
   

 

 

 

Volume 37, Issue 2

 

Handling Endogeneity in Stochastic Frontier Analysis

 

Mustafa U. Karakaplan 

Georgetown University

Levent Kutlu 

Georgia Institute of Technology

Abstract
We present a general maximum likelihood based framework to handle the endogeneity problem in the stochastic

frontier models. We implement Monte Carlo experiments to analyze the performance of our estimator. Our findings

show that our estimator outperforms standard estimators that ignore endogeneity.

Citation: Mustafa U. Karakaplan and Levent Kutlu, (2017) ''Handling Endogeneity in Stochastic Frontier Analysis'', Economics Bulletin,

Volume 37, Issue 2, pages 889-901

Contact: Mustafa U. Karakaplan - mukarakaplan@yahoo.com, Levent Kutlu - levent.kutlu@gatech.edu.

Submitted: August 02, 2016.   Published: May 01, 2017.

 

   



 

1. Introduction 

 

Endogeneity problems can arise in stochastic frontier models due to a couple of major 

reasons: First, the determinants of the cost frontier and the two-sided error term can be correlated. 

Secondly, the inefficiency term and two-sided error term can be correlated, or in particular, the 

determinants of the inefficiency can cause this correlation. Endogeneity in a stochastic frontier 

model would lead to inconsistent parameter estimates, and hence, it would need to be addressed 

properly. 

In the empirical literature, there is a growing concern about the endogeneity issues in the 

stochastic frontier models. For example, maximum likelihood estimation is probably the most 

widely used method in the stochastic frontier literature, but conventional maximum likelihood 

estimation of an endogenous stochastic frontier model would give inconsistent parameter 

estimates. This would necessitate a proper instrumental variable (IV) approach in order to deal 

with the endogeneity issue. In the maximum likelihood framework, a standard way to deal with 

this problem is modeling the joint distribution of the dependent variable and endogenous variables; 

and then maximizing the corresponding log-likelihood of this distribution. However, due to the 

special nature of the error term in the stochastic frontier models, this is a relatively more difficult 

task compared to the standard maximum likelihood models involving only two-sided error terms. 

Guan et al. (2009) follow a two-step estimation methodology to handle the endogenous 

frontier regressors. In the first step of their methodology, they get the consistent estimates of the 

frontier parameters using GMM, and in the second step, they use the residuals from the first step 

as the dependent variable to get the maximum likelihood stochastic frontier estimates. Since the 

second step of this procedure uses the standard stochastic frontier estimators, the efficiency 

estimates would not be consistent when the two-sided and one-sided error terms are correlated. 

Kutlu (2010) makes an effort to address the endogeneity problem in the maximum likelihood 

estimation context. He describes a model that aims to solve the endogeneity problem due to the 

correlation between the regressors and two-sided error term. Tran and Tsionas (2013) propose a 

GMM variation of Kutlu (2010). The assumptions of these models are not sufficient for handling 

the endogeneity due to one-sided and two-sided error terms. Mutter et al. (2013) explain of why 

omitting the variable causing the endogeneity is not a viable solution. Shee and Stefanou (2015) 

extends the methodological approach in Levinsohn and Petrin (2003) to overcome the problem of 

endogenous input choice due to production shocks that are predictable by the productive unit but 

unknown to the econometrician. Unlike our study, however, Shee and Stefanou (2015) do not 

consider the endogeneity problem due to the correlation of one-sided error term and two-sided 

error term. Gronberg et al. (2015) try to solve the problem through pseudo-IV methodologies.  

Amsler et al. (2016) propose a copula approach that allows more general correlation 

structures when modeling endogeneity. However, this method is computationally intensive and 

requires choosing a proper copula. Moreover, the model presented in Amsler et al. (2016) does not 

allow environmental variables that affect inefficiency, which makes it less applicable when trying 

to understand the factors that affect inefficiency. Griffiths and Hajargasht (2016) present a 

Bayesian stochastic frontier model, which allows environmental variables but their model is very 

different from ours.1 Overall, one of the main strengths of our model is that it is easier to apply 

                                                 
1 Amsler et al. (2016), Griffiths and Hajargasht (2016), and Tran and Tsionas (2015) are papers with alternative 

econometric approaches that are contemporary with a previous version of our very paper and the econometric 

methodology presented here. In fact, these three papers did not exist when we originally finished and submitted our 

first draft, and they do cite our working papers and methods.  



 

compared to its copula or Bayesian counterparts, and our model is a direct generalization of one 

of the most widely used stochastic frontier models, i.e. Battese and Coelli (1995) type estimators. 

 

2. A Practical Econometric Approach to Handle Endogeneity 

 

We consider the following stochastic frontier model with endogenous explanatory 

variables: ݕ = ′ଵݔ ߚ + ݒ − sݑ ݔ = ܼߜ + ݒ̃ߝ ] ߝ  ] ≡ [ Ω−ଵ/ଶߝݒ  ]  ~ � ቆ[ ͲͲ ] , [ �� �௩ߩ�௩ߩ′ �௩ଶ  ]ቇ ݏ = −ͳ for cost functions     ሺor ݏ = ͳ  for production functionsሻ 

(1) 

where ݕ is the logarithm of the expenditure (or output) of the �௧ℎ unit; ݔଵ is a vector of exogenous 

and endogenous variables; ݔ is a ×ͳ vector of all endogenous variables (excluding ݕሻ, ܼ =�� ⊗  , are two-sided error termsߝ  andݒ ,ͳ vector of all exogenous variables×ݍ  is aݖ ′ whereݖ

and ݑ ≥ Ͳ is a one-sided error term capturing the inefficiency. In our framework, a variable is 

endogenous if it is not independent from ݒ. Finally, Ω is the variance-covariance matrix of ߝ, �௩ଶ  

is the variance of ݒ, and ߩ is the vector representing the correlation between ߝ̃ and ݒ. 
The applicability and implications of our model is much more comprehensive than that of 

Kutlu (2010) who proposes a model that enables estimation of efficiency when some of the 

regressors are correlated with the ݒ term.2 He does not provide a solution for a potential correlation 

between ݒ and ݑ terms. In particular, the assumptions of his model do not assure consistency of 

parameter estimates when ݒ and ݑ terms are correlated, and hence, he does not mention the case. 

Indeed, his model does not consider heteroskedasticity in either component of the composed error 

term. On the other hand, our model specifications provide a methodology to deal with the 

endogeneity issues in stochastic frontier models in a more general setting. 

The assumption that ݒ and ݑ are independent is dominantly made in the stochastic frontier 

literature. We address this issue by allowing ݒ and ݑ to be dependent through observables that 

shape both distributions. Let ݔଶ be a vector of exogenous and endogenous variables. We assume 

that the inefficiency term, ݑ, is a function of ݔଶ and an observation unit specific random 

component, ݑ∗. More precisely, ݑ = �௨ሺݔଶ; �௨ሻݑ∗ (2) 

where �௨ = �௨ሺݔଶ; �௨ሻ > Ͳ and ݑ∗ ≥ Ͳ is independent from ݒ and ߝ conditional on ݔ and ݖ. 
Hence, ݑ is not independent from ݔ, yet ݑ and ݒ are conditionally independent given ݔ and ݖ. 
Similarly, ݑ and ߝ are conditionally independent given ݔ and ݖ. Our view is that if the model is 

well-specified in the sense that it includes proper variables that affect efficiency, then the 

conditional correlation of ݑ∗ and ݒ can be eliminated (at least in most realistic scenarios). Hence, 

in practice, most of the time this is not an issue unless there are omitted variables when modelling 

inefficiency. 

By a Cholesky decomposition of the variance-covariance matrix of ሺߝ̃′,  ሻ′, we canݒ

represent ሺߝ̃′,  :ሻ′ as followsݒ

                                                 
2 Also see Kutlu and Sickles (2012) for similar ideas in the Kalman filter framework to measure market powers of 

firms. 



 

ݒ̃ߝ ]  ] = [ �� Ͳ�௩ߩ′ �௩√ͳ − [ ߩ′ߩ  [ ݓ̃̃ߝ ]
(3) 

where ߝ̃ and ̃ݓ ~ �ሺͲ,ͳሻ are independent. Hence, we can write the frontier equation as follows: ݕ = ′ଵݔ ߚ + �௩ߝ′ߩ̃ + ݓ − sݑ  = ′ଵݔ ߚ + �௪��௪ ݔሺ′ߟ − ܼߜሻ + ݁ (4) 

where ݁ = ݓ − sݑ ݓ = �௩√ͳ − ݓ̃ߩ′ߩ = �௪̃ݓ, �௪ = ��௪�௪ሺ. ; �௪ሻ is separable so that ��௪ > Ͳ is a function of the constant term,  �௪ሺ. ; �௪ሻ is a function of all variables affecting �௪ 
except the constant term so that �௪ሺ. ; �௪ሻ = ͳ when �௪ = Ͳ, and ߟ = ��௪Ω−భమ ߩ √ͳ − ⁄ߩ′ߩ . For 

example, if �௪ଶ = expሺݔଷ′ �௪ሻ, then ��௪ = expሺ��௪ሻ where ��௪ is the constant term in ݔଷ′ �௪. Hence, when there is no heteroskedasticity in ݓ, we have �௪ = ��௪ so that: ݕ = ′ଵݔ ߚ + ݔሺ′ߟ − ܼߜሻ + ݁. (5) 

Note that ݁ is conditionally independent from the regressors given ݔ and ݖ. Hence, conditional 

on ݔ and ݖ, the distribution of ݁ and ሺݑ|݁ሻ are exactly the same as their traditional counterparts 

from the stochastic frontier literature. We can also directly assume that the conditional distribution 

of ݒ given ݔ (and exogenous variables) is a normal distribution with mean equal to ሺ�௪ ��௪ሻ⁄ ݔሺ′ߟ − ܼߜሻ. Hence, rather than assuming that ሺߝ̃′,  ሻ′ is jointly normally distributedݒ

and using this to derive the conditional distribution of ݒ, we can directly assume that ݒ is normally 

distributed with mean ሺ�௪ ��௪ሻ⁄ ݔሺ′ߟ − ܼߜሻ given ݔ (and exogenous variables). This approach 

is commonly used to solve the endogeneity problem in models with intrinsic non-linearity such as 

choice models.3 According to this approach ሺ�௪ ��௪ሻ⁄ ݔሺ′ߟ − ܼߜሻ is a correction term for bias. 

Hence, this approach treats endogeneity as an omitted variable problem. In what follows, we base 

our analysis on this assumption. We assume that:4 ݑ∗ ~ �+ሺͲ,ͳሻ �௨ଶ = expሺݔଶ′ �௨ሻ �௪ଶ = expሺݔଷ′ �௪ሻ. (6) 

where � = ሺ�௨′ , �௪′ ሻ′ is the vector of parameters capturing heteroskedasticity and ݔଷ is a vector 

of exogenous and endogenous variables which can share the same variables with ݔଵ and ݔଶ. Here, ��௪ଶ = expሺ��௪ሻ where ��௪ is the coefficient of constant term for ݔଷ′ �௪. This implies that ݑ  ~ �+ሺͲ, �௨ଶ ሻ.5 Note that �ݒ(ݑ,ߝ) = √ʹ ⁄ߨ ,ሺ�௨ݒ� ሻߝ ≠ Ͳ in general. This is one of the 

important features of our model. The conventional stochastic frontier models do not allow such 

correlations. Let ߣ = �௨ �௪⁄  and �ଶ = �௪ଶ + �௨ଶ . Then, the probability density function of ݁ is 

given by: 

�݂ሺ݁ሻ = �ʹ � (݁�) Φ ݁�ߣݏ−) ) (7) 

where � and Φ denote the standard normal PDF and CDF, respectively. Let ݕ = ሺݕଵ, ,ଶݕ . . . ,  ′ሻ�ݕ
                                                 
3 For more details about this approach, see Wooldridge (2010). Also see Terza et al. (2008) for two-stage residual 

inclusion methods. Unlike Terza et al. (2008), our estimations are done in a single stage and deal with additional 

complications of stochastic frontier models, which involve composed error terms. 
4 These particular choices of half-normal distribution and exponential function are not essential for our analysis. For 

illustrative purposes, we chose one of the distributions that is applied relatively more commonly in the empirical 

studies. 
5 Note that �ܽݎሺݑ∗ሻ = ሺߨ − ʹሻ ⁄ߨ  and �ܽݎሺݑሻ = ሺߨ − ʹሻ�௨ଶ ⁄ߨ .  



 

be the vector of dependent variable, ݔ = ሺݔଵ′ , ′ଶݔ , . . . , ′�ݔ ሻ′ be a matrix of endogenous variables in 

the model (i.e, the elements of ݔ are the ݔ’s defined earlier), and ߠ = ሺߚ′, ,′ߟ �′, -ሻ′. The log′ߜ

likelihood of ሺݕ, ሻߠሻ is given by:6 ln�ሺݔ = ln�௬|௫ሺߠሻ + ln�௫ሺߠሻ (8) 

where ln�௬|௫ሺߠሻ = ∑�=ଵ (lnʹ − ͳʹ ln�ଶ + ln� (݁�) + lnΦ ݁�ߣݏ−) )) 

= ∑�=ଵ (lnሺʹ ⁄ߨ ሻ − ln�ଶ − ሺ݁ଶ �ଶሻ⁄ʹ + lnΦ ݁�ߣݏ−) )) 

ln�௫ሺߠሻ = ∑ ቆ− ∙ lnʹߨ − lnሺ|Ω|ሻ − ʹߝ′ Ω−ଵߝ ቇ�=ଵ  ݁ = ݕ − ′ଵݔ ߚ − �௪��௪ ݔሺ′ߟ − ܼߜሻ ߝ = ݔ − ܼߜ �ଶ = �௪ଶ + �௨ଶ
ߣ  = �௨�௪  . 

Even though ݑ and ݒ are not independent unconditionally, they are conditionally 

independent. Hence, this decomposition enables us to use the usual density function for the ln�௬|௫ሺߠሻ part of the log-likelihood function. As can be seen, this part of the log-likelihood 

function is almost the same as that of a traditional stochastic frontier model. However, we also add ln�௫ to the log-likelihood and adjust the ݁ term by the ሺ�௪ ��௪ሻ⁄ ݔሺ′ߟ − ܼߜሻ factor.7 It is worth 

mentioning that the inclusion of the bias correction term solves the problem of inconsistent 

parameter estimates due to endogenous regressors in ݔଵ and due to the endogenous variables in ݔଶ. The efficiency, ܨܨܧ = expሺ−ݑሻ, can be predicted by:  ܧ[expሺ−ݑݏሻ|݁]௦ = (ͳ − Φሺݏ�∗ − ∗/�∗ሻͳߤ − Φሺ−ߤ∗/�∗ሻ exp (−sߤ∗ + ͳʹ �∗ଶ))௦
 (9) 

where ߤ∗ = �௨ଶ�ଶ݁ݏ−  �∗ଶ = �௪ଶ �௨ଶ�ଶ  . 
For computationally difficult cases, one can use a two-step maximum likelihood estimation 

method as in Murphy and Topel (1985).8 In the first stage, ln�௫ሺߠሻ is maximized with respect to 

the relevant parameters. In the second stage, conditional on the parameters estimated in the first 

                                                 
6 For the notational simplicity, we drop the exogenous variables from the conditional density function. 
7 This approach is applicable to various maximum likelihood estimation based stochastic frontier models widely used 

by researchers. For example, ݑ can be assumed to have a truncated normal, exponential, or gamma distribution among 

other distributions. 
8 The two-stage method suggested in here is different than the one that is criticized by Wang and Schmidt (2002) or 

the one implemented by Kutlu (2010), which requires bootstrapping. Hence, our suggestion is not subject to their 

criticisms. 



 

stage, ln�௬|௫ሺߠሻ is maximized. In our case, the conditional second stage becomes: ݕ = ′ଵݔ ߚ + �௪̂̃ߝ′ߩ + ݓ − sݑ (10) 

where ̂̃ߝ is the first stage estimate of ߝ̃. A simpler approach would be estimating each component 

of ߝ̃ by OLS in the first stage using the equation ߝ = ݔ − ܼߜ; and estimating (10) by maximum 

likelihood estimation method. Since the second stage uses the estimate of ߝ̃ instead of the variable 

itself, the asymptotic variance matrix should be adjusted for the second stage. Based on Murphy 

and Topel (1985), Greene (2008) gives a concise presentation of this two-step maximum likelihood 

estimation method.9 Hence, by applying the two-step maximum likelihood estimation method, it 

is possible to deal with some of the computational difficulties. 

 

2.1. Endogeneity Test 

 

In addition to providing a way to solve the endogeneity problem, we also offer a method 

to test the endogeneity. For this purpose, we propose testing the joint significance of the 

components of the ߟ term. If the components are jointly significant, then we would conclude that 

there is endogeneity in our model. When the components are not jointly significant, this would 

indicate that the correction term is not necessary and the efficiency can be estimated by the 

traditional frontier models. The significance of the  �௧ℎ component of ߟ indicates that ݔ (the �௧ℎ 

component of ݔ) and ݒ are correlated. Hence, a particular variable of interest is endogenous if 

the corresponding component of ߟ term is significant. Essentially, our endogeneity test relies on 

ideas similar to the standard Durbin-Wu-Hausman test for endogeneity. Finally, note that when ߟ = Ͳ, the standard errors from the second stage of the two-step estimator are valid. Moreover, 

asymptotically, they are as efficient as the one-step version. Hence, the F-test can be applied to 

test the endogeneity of relevant variables by testing the joint significance of the components of ߟ. 

Our model is a particularly attractive choice as it enables us to test the endogeneity of the 

inefficiency term, ݑ. 
 

2.2. Monte Carlo Simulations 

 

We implement Monte Carlo simulations in order to examine the small sample performance 

of our estimator. We consider a Cobb-Douglas cost function model and assume that the variance 

term for the one-sided error, ݑ, is heteroskedastic and is a function of a variable, which can be 

correlated with the two-sided error term, ݒ. This represents the case in which the variables 

explaining the efficiency are simultaneously determined with cost. Until recently, the literature 

largely ignored the possibility of a correlation between ݑ and ݒ. In contrast to what is done in 

practice, such a correlation is likely to be more frequent than rare. We analyze both the 

consequences of ignoring such a correlation and the performance of our estimator in dealing with 

this problem. 

We examine four simulation scenarios: In Scenario 1, we analyze a model in which one of 

the regressors is correlated with ݒ. In Scenario 2, we analyze a model in which ݑ is correlated with ݒ. In Scenario 3, we analyze a model in which one of the regressors and one of the environmental 

variables for ݑ are correlated with ݒ. Finally, in Scenario 4, we analyze a model in which one of 

the regressors in the frontier, one of the environmental variables for ݑ, and ݑ∗ are correlated with 

                                                 
9 Hardin (2002) explains how estimation of the two-stage maximum likelihood models with robust variance can be 

implemented in Stata. 



 

 Unlike Scenario 3, Scenario 4 violates an important assumption for our model. Hence, when .ݒ

estimating this scenario, we estimate it as if it is Scenario 3. The data generating process (DGP) 

for these four scenarios are described in Appendix. Table I and Table II present the simulation 

results of these four scenarios with both strong IVs and weak IVs. 

 

Table I: Simulation Results with Strong Instruments 

ߩ  = Ͳ and ߜ = ͳ  

 
 Scenario 1 Scenario 2 Scenario 3  

 

True 

Values 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN 

  ௨  -1.2000 -1.2526 -1.2516 -1.2366 -1.2299 -1.2362 -1.2294  �௨  1.4000 1.4214 1.4207 1.4118 1.4075 1.4123 1.4080��  0.5014 0.5004 0.5015 0.5012 0.5004 0.4995 0.5000  ߚ  0.5007 0.5007 0.5018 0.5015 0.5016 0.5021 0.5000  ߙ  0.5005 0.5021 0.4980 0.4997 0.5024 0.5025 0.5000  � 

MSE �  0.0301 0.0306 0.0256 0.0259 0.0244 0.0254  

MSE 0.0088 0.0061 0.0088 0.0088 0.0093 0.0069  ߙ  

MSE 0.0089 0.0029 0.0089 0.0089 0.0093 0.0030  ߚ  

MSE ��௨  0.1746 0.1770 0.1306 0.1348 0.1270 0.1317  

MSE �௨  0.0572 0.0587 0.0316 0.0350 0.0305 0.0340  

MSE 0.1727 0.1709 0.1723 0.1712 0.1758 0.1751  ݑ  

Bias 0.0032- 0.0039- 0.0034- 0.0040- 0.0063- 0.0065-  ݑ  

Pearson  0.7716 0.7710 0.8041 0.8034 0.8043 0.8032  

Spearman  0.7650 0.7644 0.7920 0.7914 0.7923 0.7912  

ߩ   = Ͳ.7Ͳ and ߜ = ͳ  

 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 

True 

Values 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN �  0.5000 0.6239 0.5003 0.5868 0.4991 0.7671 0.4972 0.5951 0.3080 0.4935 0.8896 0.4975 0.9464 0.5017 0.4373 0.4980 0.9702 0.5000  ߚ 0.5018 0.1436 0.5022 0.1005 0.5007 0.4369 0.5025 0.2087 0.5000  ߙ ��௨  -1.2000 -1.0069 -1.2283 -1.8429 -1.2186 -1.7998 -1.2012 -1.0925 -0.4985 �௨  1.4000 1.2156 1.4106 1.9473 1.4037 1.9029 1.3986 1.5893 1.1348 

MSE �  0.0372 0.0233 0.0294 0.0205 0.0882 0.0125 0.0291 0.0489 

MSE 0.0053 0.1318 0.0054 0.1643 0.0078 0.0123 0.0083 0.0903  ߙ 

MSE 0.0057 0.1539 0.0055 0.2015 0.0080 0.0123 0.0084 0.2235  ߚ 

MSE ��௨  0.1375 0.0922 0.4794 0.0761 0.4175 0.0175 0.0693 0.5079 

MSE �௨  0.0732 0.0381 0.3166 0.0236 0.2687 0.0090 0.0524 0.0790 

MSE 0.0644 0.1963 0.0071 0.1507 0.1060 0.2033 0.1083 0.1341  ݑ 

Bias 0.1962- 0.2845- 0.0009 0.0855 0.0024- 0.1019 0.0036- 0.0116-  ݑ 

Pearson  0.8177 0.8462 0.7915 0.8656 0.8328 0.9880 0.8984 0.9851 

Spearman  0.8139 0.8437 0.7863 0.8574 0.8270 0.9880 0.8998 0.9892 



 

 

Table II: Simulation Results with Weak Instruments 

ߩ  = Ͳ and ߜ = Ͳ.ʹͷ  

 
 Scenario 1 Scenario 2 Scenario 3  

 

True 

Values 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN 

  ௨  -1.2000 -1.2505 -1.2491 -1.3080 -1.2975 -1.3026 -1.2891  �௨  1.4000 1.4199 1.4190 1.4681 1.4440 1.4658 1.4401��  0.5040 0.5002 0.5007 0.5001 0.4848 0.4991 0.5000  ߚ  0.5004 0.5000 0.5016 0.5011 0.5053 0.5021 0.5000  ߙ  0.5043 0.5084 0.5024 0.5065 0.4987 0.5021 0.5000  � 

MSE �  0.0299 0.0807 0.0229 0.0235 0.0214 0.0358  

MSE 0.0224 0.0032 0.0062 0.0061 0.0654 0.0058  ߙ  

MSE 0.4680 0.0029 0.0062 0.0061 1.4886 0.0043  ߚ  

MSE ��௨  0.1728 0.1780 0.3057 0.6845 0.2893 0.3679  

MSE �௨  0.0564 0.0597 0.1519 0.2704 0.1439 0.1994  

MSE 0.1182 0.1160 0.1181 0.1162 0.1759 0.1751  ݑ  

Bias 0.0059- 0.0084- 0.0064- 0.0089- 0.0060- 0.0064-  ݑ  

Pearson  0.7716 0.7708 0.6834 0.6808 0.6839 0.6809  

Spearman  0.7650 0.7642 0.6206 0.6183 0.6213 0.6185  

ߩ   = Ͳ.7Ͳ and ߜ = Ͳ.ʹͷ  

 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 

True 

Values 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN 

Model 

EX 

Model 

EN �  0.5000 0.5484 0.4955 0.4861 0.5018 0.5696 0.4936 0.4542 0.3052 0.4624 1.0913 0.4432 1.1750 0.5007 0.4694 0.4453 1.1784 0.5000  ߚ 0.5055 0.3522 0.5104 0.3337 0.5006 0.4701 0.5107 0.3944 0.5000  ߙ ��௨  -1.2000 -1.1476 -1.2277 -1.7192 -1.2431 -1.9270 -1.2052 -1.2040 -0.4502 �௨  1.4000 1.3397 1.4102 2.8373 1.4188 3.1159 1.4005 2.4346 1.0184 

MSE �  0.0207 0.0439 0.0139 0.0171 0.0126 0.0175 0.0127 0.0572 

MSE 0.0134 0.0239 0.0162 0.0293 0.0058 0.0061 0.0376 0.0151  ߙ 

MSE 0.2257 0.3511 0.4899 0.4571 0.0058 0.0062 1.0179 0.4632  ߚ 

MSE ��௨  0.0882 0.0929 0.3077 0.1122 0.5552 0.0091 0.0396 0.5693 

MSE �௨  0.0383 0.0386 2.0909 0.0924 2.9641 0.0185 1.1004 0.1625 

MSE 0.1947- 0.2292- 0.0062 0.1262 0.0790 0.1706 0.1084 0.1101  ݑ 

Bias 0.0622 0.1475 0.0002- 0.0943 0.0038- 0.1042 0.0035- 0.0070-  ݑ 

Pearson  0.8461 0.8461 0.6629 0.7700 0.7393 0.9778 0.8506 0.9780 

Spearman  0.8418 0.8436 0.6056 0.7147 0.6834 0.9708 0.8147 0.9806 

  



 

We refer to the model that ignores endogeneity as Model EX, and our model that captures 

endogeneity as Model EN and present the means and mean square errors of the frontier parameters 

and variance parameters for �௨ଶ (ߚ and ,ߙ ,�) (��௨ and �௨).10 Moreover, mean square errors for the 

efficiency estimates, and Pearson and Spearman correlations of efficiency estimates with the true 

efficiency are presented. 

In the benchmark case (ߩ = Ͳ and ߜ = ͳ) of Scenario 1, simulation results indicate that the 

parameter estimates and corresponding mean square errors for Model EX and Model EN are 

similar. Moreover, Pearson and Spearman correlations are similar as well. Hence, Model EN 

performs well. However, when there is endogeneity (ߩ = Ͳ.7 and ߜ = ͳ), frontier and variance 

parameter estimates for Model EX are severely biased. Model EN, on the other hand, outperforms 

Model EX in terms of mean squares and correlations, and parameter estimates seem to have no 

bias. As the extent of identification weakens ሺߜ = Ͳ.ʹͷሻ, the parameter estimates for Model EN 

start to have some bias. However, if endogeneity is present, it can still be beneficial to use the 

instrumental variables approach that we proposed as the bias can be lower. This is a common result 

of the instrumental variables methods and not specific to our methodology. Hence, the relative 

magnitudes of the biases for using Model EN and Model EX depend on the degree of endogeneity 

and identification problem. 

As in Scenario 1, the results from Scenario 2 show that the benchmark case performance 

of Model EN is similar to that of Model EX. However, when there is endogeneity (ߩ = Ͳ.7 and ߜ = ͳ), Model EN dominates Model EX. For the frontier parameters, the biases are not as severe 

as that of Scenario 1 but they are still considerably high. Moreover, as expected, the variance 

parameters are severely biased. For the weak identification scenario, we did not observe serious 

biases when Model EN is used. 

In Scenario 3, we have two variables, one in frontier and one in ݑ, that are correlated with ݒ. That is, noise term is not only correlated with one of the explanatory variables but also correlated 

with the inefficiency term (ߩଵ = ଶߩ = Ͳ.7 and ߜଵ = ଶߜ = ͳ). Hence, among the first three 

scenarios that we examine, this scenario is the most problematic and yet the most probable 

scenario. In Scenario 3, Model EX has all the weaknesses from Scenario 1 and Scenario 2. The 

results from Scenario 3 show that Model EN outperforms Model EX and all other results in 

Scenario 3 are in line with the findings from the first two scenarios. All in all, these three 

simulations indicate that ignoring endogeneity in our model would have severe consequences. 

In Scenario 4, the data generating process is the same as Scenario 3 except that ݑ∗ is 

correlated with ݒ as well. This violates one of our assumptions. As a consequence, the constant 

term of the frontier is biased, yet other frontier parameters are reasonably close to their true values. 

The efficiency estimates are biased but still better than their exogenous counterparts in terms of 

bias and MSE for ݑ as well as correlations. Finally, note that in many empirical scenarios, if the 

variables that determine the inefficiency are specified properly, it may be reasonable to assume 

that ݑ∗ and ݒ are conditionally independent. Hence, although we presented these simulation results 

for the sake illustrating the consequences of violating one of our assumptions, we believe that in a 

well-defined model with no omitted environmental variables, our model is expected to perform 

well. In a panel data extension of our model, this situation would be even less likely since the fixed 

effects terms would eliminate or reduce the potential conditional correlation between ݑ∗ and ݒ. In 

any case, if researchers suspect that the environmental variables that they include to identify 

                                                 
10 We do not directly estimate the variance parameters for ݒ term. That is why we do not present their estimates in 

our simulations. 



 

efficiency are not sufficient to eliminate the conditional correlation, then they can also apply a 

model with a more general but more complicated correlation structure such as Griffiths and 

Hajargasht (2016). 

 

3. Concluding Remarks 

 

We introduced a maximum likelihood based methodology to handle the endogeneity 

problems in stochastic frontier models. In addition to that, we also presented a way to test the 

endogeneity. We carried out Monte Carlo simulations to analyze the small sample performance of 

our estimator in a variety of endogeneity scenarios; and we found that when there is endogeneity 

in the model, our estimator outperforms the model which assumes exogeneity. 
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Appendix: Data Generating Processes for Monte Carlo Simulations 

 

For Scenario 1 and 2, without loss of generality, we assume that ݔଷ is the endogenous 

variable that is correlated with ݒ.  ݕ = � + ଵݔߙ + ݔߚ + ݒ − ଷݖଶݔଵݔ]  (11)ݑ ] ~� [ଷߤଶߤଵߤ]) , Ω௫) ݔଷ = ଷݖߜ + ߝ ߝ = � ~ [ݒ̃ߝ] ̃ߝ�� ([ͲͲ] , [ ͳ �௩ߩ�௩ߩ �௩ଶ ݑ ∗~�+ሺͲ,ͳሻݑ ([ = �௨ݑ∗ �௨ଶ = expሺ��௨ + �௨ݔሻ 

where ሺj, kሻ = ሺʹ,͵ሻ or ሺj, kሻ = ሺ͵,ʹሻ. 
In the base scenario of their simulations, Kumbhakar and Wang (2005) pick �௨ଶ �௩ଶ⁄ = Ͷ.ʹ 

and �௨ଶ + �௩ଶ = Ͳ.ͳͷ. The variance ratio of 4.2 indicates that the variance of cost efficiency is 

about 1.5 times the variance of the noise term. In our simulations, we choose � = ߙ = ߚ = Ͳ.ͷ, ߤଵ = ଶߤ ,ʹ = ଷߤ = ͳ, �௩ଶ = Ͳ.͵, ��௨ = −ͳ.ʹ, �௨ = ͳ.Ͷ, and E[ݔ] = ͳ (i.e., ߤଶ = ଷߤ = ͳ). This 

indicates that, evaluated at the mean of ݔ, we have �௨ଶ �௩ଶ⁄ ≅ Ͷ.Ͳ7ͳ. We consider two different 

values for ߩ. In particular, ߩ = Ͳ represents the case where there is no endogeneity and ߩ = Ͳ.7 

represents the case where there is endogeneity. For both cases, we choose ��ଶ = Ͳ.͵ so that the 

variance of [ߝ  In .ߜ ]′ is positive definite. Moreover, we consider two different values forݒ

particular, ߜ = Ͳ.ʹͷ represents the case where identification is relatively weak and ߜ = ͳ 

represents a case where identification is fairly good. Finally, we set: Ω௫ = [ Ͳ.͵ Ͳ.ʹͳ Ͳ.ʹͳͲ.ʹͳ Ͳ.͵ Ͳ.ʹͳͲ.ʹͳ Ͳ.ʹͳ Ͳ.͵ ] (12) 

The choice of Ω௫ implies that the correlations between each pair from ݔଵ, ݔଶ, and ݖଷ are 

equal to 0.7. Moreover, Ω௫ is positive definite as required. As a benchmark, we run the simulations 

for the same parameter values except that this time, ߩ is set to be equal to zero and ߜ is set equal 

to 1. Hence, under the benchmark scenario, if the heteroskedasticity is controlled for, the parameter 

estimates would be consistent and there would not be a weak identification problem. Simulation 

experiments were repeated 25,000 times for a sample size of 500. 

For Scenario 3, the DGP is given by: ݕ = � + ଵݔߙ + ଶݔߚ + ݒ − [ଷݖଶݖଵݔ]  (13)ݑ ~� [ଷߤଶߤଵߤ]) , Ω௫) [ݔଶݔଷ] = [ଷݖଷߜଶݖଶߜ] + ݒ̃ߝ ] [ଷߝଶߝ]  ] ≡ [ Ω−ଵଶ ݒ[ଷߝଶߝ]  ]  ~ � ([ ͲͲ ] , [ �ଶ �௩ߩ�௩ߩ′ �௩ଶ  ]) 



 

Ω௫ = [ Ͳ.͵ Ͳ.ʹͳ Ͳ.ʹͳͲ.ʹͳ Ͳ.͵ Ͳ.ʹͳͲ.ʹͳ Ͳ.ʹͳ Ͳ.͵ ] 

Ω = [��ଶଶ ͲͲ ��ଷଶ ] = [Ͳ.͵ ͲͲ Ͳ.͵] ߩ = [ Ͳ.7Ͳ.7 ] ݑ∗~�+ሺͲ,ͳሻ ݑ = �௨ݑ∗. 
 

For Scenario 4, the DGP is the same as Scenario 3 but after generating ݒ we replace it by ݒ + Ͳ.ͷ�௩ሺݑ∗ −   conditional on endogenousݒ ∗ is independent fromݑ . This violates our assumption thatݒ ∗ andݑ ሻ after normalizing the variance to �௩ଶ, which generates correlation between[∗ݑ]ܧ

and explanatory exogenous variables.  

 


