(2007) outlined how to use least-squares cross-validation (LSCV) for their approach. Mean-

while, Park et al. (2015) suggested using maximum likelihood cross-validation (MLCV),

which is more natural for the local-likelihood approach, although it may be more demanding

in computation. For the starting values in numerical optimization of LSCV or MLCV for

selecting optimal bandwidths, one could use the so-called rules-of-thumb bandwidths that

reflect the rates of convergence required for the asymptotic theory, e.g., for a continuous

variable xcs, use h0(xcs) = 1.06 × n−1/(4+q)σ̂xcs , where σ̂xcs is estimated standard deviation of

xcs, and ω0 = n−2/(q+4) for the discrete bandwidths.

Kneip, Simar & Van Keilegom (2015) provide an update of the Kumbhakar et al. (2007)

estimator whereby the distributional assumption on the inefficiency term can be dropped.

The only parametric assumption required in Kneip et al. (2015) is that the two-sided error

term is normal, which allows them to rely on penalized likelihood, where the unknown density

is constructed non-parametrically via a histogram over the support of the covariate space

and the penalty term is included to ensure appropriate smoothness of the resulting density.

Both the theory and simulated evidence appearing in Kneip et al. (2015) suggest that this

estimator works quite well in a variety of settings. To date, no application of this method

has appeared to our knowledge and so it represents an exciting opportunity moving forward.

6.3. Local Least-Squares Approaches. In spite of the appealing theoretical advantages

of the likelihood-based approaches they involve numerical optimization of the local likelihood

42For more discussions on the pros and cons, as well as references on this approach in general, see Henderson
& Parmeter (2015a).
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function over many parameters at each point of interest, which can be computationally

complex, especially if bootstrap methods are needed to conduct inference. An attractive

alternative that is much simpler to compute is provided by adopting the local least-squares

methods; because these methods do not require nonlinear optimization (given closed form

solutions), only basic matrix operations are required, marking dramatic improvements in

computation time.

Recently, Simar et al. (2017) (SVKZ hereafter) proposed what can be viewed as a non-

parametric and semiparametric generalizations of COLS (Olson et al. 1980)43, which also

allow for modeling determinants of inefficiency. Specifically, they considered a generalization

of (6.1) given by

(6.7) yi = m(xi, zi) + vi − ui = m(xi, zi) + εi.

where m(xi, zi) is the production frontier evaluated at xi, the realizations of inputs for

observation i, and at zi, the realization of the so-called environmental factors faced by the

observation i, and disturbed by the realizations of statistical noise vi and inefficiency ui. In

general, they required fairly general and mild conditions on the model, e.g., (ui|xi = x, zi =

z) ∼ D+(µu(x, z), σ2
u(x, z)) with D+(·, ·) being a non-negative random variable with mean

µu(·, ·) and finite positive variance σ2
u(·, ·), while (vi|xi = x, zi = z) ∼ D(0, σ2

v(x, z)) with

D(0, ·) being a random variable with mean zero and finite positive variance σ2
v(·, ·). They also

assumed that, conditional on (xi, zi), ui and vi are independent random variables. Further,

given that vi has a symmetric distribution around zero, while ui is a positive random variable

from a skewed distribution E[εi|x, z] = −E[ui|x, z] 6= 0. Therefore, after recentering, we

have

(6.8) yi = m(xi, zi) + vi − ui + E[ui|x, z]− E[ui|x, z] = m∗(xi, zi) + ε∗i

43As with our earlier discussion, SVKZ referred to this approach as nonparametric MOLS, but cite Olson
et al. (1980), who used the term COLS and so we refer to it as COLS here.
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where m∗(xi, zi) = m(xi, zi) − E[ui|x, z] and ε∗i = εi + E[ui|x, z]. Adapting the strat-

egy of COLS from Olson et al. (1980), SVKZ proposed in the first stage the estimator of

m∗(x, z), m̂∗(x, z) using local-polynomial least-squares, noting that under mild regularity

conditions and appropriate choice of the bandwidths, such estimators have desirable sta-

tistical properties (consistency, asymptotic normality, etc.; see Fan & Gijbels 1996, Li &

Racine 2007, Henderson & Parmeter 2015a). Then, in the second stage, they utilized the

moment conditions implied by the assumptions on ui and vi, namely

E[ε∗|x, z] =0,

E[(ε∗)2|x, z] =σ2
u(x, z) + σ2

v(x, z),

E[(ε∗)3|x, z] =− E
[
(u− E[u|x, z])3 |x, z

]
,

and estimate the second and third moments of ε∗ using local-polynomial methods with the

residuals ε̂∗i = yi − m̂∗(xi, zi) from the first stage, i.e.,

(6.9) m̂2(x, z) =
n∑
i=1

Ai(x, z)ε̂2
i

and

(6.10) m̂3(x, z) =
n∑
i=1

Ai(x, z)ε̂3
i ,

where Aj(x, z) would vary depending upon the local smoothing method used. If one desires

to estimate the level of the frontier in SVKZ’s setup, then (local) parametric distributional

assumptions for ui is needed, although the ranking of output would be independent of this

distributional choice. Importantly, note that if the moments of ui depend on x or z, then the

frontier correction will also depend on x and z implying that any features of the production

frontiers, such as returns to scale, may depend on the distribution of ui. One therefore needs

to either make some type of distributional assumption or to assume a type of separability
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assumption, such as E[u|x, z] = E[u|z]. With the normal-half-normal framework, SVKZ

showed (adapting Olson et al. 1980), that

σ̂u(x, z) = max

{
0,

[√
π

2

(
π

π − 4

)
m̂3(x, z)

]1/3
}

(6.11)

σ̂2
v(x, z) =m̂2(x, z)− σ̂2

u(x, z)

(
π − 2

π

)
,(6.12)

These estimates can then be used to obtain the estimates of the efficiency scores for each

observation, in the spirit of Jondrow et al. (1982), generalized to the heteroskedastic case

involving E[ui|εi,xi, zi] instead of E[ui|εi]. However, as mentioned in the parametric con-

text above, one should be careful interpreting these estimates of efficiency scores, as they

are “predicted values” conditional on unobserved εi, replaced with its estimate for the spe-

cific realization i, and as such the prediction intervals tend to be quite wide (see Simar &

Wilson (2010), for related discussion). In turn, the conditional mean of inefficiency can be

consistently estimated as

µ̂u(x, z) =

√
2

π
σ̂u(x, z).(6.13)

and then use it at any point of interest (x, z) to form a consistent estimate of the level of

frontier, m(x, z), using

m̂(x, z) = m̂∗(x, z) + µ̂u(x, z).(6.14)

SVKZ also derived the asymptotic properties of these estimators, generalizing earlier results

from Fan & Yao (1998) and Chen, Cheng & Peng (2009).

Finally, and perhaps most interestingly, SVKZ pointed out that if one is only interested

in the influence of z or x on the (conditional mean) efficiency, or as a special case to test if

E[u|x, z] is a constant, then no parametric distributional specification is required for ui, only

a condition that it belongs to the one parameter scale family of distributions. Specifically,
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they showed that the elasticity measure of E[u|x, z] w.r.t. some ψ` that is an element of

(x, z), defined as

ξψ`(x, z) =
∂µu(x, z)

∂ψ`

ψ`
µu(x, z)

(6.15)

assuming that µu(x, z) 6= 0, can be estimated as

ξ̂ψ`(x, z) =
1

3

∂̂m3(x, z)

∂ψ`

ψ`
m̂3(x, z)

(6.16)

where m̂3(x, z) and ∂̂m3(x, z)/∂ψ`, are the estimates from the local polynomial estimator

and provided that m̂3(x, z) 6= 0 for the particular combination of interest (x, z). Impor-

tantly, SVKZ also derived the asymptotic law for this elasticity estimator, showing that

(6.17) (nhp+d+2)1/2
(
ξ̂ψ`(x, z)− ξψ`(x, z)

)
−→ N(0, s2

ξ`
(x, z)),

In turn, these asymptotic results can be used for statistical testing about influence of

elements in (x, z) onto expected inefficiency.

A practical limitation of SVKZ is that the estimated production technology may not satisfy

axioms of production. One might be tempted to follow Kuosmanen & Kortelainen (2012)

or Parmeter & Racine (2012), imposing the desired constraints first, and then recovering

Ê[u|x, z]. However, as we noted earlier, the methods of Kuosmanen & Kortelainen (2012)

and Parmeter & Racine (2012) work when the distribution of inefficiency is independent of

x and z, i.e. when u is homoskedastic. The issue the applied researcher faces here is much

more subtle. When heteroskedasticity is present in u, one must recognize that what is being

estimated in the first stage is a conditional mean, and not a production frontier. Thus, it

is not necessarily the case that the axioms of production should be expected to hold when

estimating the conditional mean.



78 SUBAL C. KUMBHAKAR, CHRISTOPHER F. PARMETER, AND VALENTIN ZELENYUK

Consider the case of a monotonic production function. The conditional mean of output

could be non-monotonic if Ê[u|x, z] was non-monotonic, even though the production function

is monotonic. Further, it is well known that adding two concave functions might not produce

a concave function, so even if Ê[u|x, z] was concave, adding it to the production frontier

may not produce a concave production function. And therein lies the danger of imposing

constraints when estimating the conditional mean, it is not necessarily the case that they

should be satisfied. This might seem innocuous except for the fact that imposing constraints

on a conditional mean that are incorrect will not produce a consistent estimator and typically,

consistent estimates in the first stage are needed for the second stage (recovering inefficiency)

to produce valid estimates.

Take for example the discussion in Kuosmanen, Johnson & Saastamoinen (2015, pg. 233),

who consider estimation of a production frontier nonparametrically, while also allowing u to

depend on x. In this case they stated (in our notation) “. . . Note that the shape of function

g can differ from that of frontier m because E(ui|xi) is a function of inputs x . . . It is also

worth noting that function g is not necessarily monotonic increasing and concave even if

the production function m satisfies these axioms because −E(ui|xi) can be a non-monotonic

and non-concave function of inputs . . . To apply CNLS in step 1, we need to assume that

the curvature of the production function m dominates and that function g is monotonic

increasing and concave (at least by approximation).” Unless the conditional mean of

output satisfies the axioms of production, it is recommended the axiomatic restrictions be

enforced after consistent, unrestricted estimation of the conditional mean as this will ensure

that the first stage estimator of the conditional mean is consistent. How exactly to do this is

a relatively unexplored area in stochastic frontier analysis and is a fruitful avenue for future

research.

Figures 10.1-10.3 illustrate the pitfalls of enforcing constraints ex ante on the conditional

mean of y (given x). We have a single input, x, and our production frontier is logarithmic,

which is naturally monotonic and concave. When inefficiency is homoskedastic we see that
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the conditional mean is just a shift down of the production frontier, and remains both

monotone and concave. However, if we allow heteroskedasticity of inefficiency, e.g. through

a quadratic relationship, then, depending on the nature of heteroskedasticity, we can violate

monotonicity, Figure 10.2, or concavity, Figure 10.3 of E[y|x]. This quadratic relationship

is not beyond the pale, even in the parametric setting.44

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

6.4. Avoiding Distributional and (Some) Parametric Assumptions When Deter-

minants of Inefficiency Are Present. Here we discuss the approach of Tran & Tsionas

(2009) and Parmeter, Wang & Kumbhakar (2017). Let the SFM be:

(6.18) yi = m(xi) + vi − ui = m(xi) + vi − ui + E[ui|zi]− E[ui|zi] = m∗(xi, zi) + ε∗i .

where m∗(xi, zi) = m(xi) + g(zi), (ui|zi = z) ∼ D+(µu(x, z), σ
2
u(x, z)), while (vi|xi, zi) ∼

D(0, σ2
v). This model is a special case of SVKZ’s model. Now, if we specify our production

technology as m(xi) = x′iβ and E[ui|zi] = g(zi), then if β were known, g(zi) could be

identified as the conditional mean of ε̃i = yi − x′iβ given zi.

However, β is unknown and must be estimated. It can be estimated as follows. Condi-

tioning only on zi in equation (6.18) we have

(6.19) E[yi|zi] = E[xi|zi]′β − g(zi).

Subtracting (6.19) from (6.18) yields

(6.20) yi − E[yi|zi] = (xi − E[xi|zi])′β + εi.

44Wang (2002) documents non-monotonic efficiency effects in a panel of Philippine rice farmers based on the
age of the farmer.
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If E[yi|zi] and E[xi|zi] were known, β could be estimated via OLS from (6.20). The idea is to

replace the unknown conditional means with their nonparametric estimates (Robinson 1988).

To estimate both β and g(zi) we replace E[yi|zi] and E[xi|zi] in (6.20) with

Ê[y|zi] =
n∑
j=1

Aj(zi)yj

Ê[xs|zi] =
n∑
j=1

Aj(zi)xsj,

For a given bandwidth, the conditional expectations for y and each element of x can be

estimated and OLS can then be used to obtain a consistent estimator of β. That is, instead

of the usual regression of y on x, one performs the modified OLS regression of ỹ on x̃, where

we have used the notation w̃ = w − Ê[w|z] to denote a random variable that has been con-

ditionally demeaned. The estimates for β can then be used to obtain a consistent estimator

of the conditional mean of inefficiency via standard nonparametric regression techniques.

Let ε̌i = yi − x′iβ̂, where β̂ is our estimate from the OLS regression of ỹ on x̃. We then

estimate g(zi) nonparametrically via local-polynomial least-squares as

(6.21) ĝ(zi) =
n∑
j=1

Aj(zi)ε̌j.

In the cross-sectional regression setting, without assuming some structure on the distribu-

tions of the error components, it is not possible to identify the impact that any given variable

has on output directly, i.e. through the frontier, indirectly though inefficiency or both.45 One

way to achieve identification is through invocation of the separability assumption. This as-

sumption, described in exceeding detail in Simar & Wilson (2007), essentially requires two

distinct sets of variables: those which influence the frontier and those which solely influence

inefficiency. In the context of a model for which two-sided noise does not exist (the standard

45Hall & Simar (2002) discussed nonparametric identification of the mean of inefficiency subject to the
variance of the noise distribution diminishing as n → ∞. Horrace & Parmeter (2011) showed how to
nonparametrically identify the full distribution of inefficiency if one assumes that v is distributed normal.



81

DEA framework), when this assumption is satisfied, a two-step approach is available which

can produce consistent estimators of both the frontier function and the inefficiency of a firm

(Simar & Wilson 2007, Banker & Natarajan 2008, Simar & Wilson 2011).

In general it is recommended that if variables which influence inefficiency exist, that this

information should be used directly, with a single stage estimator, such as maximum like-

lihood. When the separability assumption holds, then the partly linear model of Tran &

Tsionas (2009) and Parmeter et al. (2017) could be deployed (albeit with some parametric

assumptions imposed) or the additive model previously described can be used.46

Importantly, the separability assumption can be tested in the stochastic frontier context,

including the fully nonparametric or semiparametric frameworks. We can compare the es-

timates from the additively separable SFM, with that from a fully nonparametric model to

determine if there are statistical differences. Fortunately, this type of setup is conducive to

inference through either a residual sum of squares test or a conditional moment test. See

the discussion in chapter 6 of Henderson & Parmeter (2015a).

6.5. Future Directions in Semi- and Nonparametric Estimation and Inference

of the SFM. One of the future directions of research within non- and semiparametric SFA

is, naturally, related to statistical inference. The asymptotic results developed in the above

mentioned papers as well as various testing procedures developed in the general statistics

community make a solid foundation for this to happen, with careful adaptation and extensive

46The approach of SVKZ allows for both x and z to influence both the frontier and inefficiency and as such
the separability assumption is not required. Yet, one may say that there is also a kind of ‘separability’
structure involved implicitly: (x, z) is assumed to influence the frontier via the first moment, while for the
inefficiency term, u, the same (x, z) is modeled through the skedastic function defining the second moment.
Besides helping with statistical identification, such structure can be viewed as quite natural to the context
of measurement. Indeed, one often thinks of the frontier as the level, and so using the (conditional) first
moment, measuring the (conditional) average level of outputs, would be very natural. Meanwhile, the
inefficiency is often understood as the deviation from the frontier, so it would be a more natural way to
model it with the second moment. In addition, one could also think of the inefficiency as a reflection of
the uncertainty and related ‘risk’ to produce less than the potential and beyond the usual (and symmetric)
noise, and it is very common to model risk through the second moment.
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Monte Carlo evidence supporting the theory. Additionally, few of the methods discussed here

have been fully developed in the panel data setting.

It is worth noting that neither Kumbhakar et al. (2007), nor Martins-Filho & Yao (2015),

nor Park et al. (2015), nor SVKZ imposed any axioms of production on the frontier, e.g.,

monotonicity (i.e., require ∇mx ≥ 0 ∀x), although some of them have brief discussions

about possible extensions to do so. Specifically, to impose the desired constraints, one could

adapt ideas from Daouia & Simar (2005) and Daouia & Park (2013), or use DEA or FDH

on the fitted values from these methods (thus using the stochastic DEA or stochastic FDH

approaches of Simar & Zelenyuk 2011), or to employ the constraint weighted bootstrapping

(Hall & Huang 2001, Du et al. 2013), as was adapted to the baseline SFM by Parmeter &

Racine (2012).

7. Quantile Estimation of the SFM

A recent development in the estimation of the SFM has been to embrace the use of quantile

methods (Bernini, Freo & Gardini 2004, Know, Blankmeyer & Stutzman 2007, Liu, Laporte

& Ferguson 2008, Behr 2010). Quantile regression is known to provide a more complete

picture of a conditional distribution (Koenker & Hallock 2001, Koenker 2005) and provides

a robust alternative to ordinary least squares. Whereas the ordinary least squares estimator

stems from minimization of the sum of squared errors, the conditional quantile estimator is

determined through minimization of the “check” function (Koenker & Bassett 1978) defined

for a particular quantile, the median say.

The conditional quantile function Qy(τ |x) for a random variable y with conditional CDF

F (y|x) is defined as F−1(τ |x) = inf {y : F (y|x) ≥ τ} where τ is the τ th conditional quantile

of the random variable y. Rather than directly inverting of the conditional distribution

function, the conditional quantile can be determined through the loss function

(7.1) ρτ (ε) = ε (τ − 1{ε < 0}) .
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ρτ (ε) is known as the check function. For a traditional linear in parameters framework,

Qy(τ |x) = x′iβ(τ), the quantile estimator is found by minimizing

(7.2) min
β

n∑
i=1

ρτ (yi − x′iβ(τ)) ,

for a given τ . When the error terms are i.i.d., the conditional quantiles represent vertical

shifts of the conditional median function by the appropriate quantile of the error distribution.

However, when heteroskedasticity is present, the conditional quantiles are no longer vertical

shifts of the conditional median, but will have varying slopes; moreover, the quantiles will

become nonlinear.

The use of conditional quantile estimation to recover the frontier is appealing because in

general a frontier can be thought of as a quantile in the distribution of output. At issue is

the appropriate quantile, τ . For example, Bernini et al. (2004, pg. 379) estimate the frontier

with the conditional quantile estimator using τ = 0.5, 0.9 and 0.975. τ = 0.5 corresponds

to the median and is equivalent to the conditional mean in the case that σ2
u = 0 (see the

discussion in Horrace & Parmeter 2014). Know et al. (2007, pg. 79) estimate conditional

quantiles for τ = 0.85, 0.9 and 0.95, while Liu et al. (2008, pg. 1080) consider τ = 0.5 and

0.8. Lastly, Behr (2010, pg. 572) recommended use of τ = 0.95 for estimation of production

frontiers and τ = 0.05 for estimation of cost frontiers.

What is lost in the recommendations of this earlier research is how one estimates (or

predicts) individual efficiency once the frontier has been estimated. Currently the standard

practice is to treat any firm whose output lies above the frontier as fully efficient, and

any firm whose output is below the frontier as inefficient, with inefficiency defined as the

difference between the estimated frontier and observed output. However, both of these

recommendations ignore the fact that the composed error term represents inefficiency and

noise. There does not exist at present an approach that separates inefficiency from noise in

a manner similar to Jondrow et al. (1982). One idea could be to use the conditional mode
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as proposed in Materov (1981). This estimator can be interpreted as a maximum likelihood

estimator for the distribution of the joint density of v and u, and more importantly, for

positive residuals, it is always 0, which is akin to how inefficiency is currently calculated

using conditional quantile estimation. Unfortunately, as with the conditional mean, the

conditional mode estimator requires distributional assumptions for it to be operational.

Lastly, we mention two important caveats with quantile estimation of frontiers. First,

heteroskedasticity in either v or u has, to present, not been accounted for. This is a severe

limitation as heteroskedasticity is commonly seen as present in v in applied efficiency studies,

and researchers typically have access to an array of determinants of inefficiency, which induce

heteroskedasticity in the inefficiency term. Moreover, unlike estimation of a conditional

mean, when conditional heteroskedasticity is present, this can affect consistent estimation of

the conditional quantile. Second, estimation of the conditional quantile for a specific value

of τ is an implicit assumption on the ratio of signal to noise between σ2
u and σ2

v . To see this,

more clearly, Figures 10.4-10.7 presents the results of quantile estimation for τ = 0.5, 0.8,

0.85, 0.9, and 0.95 for 1,000 observations drawn from the model

(7.3) yi = x0.4
i evi−ui ,

with vi ∼ N(0, 1) and ui ∼ N+(0, σ2
u). In Figure 10.4 the inefficiency draws are taken with

σ2
u = 0.01, in Figure 10.5 we have σ2

u = 0.25, in Figure 10.6 σ2
u = 1, and in Figure 10.7 σ2

u = 4.

In the case where σ2
u = 4, this corresponds to a λ = σu/σv = 2 which is of decent size for

an applied efficiency study. In this case the true frontier is approximately equal to the 85th

quantile. It is clear that interpreting the frontier for a given quantile as the benchmark for a

firm being efficient or inefficient is implicitly a statement on the ratio between the variance

of the noise and the inefficiency for the sample. In Figure 10.4, where λ = 0.01, the setting

where there is almost no inefficiency, the frontier is nearly equivalent to the median, which

is the least absolute deviation estimator that Horrace & Parmeter (2014) discussed.
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[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

While the quantile estimator marks an interesting and robust alternative to traditional

stochastic frontier analysis, it should be clear that more work needs to be done. We direct the

reader to the earlier referenced papers for more details and additional insights on how best to

use conditional quantile methods at present for conducting efficiency analysis. Furthermore,

panel estimation of quantiles, as well as semi and non-parametric estimation of quantiles,

is still in its infancy in this area and extensions to the SFM have as yet to appear in the

literature.

8. Additional Approaches/Extensions of the SFM

As with any review or summary article, there is never enough space to cover all top-

ics equally or broadly enough. The SFM has been studied and used for 40 years now

and even though we have covered a range of approaches and insights, there are still many

topics which we did not cover. These include finite mixture models (Caudill 2003, Orea

& Kumbhakar 2004, Greene 2005b), the zero-inefficiency SFM (Kumbhakar, Parmeter &

Tsionas 2013), the meta-frontier (Battese & Rao 2002, Battese, Rao & O’Donnell 2004),

total factor productivity change and its individual components (Hulten 2001), the two-tier

frontier (Polachek & Yoon 1987, Polachek & Yoon 1996), sample selection in the SFM

(Kumbhakar, Tsionas & Sipiläinen 2009, Greene 2010), and directional distance function

estimation (Atkinson & Tsionas 2016). Parmeter & Kumbhakar (2014) cover broadly es-

timation and inference of finite mixture models, the zero-inefficiency SFM and issues per-

taining to sample selection. Full details on the measurement of total factor productiv-

ity and separation into distinct components can be found in Kumbhakar et al. (2015,
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chapt. 11). Both the two-tier frontier (Kumbhakar & Parmeter 2009, Kumbhakar &

Parmeter 2010, Papadopoulos 2015) and meta-frontier (O’Donnell, Rao & Battese 2008, Am-

sler, O’Donnell & Schmidt 2017) have started to receive more attention recently, but as of

yet no broad review of either exists. Regarding the estimation of directional distance func-

tions, we refer interested readers to Färe, Martins-Filho & Vardanyan (2010) for a thorough

treatment.

9. Available Software to Estimate SFMs

Despite the popularity of the SFM, only the most basic implementations of it are available

across a wide array of statistical platforms. For example, in the R programming environment

the frontier (Coelli & Henningsen 2013) package allows for cross-sectional estimation of

the SFM assuming either the half-normal or truncated-normal distribution for ui and the

Battese & Coelli (1992) and Battese & Coelli (1995) panel data estimators of the SFM are

implemented.47 There are similar estimators available in LIMDEP through the NLOGIT

module but also include the normal-gamma specification as well as the true fixed and true

random effects estimators along with the latent class stochastic frontier estimator. There

are also several modules in the STATA software as described in Kumbhakar et al. (2015)

which implement several other panel data estimators as described earlier. Additionally, many

authors provide their own personal codes.

However, there does not yet exist a singular software that implements all of the available

estimators described here. This should not be surprising. As with any applied field, as

statistical improvements are made, there is a lag with available software and the array of

options makes it infeasible to include all discussed models in a singular package. Researchers

interested in the newest methods can invest in programming these methods and disseminating

47The frontier package accesses the Frontier V4.1 Fortran codes originally developed by Tim Coelli, which
is also freely available (at http://www.uq.edu.au/economics/cepa/frontier.php), although fairly outdated by
now.
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them to the field, or can collaborate with the authors of the original models to develop

software that can be made widely available, and we strongly encourage researchers to do so.

10. Conclusions

This review was meant to highlight some of the most important econometric develop-

ments over the past 40 years to improve the estimation of measurements of productivity

and efficiency. We covered the workhorse SFM, and discussed avenues to include determi-

nants of inefficiency and productivity, dealing with endogeneity, what to do when one has

panel data, quantile estimation, and robust methods involving nonparametric regression and

local-likelihood to place as few restrictions as possible on the frontier or the behavior of

inefficiency. All told, a variety of methods and models exist for the practitioner and our

hope is that this review will encourage applied researchers to move off of some of the basic

SFMs in search of more robust and insightful conclusions.

While much has been covered, much remains unsaid. Important areas that are still being

developed include modeling dependence between statistical noise and inefficiency, selection

of firm technology, handling heterogeneous technology in a sample of firms, and how to allow

a subset of firms to be fully efficient. While our discussion was couched in terms of the single

equation stochastic production frontier, system based approaches surrounding cost, profit,

or revenue frontiers are also available and, as the other methods that we mentioned without

any details, they deserve attention and separate reviews.
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96 Figures

Figure 10.1. Concave and Monotonic Conditional Mean and Production
Frontier Under Homoskedastic Inefficiency. The solid line is the production
frontier while the dashed line is the conditional mean of output.
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Figure 10.2. Concave but Non Monotonic Conditional Mean and Production
Frontier Under Heteroskedastic Inefficiency. The solid line is the production
frontier while the dashed line is the conditional mean of output.
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98 Figures

Figure 10.3. Monotonic but Non Concave Conditional Mean and Production
Frontier Under Heteroskedastic Inefficiency. The solid line is the production
frontier while the dashed line is the conditional mean of output.
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Figure 10.4. Conditional quantile estimation of a univariate SFM with σ2
u =

0.01.
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100 Figures

Figure 10.5. Conditional quantile estimation of a univariate SFM with σ2
u =

0.25.
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Figures 101

Figure 10.6. Conditional quantile estimation of a univariate SFM with σ2
u =

1.
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Figure 10.7. Conditional quantile estimation of a univariate SFM with σ2
u =

4.
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Table 1. Right tail critical values for both a χ2
1 and a 50:50 mixture of a χ2

0

and a χ2
1, denoted as χ̄2.

Significance Level 0.01 0.05 0.1 0.15 0.2 0.25
χ2

1 6.634 3.841 2.706 2.072 1.642 1.323
χ̄2 5.412 2.706 1.642 1.074 0.708 0.455


