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Abstract. This paper describes sfcross and sfpanel, two new Stata commands
for the estimation of cross-sectional and panel data stochastic frontier models.
sfcross extends the official frontier capabilities by including additional models
(Greene 2003; Wang 2002) and command functionality, such as the possibility to
manage complex survey data characteristics. Similarly, sfpanel allows to estimate
a much wider range of time-varying inefficiency models compared to the official
xtfrontier command including, among the others, the Cornwell et al. (1990)
and Lee and Schmidt (1993) models, the flexible model of Kumbhakar (1990),
the inefficiency effects model of Battese and Coelli (1995) and the “true” fixed
and random-effects models developed by Greene (2005a). A brief overview of the
stochastic frontier literature, a description of the two commands and their options
and illustrations using simulated and real data are provided.
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1 Introduction

The aim of this article is to describe sfcross and sfpanel, two new Stata commands
for the estimation of parametric Stochastic Frontier (SF) models using cross-sectional
and panel data. Starting from the seminal papers by Meeusen and van den Broeck
(1977) and Aigner et al. (1977), this class of models has become a popular tool for
efficiency analysis. Since then, a continuous stream of research has produced many
reformulations and extensions of the original statistical models, generating a flourishing
industry of empirical studies. An extended review of these models can be found in the
recent survey by Greene (2008).

The SF model is motivated by the theoretical idea that no economic agent can exceed
the ideal “frontier” and the deviations from this extreme represent the individual ineffi-
ciencies. From the statistical point of view, this idea has been implemented by specifying
a regression model characterized by a composite error term in which the classical id-
iosyncratic disturbance, aiming at capturing measurement error and any other classical
noise, is included together with a one-sided disturbance which represents inefficiency.1

Whether cross-sectional or panel data, production or cost frontier, time-invariant or
varying inefficiency, parametric SF models are usually estimated by likelihood-based

1. The literature distinguishes between production and cost frontiers. The former represent the maxi-
mum amount of output that can be obtained from a given level of inputs, while the latter characterizes
the minimum expenditure required to produce a bundle of outputs given the prices of the inputs used
in its production.
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2 Stochastic Frontier using Stata

methods, and the main interest is on making inference about both frontier parameters
and inefficiency.

The estimation of SF models is already possible using official Stata routines. How-
ever, the available commands cover a restricted range of models, especially in the panel
data case.

The sfcross command provided in this article mirrors the official frontier com-
mand functionality, adding new features such as: i) the estimation of Normal-Gamma
models via Simulated Maximum Likelihood (SML) (Greene 2003); ii) the estimation
of the Normal-Truncated Normal model proposed by (Wang 2002) in which both the
location and the scale parameters of the inefficiency distribution can be expressed as a
function of exogenous covariates; and iii) the opportunity to manage complex survey
data characteristics (via the svyset command).

As far as panel data analysis is concerned, the official Stata xtfrontier command
allows the estimation of a Normal-Truncated Normal model with time-invariant ineffi-
ciency (Battese and Coelli 1988) and a time-varying version, named as “time decay”
model, proposed by Battese and Coelli (1992). Our sfpanel command allows to es-
timate a wider range of time-varying inefficiency models including the Cornwell et al.
(1990) and Lee and Schmidt (1993) models, the flexible model of Kumbhakar (1990), the
time decay and the inefficiency effects models of Battese and Coelli (Battese and Coelli
1992, 1995) and the “true” fixed (TFE) and random-effects (TRE) models developed by
Greene (2005a). For the last two models, the command allows different distributional
assumptions, providing the modeling of both inefficiency location and scale parameters.
Furthermore, the command allows the estimation of the random-effects time-invariant
inefficiency models of Pitt and Lee (1981) and Battese and Coelli (1988), as well as the
fixed-effects version of the Schmidt and Sickles (1984) model, characterized by no dis-
tributional assumptions on the inefficiency term. In addition, since the main objective
of the SF analysis is the estimation of inefficiency, we provide post estimation routines
to compute both inefficiency and efficiency scores, as well as their confidence intervals
(Jondrow et al. 1982; Battese and Coelli 1988; Horrace and Schmidt 1996). Finally,
sfcross and sfpanel allow also the simultaneous modelling of heteroscedasticity in
the idiosyncratic error term.

In the development of these new commands, we make extensive use of Mata to speed
up the estimation process. We allow for the use of Stata factor variables, weighted es-
timation, constrained estimation, resampling-based variance estimation and clustering.
Moreover, by using Mata structures and libraries, we provide a very readable code prone
to be easily developed further by the Stata users community. All these features make
the commands simple to use, extremely flexible and fast, ensuring at the same time the
opportunity to estimate state-of-the-art SF models.

Finally, we would like to emphasize that sfpanel offers the possibility to perform a
constrained fixed-effects estimation, which is not yet available with xtreg. Moreover,
the Cornwell et al. (1990) and Lee and Schmidt (1993) models, although proposed in
the SF literature, are linear panel data models with time-varying fixed-effects, thus
potentially very useful also in other contexts.
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The paper is organized as follows. In Section 2, we present a brief review of the SF
approach evolution, focusing on the models that can be estimated using the proposed
commands. Sections 3 and 4 describe the syntax of sfcross and sfpanel, focusing on
the main options. Sections 5 and 6 illustrate the two commands using simulated data
and two empirical applications from the SF literature. Finally, section 7 offers some
conclusions.

2 A review of stochastic frontier models

We begin our discussion with a general formulation of the SF cross-sectional model and
then review extensions and improvements that have been proposed in the literature,
focusing on those models that can be estimated using sfcross and sfpanel. Given
the large number of estimators allowed by the two commands, we deliberately do not
discuss the derivation of the corresponding criterion functions. We refer the reader to
the cited works for details on the estimation of each model. A synopsis guide with all
estimable models and their features is reported in table 1.

2.1 Cross-sectional models

Consider the following SF model

yi = α+ x′iβ + εi, i = 1, . . . , N, (1)

εi = vi − ui, (2)

vi ∼ N (0, σ2
v), (3)

ui ∼ F , (4)

where yi represents the logarithm of the output (or cost) of the i-th productive unit,
xi is a vector of inputs (input prices and quantities in the case of a cost frontier) and
β is the vector of technology parameters. The composed error term εi is the sum (or
the difference) of a normally distributed disturbance, vi, representing measurement and
specification error, and a one-side disturbance, ui, representing inefficiency.2 Moreover,
ui and vi are assumed to be independent of each other and i.i.d. across observations.
The last assumption about the distribution F of the inefficiency term is needed to make
the model estimable. Aigner et al. (1977) assumed a Half-Normal distribution, i.e.
ui ∼ N+

(
0, σ2

u

)
, while Meeusen and van den Broeck (1977) opted for an Exponential

one, ui ∼ E (σu). Other commonly adopted distributions are the Truncated Normal
(Stevenson 1980) and the Gamma distributions (Greene 1980a,b, 2003).

The distributional assumption required for the identification of the inefficiency term
implies that this model is usually estimated by Maximum Likelihood (ML), even if
modified ordinary least squares or generalized method of moments estimators are pos-

2. In this section, we consider only production functions. However, the sign of the ui term in equation
(2) is positive or negative depending on whether the frontier describes a cost or a production function,
respectively.
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sible (often inefficient) alternatives.3 In general, SF analysis is based on two sequential

steps: in the first, estimates of the model parameters θ̂ are obtained by maximizing the
log-likelihood function `(θ), where θ = (α,β′, σ2

u, σ
2
v)′.4 In the second step, point esti-

mates of inefficiency can be obtained through the mean (or the mode) of the conditional

distribution f(ui|ε̂i), where ε̂i = yi − α̂− x′iβ̂.

The derivation of the likelihood function is based on the independence assumption
between ui and vi. Since the composite model error εi is defined as εi = vi − ui, its
p.d.f. is the convolution of the two component densities as

fε(εi) =

∫ +∞

0

fu(ui)fv(εi + ui)dui. (5)

Hence, the log-likelihood function for a sample of n productive units is

`(θ) =

n∑
i=1

log fε(εi|θ). (6)

The marginalization of ui in equation (5) leads to a convenient closed-form expressions
only for the Normal-Half Normal, Normal-Exponential and Normal-Truncated Normal
models. In all other cases (e.g., the Normal-Gamma model) numerical or simulation
based techniques are necessary to approximate the integral in equation (5).

The second estimation step is necessary since the estimates of the model parameters
allow the computation of residuals ε̂, but not the inefficiency estimates. Since the main
objective of SF analysis is the estimation of technical (or cost) efficiency, a strategy for
disentangling this unobserved component from the compounded error is required. As
mentioned before, the most well-known solutions to this problem, proposed by Jondrow
et al. (1982) and Battese and Coelli (1988), exploit the conditional distribution of u
given ε. Thus, a point estimate of the inefficiencies can be obtained using the mean
E(u|ε̂) (or the mode M(u|ε̂)) of this conditional distribution. Once point estimates of
u are obtained, estimates of the technical (cost) efficiency can be derived as

Eff = exp (−û).

where û is either E(u|ε̂) or M(u|ε̂).5

2.2 Panel data models

The availability of a richer set of information in panel data allows to relax some of the
assumptions previously imposed and to consider a more realistic characterization of the
inefficiencies.

3. Notice that, when a distributional assumption on u is made, sfcross and sfpanel estimate model
parameters by likelihood-based techniques.

4. Different model parametrizations are used in the SF literature as, for example, θ = (α,β′, σ2, λ)′

where σ2 = σ2
u + σ2

v and λ = σu/σv .
5. A general presentation of the post estimation procedures implemented in the sfcross and sfpanel

routines is given by Kumbhakar and Lovell (2000) and Greene (2008), to which we refer the reader for
further details.
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Pitt and Lee (1981) were the first to extend model (1-4) to longitudinal data. They
proposed the ML estimation of the following Normal-Half Normal SF model

yit = α+ x′itβ + εit, i = 1, . . . , N, t = 2, . . . , Ti, (7)

εit = vit − ui, (8)

vit ∼ N (0, σ2
v), (9)

ui ∼ N+
(
0, σ2

u

)
. (10)

The generalization of this model to the Normal-Truncated Normal case has been pro-
posed by Battese and Coelli (1988).6 As pointed out by Schmidt and Sickles (1984),
the estimation of a SF model with time invariant inefficiency can also be performed by
adapting conventional fixed-effects estimation techniques, thereby allowing inefficiency
to be correlated with the frontier regressors and avoiding distributional assumptions
about ui. However, the time invariant nature of the inefficiency term has been ques-
tioned, especially in presence of empirical applications based on long panel data sets.
To relax this restriction, Cornwell et al. (1990) have approached the problem proposing
the following SF model with individual-specific slope parameters

yit = α+ x′itβ + vit ± uit, i = 1, . . . , N, t = 4, . . . , Ti, (11)

uit = ωi + ωi1t+ ωi2t
2, (12)

in which the model parameters are estimated extending the conventional fixed and
random-effects panel data estimators. This quadratic specification allows a unit spe-
cific temporal pattern of inefficiency but requires the estimation of a large number of
parameters (N × 3).

Following a slightly different estimation strategy, Lee and Schmidt (1993) proposed
an alternative specification in which the uit are specified as

uit = g(t) · ui, (13)

where g(t) is represented by a set of time dummy variables. This specification is more
parsimonious than (12) and it does not impose any parametric form, but it is less flexible
since it restricts the temporal pattern of uit to be the same for all productive units.7

Kumbhakar (1990) was the first to propose the ML estimation of a time-varying SF
model in which g(t) is specified as

g(t) =
[
1 + exp

(
γt+ δt2

)]−1
. (14)

This model contains only two additional parameters to be estimated, γ and δ and the
hypothesis of time-invariant technical efficiency can be easily tested by setting γ = δ = 0.

6. The Normal-Exponential model is another straightforward extension allowed by sfpanel.
7. Ahn et al. (2005) and Ahn et al. (2001) propose to estimate through a GMM approach the Cornwell

et al. (1990) and Lee and Schmidt (1993) models, respectively. They show that GMM is preferable
because it is asymptotically efficient. Currently, sfpanel allows the estimation of Cornwell et al. (1990)
and Lee and Schmidt (1993) models through modified Least Squares Dummy Variables and Iterative
Least Squares approaches, respectively. We leave for future updates the implementation of the GMM
estimator.
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A similar model, termed as “time decay”, has been proposed by Battese and Coelli
(1992) in which

g(t) = exp [−η (t− Ti)] . (15)

The common feature of all these time-varying SF models is that the intercept α is
the same across productive units, thus generating a mis-specification bias in presence of
time-invariant unobservable factors, unrelated with the production process but affecting
the output. As a result, the effect of these factors may be captured by the inefficiency
term, producing biased results.

Greene (2005a) approached this issue through a time-varying SF Normal-Half Nor-
mal model with unit-specific intercepts, obtained by replacing (7) by the following spec-
ification

yit = αi + x′itβ + εit. (16)

Compared to previous models, this specification allows to disentangle time-varying in-
efficiency from unit specific time invariant unobserved heterogeneity. For this reason,
Greene termed these models as “true” fixed (TFE) or random-effects (TRE), according
to the assumptions on the unobserved unit-specific heterogeneity. While the estimation
of the true random-effects specification can be easily performed using simulation-based
techniques, the ML estimation of the true fixed-effects variant requires the solution of
two major issues related to the estimation of nonlinear panel data models. The first is
purely computational due to the large dimension of the parameters space. Neverthe-
less, Greene (2005a,b) showed that a Maximum Likelihood Dummy Variable (MLDV)
approach is computationally feasible also in presence of a large number of nuisance pa-
rameters αi (N > 1000). The second, the so-called incidental parameters problem, is
an inferential issue that arises when the number of units is relatively large compared
to the length of the panel. In these cases, the unit-specific intercepts are inconsistently
estimated as N →∞ with fixed T , since only Ti observations are used to estimate each
unit specific parameter (Neyman and Scott 1948; Lancaster 2002). As shown in Belotti
and Ilardi (2012), since this inconsistency contaminates the variance parameters, which
represent the key ingredients in the postestimation of inefficiencies, the MLDV approach
appears to be appropriate only when the length of the panel is large enough (T ≥ 10).8

Although model (16) may appear to be the most flexible and parsimonious choice
among the several existing time varying specifications, it can be argued that a portion of
the time-invariant unobserved heterogeneity does belong to inefficiency or that these two
components should not be disentangled at all. The sfpanel command provides options
for the estimation of these two extremes: the Schmidt and Sickles (1984), Pitt and Lee
(1981) and Battese and Coelli (1988) models in which all time-invariant unobserved

8. A common approach to solve this problem is based on the elimination of the αi through a data
transformation. The consistent estimation of the fixed-effects variant of the Greene’s model is still an
open research issue in SF literature. Promising solutions have been proposed by Chen et al. (2011)
for a homoscedastic Normal-Half Normal model and Belotti and Ilardi (2012) for a more flexible het-
eroscedastic specification in Normal-Half Normal and Normal-Exponential models. We are currently
working to update the sfpanel command along these directions.
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heterogeneity is considered as inefficiency, and the two “true” specifications in which all
time-invariant unobserved heterogeneity is ruled out from the inefficiency component.
As pointed out by Greene (2005b), neither formulation is a priori completely satisfactory
and the choice should be driven by the features of the data at hand.9

Despite the usefulness of SF models in many contexts, a practical disclaimer is
in order: in both cross-sectional and panel data models, the identification through
distributional assumptions of the two components u and v heavily depends on how
the shape of their distributions is involved in defining the shape of the ε distribution.
Identification problems may arise when either the shapes are very similar (as pointed out
by Ritter and Simar (1997) in the case of small samples for the Normal-Gamma cross-
sectional model) or just one of the two components is responsible for most of the shape
of the ε distribution. The latter is the case where the ratio between the inefficiency
and measurement error variability (the so-called signal-to-noise ratio, σu/σv) is very
small or very large. In these cases, the profile of the log-likelihood becomes quite “flat”,
producing non trivial numerical maximization problems.

2.3 Exogenous inefficiency determinants and heteroscedasticity

A very important issue in SF analysis is the inclusion in the model of exogenous variables
which are supposed to affect the distribution of inefficiency. These variables, which
usually are neither the inputs nor the outputs of the production process, but nonetheless
affect the productive unit performance, have been incorporated in a variety of ways: i)
they may shift the frontier function and/or the inefficiency distribution; ii) they may
scale the frontier function and/or the inefficiency distribution; iii) they may shift and
scale the frontier function and/or the inefficiency distribution. Moreover, Kumbhakar
and Lovell (2000) stress that, differently from the linear regression model in which
the mis-specification of the second moment of the errors distribution determines only
efficiency losses, the presence of uncontrolled observable heterogeneity in ui and/or vi
may affect the inference in SF models. Indeed, while neglected heteroscedasticity in
vi does not produce any bias for the frontier’s parameters estimates, it leads to biased
inefficiency estimates, as we show in section 5.3.

In this section, we present the approaches that introduce heterogeneity in the lo-
cation parameter of the inefficiency distribution and/or heteroscedasticity of the inef-
ficiency as well as of the idiosyncratic error term for the models implemented in the
sfcross and sfpanel commands. Since these approaches can be easily extended to the
panel data context, we deliberately confine the review to the cross-sectional framework.

As pointed out by Greene (2008), researchers have often incorporated exogenous
effects using a two steps approach. In the first step, estimates of inefficiency are obtained
without controlling for these factors while in the second, the estimated inefficiency scores
are regressed (or otherwise associated) with them. Wang and Schmidt (2002) show

9. A way to disentangle unobserved heterogeneity from inefficiency is to include explanatory variables
that are correlated with inefficiency but not with the remaining heterogeneity. The use of (untestable)
exclusion restrictions is a quite standard econometric technique to deal with identification issues.
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that this approach leads to severely biased results, thus we shall only focus on model
extensions based on simultaneous estimation.

A natural starting point for introducing exogenous influences in the inefficiency
model is in the location of the distribution. The most well-known approaches are those
suggested by Kumbhakar et al. (1991) and Huang and Liu (1994). They proposed to
parametrize the mean of the pre-truncated inefficiency distribution. Basically, model
(1) - (3) can be completed with

ui ∼ N+
(
µi, σ

2
u

)
(17)

µi = z′iψ, (18)

where ui is a realization from a Truncated Normal random variable, zi is a vector
of exogenous variables (including a constant term) and ψ is the vector of unknown
parameters to be estimated (the so-called inefficiency effects). One interesting feature
of this approach is that the vector zi may include interactions with input variables
allowing to test the hypothesis that inefficiency is neutral with respect to its impact on
input usage.10

An alternative approach to analyze the effect of exogenous determinants on ineffi-
ciency is obtained by scaling its distribution. Then, a model that allows heteroscedastic-
ity in ui and/or vi becomes a straightforward extension. For example, Caudill and Ford
(1993), Caudill et al. (1995) and Hadri (1999) proposed to parametrize the variance of
the pre-truncated inefficiency distribution in the following way

ui ∼ N+
(
0, σ2

ui

)
(19)

σ2
ui = exp (z′iψ) . (20)

Hadri (1999) extends this last specification by allowing the variance of the idiosyncratic
term to be heteroscedastic, so that (3) can be rewritten as

vi ∼ N (0, σ2
vi) (21)

σ2
vi = exp (h′iφ) , (22)

where the variables in hi does not necessarily appear in zi.

As in Wang (2002), both sfcross and sfpanel allow to combine (17) and (20)
for the Normal-Truncated Normal model. In postestimation, it is possible to compute
non-monotonic effects of the exogenous factors zi on ui. A different specification has
been suggested by Wang and Schmidt (2002), in which both the location and variance
parameters are “scaled” by the same positive (monotonic) function h(zi,ψ). Their

model, ui = h(zi,ψ)u∗i with u∗i ∼ N
(
µ, σ2

)+
, is equivalent to the assumption that

ui ∼ N
(
µh(zi,ψ), σ2h(zi,ψ)2

)+
in which the zi vector does not include a constant

term.11

10. Battese and Coelli (1995) proposed a similar specification for panel data.
11. We are currently working to extend the sfcross command allowing for Normal-Truncated Normal
models with scaling property (Wang and Schmidt 2002).
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3 The sfcross command

The new Stata command sfcross provides parametric ML estimators of SF models,
where the default is represented by production. The general syntax of this commands
is as follows

sfcross depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, options
]

This command and its panel analog sfpanel are written using the moptimize()

suite of functions, the optimization engine used by ml, and share the same features of
all Stata estimation commands, including access to the estimation results and options
for the maximization process (see help maximize). Version 11 is the earliest version of
Stata that can be used to run the command. fweight, iweight, aweight, and pweight

are allowed (see help weight). sfcross supports the svy prefix (See help survey).
The default is the Normal-Exponential model. Most options are similar to those of
other Stata estimation commands. A full description of all available options is provided
in the sfcross help file.

3.1 Main options for sfcross

distribution(distname) specifies the distribution for the inefficiency term as Half
Normal (hnormal), Truncated Normal (tnormal), Exponential (exponential) or
Gamma (gamma). The default is the Exponential distribution.

emean(varlist m [, noconstant]) may be used only with distribution(tnormal). With
this option, sfcross specifies the mean of the Truncated Normal distribution in
terms of a linear function of the covariates defined in varlist m. Specifying noconstant

suppresses the constant in this function.

usigma(varlist u [, noconstant]) specifies that the technical inefficiency component is
heteroscedastic, with the variance expressed as a function of the covariates defined
in varlist u. Specifying noconstant suppresses the constant in this function.

vsigma(varlist v [, noconstant]) specifies that the idiosyncratic error component is het-
eroscedastic, with the variance expressed as a function of the covariates defined in
varlist v. Specifying noconstant suppresses the constant in this function.

svfrontier() specifies a 1 x k vector of initial values for the coefficients of the frontier.
The vector must have the same length of the parameters vector to be estimated.

svemean() specifies a 1 x k m vector of initial values for the coefficients of the conditional
mean model. This option can be specified only with distribution(tnormal).

svusigma() specifies a 1 x k u vector of initial values for the coefficients of the technical
inefficiency variance function.

svvsigma() specifies a 1 x k v vector of initial values for the coefficients of the idiosyn-
cratic error variance function.
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cost specifies that sfcross fits a cost frontier model.

simtype(simtype) specifies the method to generate random draws when dist(gamma)

is specified. runiform generates uniformly distributed random variates; halton and
genhalton create respectively Halton sequences and generalized Halton sequences
where the base is expressed by the prime number in base(#). runiform is the
default. See help mata halton() for more details on Halton sequences generation.

nsimulations(#) specifies the number of draws used in the simulation when distribution(gamma)

is specified. The default is 250.

base(#) specifies the number, preferably a prime, used as a base for the generation of
Halton sequences and generalized Halton sequences when distribution(gamma) is
specified. The default is 7. Note that Halton sequences based on large primes (#
> 10) can be highly correlated, and their coverage may be worse than that of the
pseudorandom uniform sequences.

postscore saves an observation-by-observation matrix of scores in the estimation results
list. This option is not allowed when the size of the scores’ matrix is greater than
Stata matrix limit; see help limits.

posthessian saves the Hessian matrix corresponding to the full set of coefficients in
the estimation results list.

3.2 Postestimation command after sfcross

After the estimation with sfcross, the predict command can be used to compute linear
predictions, (in)efficiency and score variables. Moreover, the sfcross postestimation
command allows to compute (in)efficiency confidence interval through the option ci as
well as non-monotonic marginal effects á la Wang (2002) using, when appropriate, the
option marginal. The syntax of the command is the following

predict
[

type
]
newvar

[
if
] [

in
] [

, statistics
]

predict
[

type
]
{ stub*|newvar xb newvar v newvar u }

[
if
] [

in
]
, scores

where statistics includes xb, stdp, u, m, jlms, bc, ci and marginal.

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of inefficiency via E(s · u|ε) using the Jondrow et al. (1982) esti-
mator, where s=1 (s=-1) when a production (cost) frontier is estimated.

m produces estimates of inefficiency via M(s · u|ε), the mode of the conditional distri-
bution of u|ε. This option is not allowed when the estimation is performed with the
distribution(gamma) option.
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jlms produces estimates of efficiency via exp(−E(s · u|ε)).

bc produces estimates of efficiency via E [exp(−s · u|ε)], the Battese and Coelli (1988)
estimator.

ci computes confidence interval using the approach proposed by Horrace and Schmidt
(1996). It can be used only when u or bc is specified. The default confidence
level is 95, meaning a 95% confidence interval. If the option level(# ) is used in
the previous estimation command, the confidence interval will be computed using
the # level. This option creates two additional variables: newvar LBcilevel and
newvar UBcilevel, the lower and the upper bound, respectively. This option is not
allowed when the estimation is performed with the distribution(gamma) option.

marginal calculates the marginal effects of the exogenous determinants on E(u) and
Var(u). The marginal effects are observation-specific, and are saved in the new
variables varname m M and varname u V, the marginal effects on the mean and the
variance of the inefficiency, respectively. varname m and varname u are the names of
each exogenous determinants specified in options emean(varlist m [, noconstant]) and
usigma(varlist u [, noconstant]). marginal can be used only when the estimation is
performed with the distribution(tnormal) option. When they are both specified,
varlist m and varlist u must contain the same variables in the same order. This
option can be specified in two ways: i) together with either u, m, jlms or bc; ii)
alone without specifying newvar.

score calculates score variables. When the argument of the option distribution() is
hnormal, tnormal or exponential, scores variables are generated as the derivative
of the objective function with respect to the parameters. When the argument of
the option distribution() is gamma, they are generated as the derivative of the
objective function with respect to the coefficients. This difference is due to the
different moptimize() evaluator type used to implement the estimators (See help

mata moptimize()).

4 The sfpanel command

sfpanel allows the estimation of SF panel data models through ML and Least Squares
(LS) techniques. The general sfpanel syntax is the following:

sfpanel depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, options
]

As for its cross-sectional counterpart, version 11 is the earliest version of Stata that
can be used to run sfpanel. Similarly, all type of weights are allowed but the declared
weight variable must be constant within each unit of the panel. Moreover, the com-
mand does not support the svy prefix. The default model is the time-decay model of
Battese and Coelli (1992). A description of the main command-specific estimation and
postestimation options is provided below. A full description of all available options is
provided in the sfpanel help file.
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4.1 Main options for sfpanel

True fixed and random-effects models (Greene 2005a)

distribution(distname) specifies the distribution for the inefficiency term as Half-
Normal (hnormal), Truncated Normal (tnormal) or Exponential (exponential).
The default is exponential.

emean(varlist m [, noconstant]) may be used only with distribution(tnormal). With
this option, sfpanel specifies the mean of the Truncated Normal distribution in
terms of a linear function of the covariates defined in varlist m. Specifying noconstant

suppresses the constant in this function.

usigma(varlist u [, noconstant]) specifies that the technical inefficiency component is
heteroscedastic, with the variance expressed as a function of the covariates defined
in varlist u. Specifying noconstant suppresses the constant in this function.

vsigma(varlist v [, noconstant]) specifies that the idiosyncratic error component is het-
eroscedastic, with the variance expressed as a function of the covariates defined in
varlist v. Specifying noconstant suppresses the constant in this function.

feshow allows the user to display estimates of individual fixed-effects, along with struc-
tural parameters. Only for model(tfe).

simtype(simtype) specifies the method to generate random draws for the unit-specific
random-effects. runiform generates uniformly distributed random variates; halton
and genhalton create respectively Halton sequences and generalized Halton se-
quences where the base is expressed by the prime number in base(#). runiform is
the default. See help mata halton() for more details on Halton sequences gener-
ation. Only for model(tre).

nsimulations(#) specifies the number of draws used in the simulation. The default is
250. Only for model(tre).

base(#) specifies the number, preferably a prime, used as a base for the generation
of Halton sequences and generalized Halton sequences. The default is 7. Note that
Halton sequences based on large primes (# > 10) can be highly correlated, and their
coverage may be worse than that of the pseudorandom uniform sequences. Only for
model(tre).

ML random-effects time-varying inefficiency effects model (Battese and Coelli 1995)

emean(varlist m [, noconstant]) fits the Battese and Coelli (1995) conditional mean
model in which the mean of the Truncated Normal distribution is expressed as
a linear function of the covariates specified in varlist m. Specifying noconstant

suppresses the constant in this function.

usigma(varlist u [, noconstant]) specifies that the technical inefficiency component is
heteroscedastic, with the variance expressed as a function of the covariates defined
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in varlist u. Specifying noconstant suppresses the constant in this function.

vsigma(varlist v [, noconstant]) specifies that the idiosyncratic error component is het-
eroscedastic, with the variance expressed as a function of the covariates defined in
varlist v. Specifying noconstant suppresses the constant in this function.

ML random-effects flexible time-varying efficiency model (Kumbhakar 1990)

bt(varlist bt [, noconstant]) fits a model that allows a flexible specification of tech-
nical inefficiency handling different types of time behavior, using the formulation
uit = ui [1 + exp(varlist bt)]

−1
. Typically, explanatory variables in varlist bt are

represented by a polynomial in time. Specifying noconstant suppresses the con-
stant in the function. The default includes a linear and a quadratic term in time
without constant, as in Kumbhakar (1990).

4.2 Postestimation command after sfpanel

After the estimation with sfpanel, the predict command can be used to compute linear
predictions, (in)efficiency and score variables. Moreover, the sfpanel postestimation
command allows to compute (in)efficiency confidence interval through the option ci as
well as non-monotonic marginal effects á la Wang (2002) using, when appropriate, the
option marginal. The syntax of the command is the following

predict
[

type
]
newvar

[
if
] [

in
] [

, statistics
]

predict
[

type
]
{ stub*|newvar xb newvar v newvar u }

[
if
] [

in
]
, scores

where statistics includes xb, stdp, u, u0, m, bc and jlms, ci, marginal and trunc(tlevel).

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of inefficiency via E(s · u|ε) using the Jondrow et al. (1982) esti-
mator, where s=1 (s=-1) when a production (cost) frontier is estimated.

u0 produces estimates of inefficiency via E(s · u|ε) using the Jondrow et al. (1982) esti-
mator when the random-effect is zero. This statistic can be specified only when the
estimation is performed with the model(tre) option.

m produces estimates of inefficiency via M(s ·u|ε), the mode of the conditional distribu-
tion of u|ε. This statistic is not allowed when the estimation is performed with the
option model(fecss), model(fels), model(fe) or model(regls).

jlms produces estimates of efficiency via exp(−E(s · u|ε)).

bc produces estimates of efficiency via E [exp(−s · u|ε)], the Battese and Coelli (1988)
estimator. This statistic is not allowed when the estimation is performed with the
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option model(fecss), model(fels), model(fe) or model(regls).

ci computes confidence interval using the approach proposed by Horrace and Schmidt
(1996). This option can be used only with u, jlms and bc statistics, but not
when the estimation is performed with the option model(fels), model(bc92),
model(kumb90), model(fecss), model(fe) or model(regls). The default confi-
dence level is 95, meaning a 95% confidence interval. If the option level(# ) is
used in the previous estimation command, the confidence interval will be computed
using the # level. This option creates two additional variables: newvar LBcilevel
and newvar UBcilevel, the lower and the upper bound, respectively.

marginal calculates the marginal effects of the exogenous determinants on E(u) and
Var(u). The marginal effects are observation-specific and are saved in the new vari-
ables varname m M and varname u V, the marginal effects on the unconditional
mean and variance of inefficiency, respectively. varname m and varname u are the
names of each exogenous determinants specified in options emean(varlist m [,

noconstant]) and usigma(varlist u [, noconstant]). marginal can be used
only when estimation is performed with the model(bc95) option or when the inef-
ficiency in model(tfe) or model(tre) is distribution(tnormal). When they are
both specified, varlist m and varlist u must contain the same variables in the same
order. This option can be specified in two ways: i) together with either u, m, jlms
or bc; ii) alone without specifying newvar.

trunc(tlevel) excludes from the inefficiency estimation the units whose effects are, at
least at one time period, in the upper and bottom tlevel% range. trunc() can be used
only if the estimation is performed with model(fe), model(regls), model(fecss)
and model(fels).

score calculates score variables. This option is not allowed when the estimation is per-
formed with the option model(fecss), model(fels), model(fe) or model(regls).
When the argument of the option model() is tfe or bc95, scores variables are gen-
erated as the derivative of the objective function with respect to the parameters.
When the argument of the option model() is tre, bc88, bc92, kumb90 or pl81,
they are generated as the derivative of the objective function with respect to the
coefficients. This difference is due to the different moptimize() evaluator type used
to implement the estimators (See help mata moptimize()).

5 Examples with simulated data

In this section, we use simulated data to illustrate sfcross and sfpanel estimation
capabilities, focusing on some of the models that cannot be estimated using official
Stata routines.12

12. We report the Mata code used for the data-generating process and models’ estimation syntax for
each example in the sj examples simdata.do ancillary file.
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5.1 The normal-gamma SF production model

There is a large debate in the SF literature about the (non-)identifiability of the Normal-
Gamma cross-sectional model. Ritter and Simar (1997) pointed out that this model is
difficult to distinguish from the Normal-Exponential one, and that the estimation of
the shape parameter of the Gamma distribution may require large sample sizes (up to
several thousand observations). On the other hand, Greene (2003) argued that their
result “was a matter of degree, not a definitive result” and that the (non-)identifiability
of the true value of the shape parameter remains an empirical question. In this section,
we illustrate the sfcross command by estimating a Normal-Gamma SF production
model. We consider the following Data Generating Process (DGP)

yi = 1 + 0.3x1i + 0.7x2i + vi − ui, i = 1, . . . , N, (23)

vi ∼ N (0, 1), (24)

ui ∼ Γ(2, 2), (25)

where the inefficiency is Gamma distributed with shape and scale parameters equal to
2, the idiosyncratic error is N (0, 1) and the two regressors x1i and x2i are normally
distributed with zero means and variances equal to 1 and 4, respectively. Notice that
the sample size is set to 1000 observations, a large size as noted by Ritter and Simar
(1997), but in general not so large given the current availability of micro data. Let us
begin by fitting the Normal-Exponential model using the following syntax

. sfcross y x1 x2, distribution(exp) nolog

Stoc. frontier normal/exponential model Number of obs = 1000
Wald chi2(2) = 419.88
Prob > chi2 = 0.0000

Log likelihood = -2423.0869

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Frontier
x1 .3709605 .068792 5.39 0.000 .2361306 .5057904
x2 .6810641 .0339945 20.03 0.000 .6144361 .747692

_cons -.1474677 .1131198 -1.30 0.192 -.3691784 .0742431

Usigma
_cons 2.173649 .0957468 22.70 0.000 1.985989 2.361309

Vsigma
_cons .3827463 .1498911 2.55 0.011 .0889652 .6765274

sigma_u 2.964844 .1419372 20.89 0.000 2.699305 3.256505
sigma_v 1.210911 .0907524 13.34 0.000 1.045487 1.40251
lambda 2.448441 .2058941 11.89 0.000 2.044895 2.851986

. estimates store exp

. predict uhat_exp, u
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It is worth noting that the Normal-Exponential model is the sfcross default, so
that we might omit the option distribution(exponential).13 As can be noted, al-
though there is only one equation to be estimated in the model, the command fits
three of Mata’s [M-5] moptimize() equations (see help mata moptimize()). Indeed,
given that sfcross allows both the inefficiency and the idiosyncratic error to be het-
eroscedastic (see table 1), the output also reports variance parameters estimated in a
transformed metric according to equation (20) and (22), respectively. Since in this ex-
ample the inefficiency is assumed to be homoscedastic, sfcross estimates the coefficient
of the constant term in equation (20) rather than estimating directly σu. In order to
make the output easily interpretable, sfcross also displays the variance parameters in
their natural metric.

As expected the Normal-Exponential model produces biased results, especially for
the frontier’s constant term and the inefficiency scale parameter σu. We also run the
predict command using the u option. In this way, inefficiencies estimates are obtained
through the Jondrow et al. (1982) approach. Since the inefficiencies are drawn from a
Gamma distribution, a better fit can be obtained using the following command

. sfcross y x1 x2, distribution(gamma) nsim(50) simtype(genha) base(7) nolog

Stoc. frontier normal/gamma model Number of obs = 1000
Wald chi2(2) = 438.00
Prob > chi2 = 0.0000

Log simulated-likelihood = -2419.0008
Number of Randomized Halton Sequences = 50
Base for Randomized Halton Sequences = 7

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Frontier
x1 .3809637 .0670488 5.68 0.000 .2495506 .5123769
x2 .6877522 .0336089 20.46 0.000 .6218799 .7536244

_cons .9362409 .412162 2.27 0.023 .1284182 1.744064

Usigma
_cons 1.535178 .2264704 6.78 0.000 1.091304 1.979051

Vsigma
_cons -.2734817 .3330257 -0.82 0.412 -.9262 .3792366

sigma_u 2.154565 .2439726 8.83 0.000 1.725733 2.689958
sigma_v .8721962 .1452319 6.01 0.000 .6293297 1.208788
lambda 2.470276 .1969658 12.54 0.000 2.08423 2.856321

g_shape 1.879223 .3845289 4.89 0.000 1.125561 2.632886

. estimates store gamma

. predict uhat_gamma, u

13. The option nolog allows to omit the display of the criterion function iteration log. sfcross and
sfpanel allow to use all maximize options available for ml estimation commands (see help maximize)
plus the additional options postscore and posthessian, which report the score and the hessian as an
e() vector and matrix, respectively.
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In the Normal-Gamma cross-sectional model, the parameters are estimated us-
ing the Maximum Simulated Likelihood (MSL) technique. A better approximation
of the log-likelihood function requires the right choice about the number of draws
and the way they are created. In this example, we use generalized Halton sequences
(simtype(genhalton)) with base equal to 7 (base(7)) and only 50 draws (nsim(50)).
Indeed, a Halton sequence generally have a more uniform coverage than a sequence
generated from pseudouniform random numbers. Moreover, as noted by Greene (2003),
the computational efficiency compared to pseudouniform random draws appears to be
at least 10 to 1, so that in our example the same results can be approximately obtained
using 500 pseudouniform draws (See help mata halton()).14

As expected, in this example the parameters of the Normal-Gamma model are prop-
erly estimated. Furthermore, this model is preferable to the Normal-Exponential one,
as corroborated by the following likelihood ratio test15

. lrtest exp gamma

Likelihood-ratio test LR chi2(1) = 8.17
(Assumption: exp nested in gamma) Prob > chi2 = 0.0043

Similar conclusions may be drawn by comparing the estimated mean inefficiencies
with the true simulated one, even if the Spearman rank correlation with the latter is
high and very similar for both uhat gamma and uhat exp.16

. summarize u uhat_gamma uhat_exp

Variable Obs Mean Std. Dev. Min Max

u 1000 4.097398 2.91035 .0259262 19.90251
uhat_gamma 1000 4.048885 2.839368 .4752663 20.27557

uhat_exp 1000 2.964844 2.64064 .363516 18.95619

. spearman u uhat_gamma uhat_exp
(obs=1000)

u uhat_g~a uhat_exp

u 1.0000
uhat_gamma 0.9141 1.0000

uhat_exp 0.9145 0.9998 1.0000

14. For all models estimated using MSL, sfcross and sfpanel default options are simtype(uniform)

with nsim(250). In our opinion, small values (e.g., 50 for Halton sequences and 250 for pseudouniform
random draws) are sufficient for exploratory work. On the other hand larger values, in the order of
several hundreds, are advisable to get more precise results. Our advise is to use Halton sequences rather
than pseudorandom random draws. However, as pointed out by Drukker and Gates (2006), “Halton
sequences based on large primes (d > 10) can be highly correlated, and their coverage can be worse
than that of the pseudorandom uniform sequences”.
15. Notice that exp and gamma are the names of the Exponential and Gamma models’ estimation results
saved using the estimates store command.
16. In line with Ritter and Simar (1997), our simulation results indicate that in the Normal-Gamma
model a relatively large samples is needed to achieve a reasonable degree of precision in the estimates
of inefficiency distribution parameters.
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5.2 Panel data time-varying inefficiency models

Cornwell et al. (1990) and Lee and Schmidt (1993) provide a fixed-effect treatment
of models like those proposed by Kumbhakar (1990) and Battese and Coelli (1992).
Currently, sfpanel allows the estimation of Cornwell et al. (1990) and Lee and Schmidt
(1993) models by means of Modified Least Squares Dummy Variables (MLSDV) and
Iterative Least Squares (ILS), respectively. An interesting aspect of these models is
that, although they have been proposed in the SF literature, actually they are linear
panel data models with time-varying fixed-effects, thus potentially very useful also in
other contexts. However, their consistency requires white noise errors and they are less
efficient than the GMM estimator proposed by Ahn et al. (2001) and Ahn et al. (2005).

In this section, we report the main syntax to estimate such models. We start speci-
fying the following stochastic production frontier translog model

yit = uit + 0.2x1it + 0.6x2it + 0.6x3it + 0.2x21it + 0.1x22it + 0.2x23it +

+0.15x1itx2it − 0.3x1itx3it − 0.3x2itx3it + vit, (26)

vit ∼ N (0, 0.25), i = 1, . . . , n, t = 1, . . . , T. (27)

As already mentioned, the main feature of these models is the absence of any distri-
butional assumption about inefficiency. In this example, the DGP follows the Lee and
Schmidt (1993) model, where uit = δiξ. For each unit, the parameter δi is drawn from
a uniform distribution in [0,

√
12τ + 1 − 1] with τ = 0.8. The elements of the vector

ξ = (ξ1, . . . , ξT ) are equally spaced between -2 and 2. This set-up implies a standard
deviation of the inefficiency term σu ≈ 1.83.

Once the sample is declared to be a panel (see help xtset), the Lee and Schmidt
(1993) and the Cornwell et al. (1990) models can be estimated using the following
syntaxes

. sfpanel y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, model(fels)
(output omitted )

. estimates store fels

. predict uhat_fels, u

. sfpanel y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, model(fecss)
(output omitted )

. estimates store fecss

. predict uhat_fecss, u

Notice that we use the predict command with the u option to post-estimate in-
efficiency. As an additional source of comparison, we use the same simulated data to
assess the behavior of the Schmidt and Sickles (1984) time-invariant inefficiency model.
The fixed-effects version of this model can be estimated using sfpanel as well as the
official xtreg command. However, when the estimation is performed using sfpanel, the
predict command with the aforementioned option u can be used to obtain inefficiency
estimates17

17. Both xtreg and sfpanel also allow the estimation of the random-effects version of this model
through the FGLS approach.
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. sfpanel y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, model(fe)
(output omitted )

. estimates store fess_sf

. predict uhat_fess, u

. xtreg y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, fe
(output omitted )

. estimates store fess_xt

Table 2 reports the estimation results from the three models. Unsurprisingly, both
the frontier and variance parameters are well estimated in the ls93 and css90 models.
This result shows that, when the DGP follows the model by Lee and Schmidt, the
estimator by Cornwell, Schmidt, and Sickles provides reliable results. On the other
hand, being the data generated from a time-varying model, variance estimates from the
ss84 model show a substantial bias.

Table 2: Schmidt and Sickles (ss84), Cornwell, Schmidt, and Sickles (css90) and Lee
and Schmidt (ls93) estimation results

ss84 css90 ls93
x1 0.254 *** 0.185 *** 0.171 ***

(0.0695) (0.0167) (0.0230)
x2 0.626 *** 0.619 *** 0.611 ***

(0.0354) (0.0085) (0.0117)
x3 0.602 *** 0.591 *** 0.596 ***

(0.0220) (0.0052) (0.0075)
x1 sq 0.193 *** 0.204 *** 0.209 ***

(0.0234) (0.0055) (0.0076)
x2 sq 0.099 *** 0.103 *** 0.101 ***

(0.0080) (0.0019) (0.0026)
x3 sq 0.198 *** 0.201 *** 0.201 ***

(0.0036) (0.0008) (0.0012)
x1 x2 0.149 *** 0.142 *** 0.145 ***

(0.0198) (0.0047) (0.0064)
x1 x3 -0.293 *** -0.295 *** -0.295 ***

(0.0130) (0.0030) (0.0043)
x2 x3 -0.306 *** -0.300 *** -0.301 ***

(0.0076) (0.0018) (0.0025)
cons -0.050

(0.0866)
σu 0.223 1.859 1.832
σv 2.096 0.352 0.497

We do not expect large differences in terms of inefficiency scores, given the similarities
in terms of variance estimates between css90 and ls93. It is worth noting that for
these models (including also ss84), inefficiency scores are retrieved in postestimation
assuming that the best decision making unit is fully efficient.18 As it can be seen from
the following summarize command, both css90 and ls93 average inefficiencies are close
to the true values, while Spearman rank correlations are almost equal to 1. As expected,
the ss84 estimated inefficiencies are highly biased and the corresponding units’ ranking

18. This assumption involves calculating ûi = α̂ − α̂i with α̂ = maxi=1,...,n(α̂i), normalizing the
frontier in terms of the best unit in the sample.
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completely unreliable.

. summarize u uhat_fels uhat_fecss uhat_fess

Variable Obs Mean Std. Dev. Min Max

u 2500 4.510559 1.828692 0 9.021117
uhat_fels 2500 5.068159 1.832078 0 10.11807

uhat_fecss 2500 5.510969 1.859123 0 10.89882
uhat_fess 2500 .645184 .2232496 0 1.27254

. spearman u uhat_fels uhat_fecss uhat_fess
(obs=2500)

u uhat_~ls uhat~css uhat~ess

u 1.0000
uhat_fels 0.9824 1.0000

uhat_fecss 0.9603 0.9652 1.0000
uhat_fess 0.0000 0.0061 0.1331 1.0000

Finally, we show additional features of sfpanel, namely: i) the possibility to com-
pute elasticities via the official lincom command; ii) the possibility to perform a con-
strained fixed-effects estimation, which is not yet available with xtreg.

With respect to the former point, it is well known that parameters in a translog pro-
duction frontier do not represent output elasticities. In particular, a linear combination
of frontier parameters is needed for computing such elasticities. Moreover, in order to
calculate output elasticities at means, we first need to compute and store the mean for
each input variable using the following syntax

. quietly summarize x1

. scalar x1m = r(mean)

. quietly summarize x2

. scalar x2m = r(mean)

. quietly summarize x3

. scalar x3m = r(mean)

Then, the lincom command can be used to combine estimated frontier parameters
using the following standard syntax

( 1) x1 + 1.108946*x1_sq + 1.074533*x1_x2 + 1.05167*x1_x3 = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .3203578 .05348 5.99 0.000 .2154752 .4252405

. lincom x2 + x2_sq * x2m + x1_x2*x1m + x2_x3*x3m

( 1) x2 + 1.074533*x2_sq + 1.108946*x1_x2 + 1.05167*x2_x3 = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(Continued on next page)
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(1) .5751999 .0254143 22.63 0.000 .5253585 .6250413

. lincom x3 + x3_sq * x3m + x1_x3*x1m + x2_x3*x2m

( 1) x3 + 1.05167*x3_sq + 1.108946*x1_x3 + 1.074533*x2_x3 = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .156379 .0158945 9.84 0.000 .1252075 .1875505

Finally, the Constant Return to Scale (CRS) hypothesis can be trivially tested by
using the following syntax

. lincom (x1 + x1_sq * x1m + x1_x2*x2m + x1_x3*x3m) ///
> + (x2 + x2_sq * x2m + x1_x2*x1m + x2_x3*x3m) ///
> + (x3 + x3_sq * x3m + x1_x3*x1m + x2_x3*x2m) - 1

( 1) x1 + x2 + x3 + 1.108946*x1_sq + 1.074533*x2_sq + 1.05167*x3_sq +
2.18348*x1_x2 + 2.160617*x1_x3 + 2.126204*x2_x3 = 1

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .0519367 .0609852 0.85 0.395 -.0676648 .1715383

In this example, the CRS hypothesis cannot be rejected. In order to run a con-
strained fixed-effects estimation, the required set of constraints to impose CRS may be
defined through the official Stata command constraint using the following syntax

. /// Constraints definition

. constraint define 1 x1 + x2 + x3 = 1

. constraint define 2 x1_sq + x1_x2 + x1_x3 = 0

. constraint define 3 x2_sq + x1_x2 + x2_x3 = 0

. constraint define 4 x3_sq + x1_x3 + x2_x3 = 0

Then, the constrained model can be estimated using sfpanel with the options
model(fe) and constraints(1 2 3 4)

. sfpanel y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, model(fe) constraints
> (1 2 3 4)

Time-invariant fixed-effects model (LSDV) Number of obs = 2500
Group variable: id Number of groups = 500
Time variable: time Obs per group: min = 5

avg = 5.0
max = 5

( 1) x1 + x2 + x3 = 1
( 2) x1_sq + x1_x2 + x1_x3 = 0
( 3) x2_sq + x1_x2 + x2_x3 = 0
( 4) x3_sq + x1_x3 + x2_x3 = 0

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

(Continued on next page)
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x1 .3530365 .0851901 4.14 0.000 .1860671 .520006
x2 .5092917 .0434568 11.72 0.000 .4241179 .5944655
x3 .1376718 .0270375 5.09 0.000 .0846792 .1906644

x1_sq -.0343576 .0287476 -1.20 0.232 -.0907019 .0219868
x2_sq .1282553 .0098209 13.06 0.000 .1090067 .1475039
x3_sq .21594 .004442 48.61 0.000 .2072339 .2246461
x1_x2 .0610211 .0242651 2.51 0.012 .0134624 .1085799
x1_x3 -.0266635 .0159577 -1.67 0.095 -.0579401 .0046131
x2_x3 -.1892764 .0092834 -20.39 0.000 -.2074716 -.1710813
_cons .2326412 .1062126 2.19 0.029 .0244682 .4408141

sigma_u .7140381
sigma_v 2.5700643

It is worth noting that the constrained frontier estimates are more biased than the
unconstrained ones, but are still not too far from the true values. This is an artifact of
our DGP since the scale elasticity has been simulated without imposing CRS.

5.3 “True” fixed and random-effects models

As already discussed in section 2.2, the “true” fixed and random-effects models allow to
disentangle time-invariant heterogeneity from time-varying inefficiency. In this section,
we present the main syntax and some of the options useful to estimate such models. We
start our exercise by specifying the following Normal-Exponential stochastic production
frontier model

yit = 1 + αi + 0.3x1it + 0.7x2it + vit − uit, (28)

vit ∼ N (0, 1), (29)

uit ∼ E (2) , i = 1, . . . , n, t = 1, . . . , T. (30)

where the nuisance parameters αi (i = 1, . . . , n) are drawn from a N (0, θ2) with θ = 1.5.
In the fixed-effects design (TFEDGP), the two regressors x1it and x2it are distributed for
each unit according to a Normal distribution centered in the corresponding unit-effect
αi with variances equal to 1 and 4, respectively. This design ensures correlation between
regressors and individual effects, a typical scenario in which the fixed-effects specification
represents the consistent choice.19

As far as the random-effects design is concerned (TREDGP), x1it and x2it are not
correlated with the unit-specific effects and are distributed according to a Normal dis-
tribution with zero mean and variances equal to 1 and 4, respectively.

The generated sample consists of a balanced panel of 1,000 units observed for 10
periods, for a total of 10,000 observations. Once the sample is declared to be a panel,
we estimate the following models: i) a Normal-Exponential TFE model on TFEDGP

data (tfe1) 20

19. Notice that, higher values of θ correspond to higher correlations between the regressors and the
unit-specific effects.
20. Note that yf, x1 c and x2 c are the variables from the TFEDGP while yr, x1 nc and x2 nc are from
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. sfpanel yf x1_c x2_c, model(tfe) distribution(exp) rescale
(output omitted )

. estimate store tfe_c

. predict u_tfe_c, u

ii) a Normal-Exponential TRE model on TFEDGP data (tre1)

. sfpanel yf x1_c x2_c, model(tre) distribution(exp) nsim(50) simtype(genhalton)
> base(7) rescale

(output omitted )
. estimate store tre_c
. predict u_tre_c, u

iii) a Normal-Exponential TRE model on TREDGP data (tre2)

. sfpanel yr x1_nc x2_nc, model(tre) distribution(exp) nsim(50) simtype(genhalton)
> base(7) rescale

(output omitted )
. estimate store tre_nc
. predict u_tre_nc, u
. predict u0_tre_nc, u0

As shown in the first column of table 3, when the model is correctly specified, the
frontier parameters are properly estimated. However, in this example, the MLDV esti-
mator of σv is slightly biased by the incidental parameter problem even if the length of
the panel is quite large.21 This problem does not seem to affect variance estimates in the
tre1 model. In this case, the parameters are estimated using the MSL technique assum-
ing that i) the unobserved heterogeneity is distributed as N (0, θ2) (where θ represents
the standard deviation of the unobserved heterogeneity), and ii) E(αi|x1it, x2it) = 0.
Thus, since the estimates are obtained using the TFEDGP data, the frontier and θ pa-
rameter estimates are biased.

Table 3: TFE and TRE estimation results

tfe1 tre1 tre2
x1 c 0.304 *** 0.776 ***

(0.0164) (0.0198)
x2 c 0.700 *** 0.811 ***

(0.0081) (0.0094)
x1 nc 0.295 ***

(0.0176)
x2 nc 0.706 ***

(0.0089)
cons 1.062 *** 1.090 ***

(0.0342) (0.0540)
σu 2.075 2.035 2.023
σv 0.770 1.095 0.973
θ 0.602 1.542

On the contrary, by estimating a correctly specified TRE model on TREDGP data
(column tre2 in table 3), all parameters, including the frontier ones, are accurately
estimated.

the TREDGP.
21. See section 2.2 for a discussion of the MLDV estimator problems in the TFE model.
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After each estimation, we use the predict command in order to obtain inefficiency
estimates. As already mentioned, option u instructs the postestimation routine to
compute inefficiencies through the Jondrow et al. (1982) estimator (see help sfpanel

postestimation). Notice that, in the case of the TRE model, the predict command
also allows the option u0 to estimate inefficiencies assuming the random-effects are zero.
At this point, we can summarize the estimated inefficiencies to compare them with the
actual values

. summarize u u_tfe_c u_tre_c u_tre_nc u0_tre_nc

Variable Obs Mean Std. Dev. Min Max

u 10000 2.004997 2.00852 .0003777 20.83139
u_tfe_c 10000 2.075017 1.948148 .2008319 20.42197
u_tre_c 10000 2.034946 1.818154 .2430926 18.76244

u_tre_nc 10000 2.025002 1.831147 .2656734 19.98998
u0_tre_nc 10000 2.200728 2.086419 .1338621 19.47739

. spearman u u_tfe_c u_tre_c u_tre_nc u0_tre_nc
(obs=10000)

u u_tfe_c u_tre_c u_tre_nc u0_tre~c

u 1.0000
u_tfe_c 0.7654 1.0000
u_tre_c 0.7541 0.9291 1.0000

u_tre_nc 0.7700 0.9925 0.9464 1.0000
u0_tre_nc 0.6297 0.7313 0.8168 0.7965 1.0000

All the JLMS estimates are very close to the true simulated ones (u). Actually, the
estimated average inefficiency after a correctly specified TRE model shows a lower bias
than the estimated average inefficiency after a correctly specified TFE model. This is
a consequence of the incidental parameters problem. It is worth noting also the good
performances of the TRE model when it is fitted on the TFEDGP data (u tre c).

Introducing heteroscedasticity

Finally, we deal with the problem of heteroscedasticity, a very important issue for ap-
plied research. In what follows, we adopt the same presentation strategy. For both
TFE and TRE models, we compare the estimates obtained from a model that neglects
heteroscedasticity with those obtained from a heteroscedastic one. In order to introduce
heteroscedasticity, equations (29)-(30) are replaced by the following

vit ∼ N (0, σvit), (31)

uit ∼ E (σuit) , (32)

σvit = exp [0.5(1 + .5× zvit)] , (33)

σuit = exp [0.5(2 + 1× zuit)] , (34)

where both inefficiency and idiosyncratic error scale parameters are now a function of
a constant term and of an exogenous covariate (zuit and zvit) drawn from a standard
normal random variable. Notice that, due to the introduction of heteroscedasticity, we
will deal with “average” σu and σv, which in our simulated sample are approximately 3.1
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and 1.7, respectively. In this case, each observation has a different signal-to-noise ratio,
implying an average of about 1.9. We estimate four different models: i) a homoscedastic
TFE model on heteroscedastic TFEDGP data (tfe1)

. sfpanel yf x1_c x2_c, model(tfe) distribution(exp) rescale
(output omitted )

. estimates store tfe_hom

. predict u_tfe_hom, u

ii) a heteroscedastic TFE model on heteroscedastic TFEDGP data (tfe2)

. sfpanel yf x1_c x2_c, model(tfe) distribution(exp) usigma(zu) vsigma(zv)
(output omitted )

. estimates store tfe_het

. predict u_tfe_het, u

iii) a homoscedastic TRE model on heteroscedastic TREDGP data (tre1)

. sfpanel yr x1_nc x2_nc, model(tre) distribution(exp) ///
> nsim(50) simtype(genhalton) base(7) rescale

(output omitted )
. estimates store tre_hom
. predict u_tre_hom, u

vi) a heteroscedastic TRE model on heteroscedastic TREDGP data (tre2)

. sfpanel yr x1_nc x2_nc, model(tre) distribution(exp) usigma(zu) vsigma(zv) ///
> nsim(50) simtype(genhalton) base(7) rescale

(output omitted )
. estimates store tre_het
. predict u_tre_het, u
. predict u0_tre_het, u0

Estimation results are reported in table 4. As expected, tfe1 variance parame-
ter estimates are biased by both the incidental parameters problem and the neglected
heteroscedasticity in u and v. These estimates can be significantly improved by taking
into account both sources of heteroscedasticity using the options usigma(varlist ) and
vsigma(varlist ) (tfe2). Exactly the same argument applies in the TRE case (tre1
VS tre2), but without incidental parameters problem.

As we have mentioned in section 2.3, neglecting heteroscedasticity in u and/or v
leads to biased inefficiency estimates. This conclusion is confirmed by the following
summarize command

. summarize u u_tfe_hom u_tfe_het u_tre_hom u_tre_het u0_tre_het

Variable Obs Mean Std. Dev. Min Max

u 10000 3.091925 3.915396 .000169 52.20689
u_tfe_hom 10000 3.717061 3.941147 .3442658 51.54804
u_tfe_het 10000 3.271297 3.828366 .2642199 52.06564
u_tre_hom 10000 3.641955 3.788298 .3739219 51.76109
u_tre_het 10000 3.173224 3.709123 .3241621 51.83721

u0_tre_het 10000 3.2855 3.844297 .1828969 54.2632
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Table 4: TFE and TRE estimation results (homoscedasticity VS heteroscedasticity)

tfe1 tfe2 tre1 tre2
x1 c 0.324 *** 0.295 ***

(0.0271) (0.0245)
x2 c 0.723 *** 0.732 ***

(0.0134) (0.0121)
x1 nc 0.316 *** 0.310 ***

(0.0290) (0.0264)
x2 nc 0.681 *** 0.689 ***

(0.0147) (0.0135)
cons 1.576 *** 1.113 ***

(0.0637) (0.0652)
σu 3.717 3.264 3.642 3.168
σv 1.185 1.402 1.526 1.693
θ 1.579 1.565

The average inefficiency is upward biased (by about 15%) for both TFE and TRE
models in which heteroscedasticity has been neglected. A slightly better result is ob-
tained also in terms of Spearman rank correlation.

. spearman u u_tfe_hom u_tfe_het u_tre_hom u_tre_het u0_tre_het
(obs=10000)

u u_tfe_~m u_tfe_~t u_tre_~m u_tre_~t u0_tre~t

u 1.0000
u_tfe_hom 0.7287 1.0000
u_tfe_het 0.7536 0.9589 1.0000
u_tre_hom 0.7380 0.9830 0.9531 1.0000
u_tre_het 0.7623 0.9461 0.9835 0.9642 1.0000

u0_tre_het 0.7039 0.8173 0.8455 0.8944 0.9121 1.0000

6 Empirical applications

In this section we illustrate sfcross and sfpanel capabilities through two empirical
applications from the SF literature. The first analyzes Switzerland railways cost in-
efficiency using data from the Swiss Federal Office of Statistics on public transport
companies, while the second focuses on Spanish diary farms technical inefficiency using
data from a voluntary Record Keeping Program.22

6.1 Swiss railways

This application is based on a unbalanced panel of 50 railway companies from 1985 to
1997, resulting in 605 observations. We think that this application is interesting for at
least two reasons: a) cost frontiers are much less diffuse in the literature compared to
production frontiers, given the lack of reliable cost and price data; b) the length of the

22. Both data sets are freely available from the webpage of prof. William Greene
(http://people.stern.nyu.edu/wgreene/).

http://people.stern.nyu.edu/wgreene/
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panel makes this database quite unusual in the SF literature. A detailed description of
the Switzerland railways transport system and complete information on the variables
used are available in Farsi et al. (2005).

In order to estimate a Cobb-Douglas cost frontier we impose linear homogeneity by
normalizing total costs and prices through the price of energy. Therefore, the model
can be written as

ln

(
TCit

Peit

)
= β0 + βY lnYit + βQ lnQit + βN lnNit +

+ βPk ln

(
Pkit
Peit

)
+ βPl ln

(
Plit
Peit

)
+

1997∑
t=1986

βtdyeart + uit + vit,(35)

where i and t are the subscripts denoting the railway company and year, respectively. As
common, uit is interpreted as a measure of cost inefficiency. Two output measures are
included in the cost function: passenger output and freight output. Length of network is
included as output characteristic. Further, we have price data for three inputs: capital,
labor and energy. All monetary values, including total costs, are in 1997 Swiss Francs
(CHF). We have included also a set of time dummies, dyeart, to control for unobserved
time dependent variation in costs.

We consider three time-varying inefficiency specifications, that is the Kumbhakar
(1990) model (kumb90), the Battese and Coelli (1992) model (bc92) and the Greene
(2005a) random-effects model (tre), and three time-invariant models. With respect to
the latter group, we estimate the fixed-effects version of the Schmidt and Sickles (1984)
model (ss84), the Pitt and Lee (1981) (pl81) and the Battese and Coelli (1988) (bc88)
specifications. All models are estimated assuming that the inefficiency is half-normally
distributed, with the exception of bc88 and bc92 in which u ∼ N+(µ, σ2

u) and the
ss84 model in which no distributional assumption is made. The choice of including also
the Greene’s specification is driven by the multi-output technology that characterizes a
railway company, for which unmeasured quality, captured by the random-effects, may
play an important role in the production process. Finally, as a benchmark, we estimate
a pooled cross-sectional model (pcs).

Table 5 shows the results. Coefficients estimates of input prices and outputs are
all significant across the seven models, and with the expected signs (positive marginal
costs and positive own-price elasticities). Looking at table 6, we further observe that
the three time-invariant specifications provide inefficiency estimates that are highly
correlated. Perhaps the most interesting result comes from the fact that inefficiency
scores obtained from kumb90 and bc92 models are also highly correlated with those
coming from time-invariant models (table 6 and figure 1). This is not surprising since
the two time-invariance hypotheses, H0 : t = t2 = 0 in the kumb90 model and H0 : η = 0
in bc92 specification, cannot be rejected at 5% level. Hence, we may conclude that there
is evidence of time-invariant technical inefficiency in the Switzerland railways transport
system, at least for the study period.

Consistently with this result, we also find that the tre model provides inefficiency
estimates which have no link with those obtained from any of the other models. More-
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Figure 1: Swiss railways, inefficiencies scatterplots

over, due to a very low estimate of the inefficiency variance, the estimated signal-to-noise
ratio λ̂ is the lowest one. In our opinion, these results are driven from the peculiar time-
varying inefficiency specification of this model. Indeed, when the inefficiency term is
constant over time, the tre specification does not allow to disentangle time-invariant
unobserved heterogeneity from inefficiency. The variance parameters support this inter-
pretation, since the estimated standard deviation of the random-effects (θ) dominates
the inefficiencies one.
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Table 5: Swiss railways, estimation results (50 firms for a total of 605 observations)

pcs ss pl81 bc88 kumb90 bc92 tre
b/se b/se b/se b/se b/se b/se b/se

lnY 0.492 *** 0.114 *** 0.200 *** 0.199 *** 0.193 *** 0.199 *** 0.324 ***
(0.015) (0.032) (0.034) (0.033) (0.033) (0.033) (0.019)

lnQ 0.030 *** 0.014 * 0.021 *** 0.021 *** 0.020 *** 0.020 *** 0.034 ***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007)

lnN 0.393 *** 0.448 *** 0.485 *** 0.503 *** 0.477 *** 0.499 *** 0.609 ***
(0.027) (0.051) (0.045) (0.047) (0.044) (0.047) (0.049)

lnpk 0.171 *** 0.318 *** 0.310 *** 0.311 *** 0.311 *** 0.313 *** 0.294 ***
(0.032) (0.017) (0.017) (0.017) (0.017) (0.017) (0.020)

lnpl 0.592 *** 0.546 *** 0.548 *** 0.546 *** 0.538 *** 0.543 *** 0.538 ***
(0.074) (0.037) (0.037) (0.037) (0.037) (0.037) (0.039)

dyear1986 0.009 0.010 0.009 0.009 0.015 0.008 0.011
(0.056) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

dyear1987 0.003 0.020 0.012 0.012 0.023 0.009 0.004
(0.056) (0.015) (0.015) (0.015) (0.017) (0.015) (0.016)

dyear1988 0.010 0.039 * 0.028 0.027 0.043 * 0.023 0.017
(0.057) (0.015) (0.015) (0.015) (0.019) (0.016) (0.016)

dyear1989 0.036 0.065 *** 0.052 *** 0.052 *** 0.070 *** 0.046 ** 0.040 *
(0.057) (0.016) (0.016) (0.016) (0.021) (0.016) (0.016)

dyear1990 0.024 0.084 *** 0.068 *** 0.068 *** 0.086 *** 0.060 *** 0.054 **
(0.058) (0.016) (0.016) (0.016) (0.022) (0.017) (0.017)

dyear1991 0.030 0.098 *** 0.078 *** 0.078 *** 0.096 *** 0.069 *** 0.059 ***
(0.058) (0.017) (0.018) (0.017) (0.024) (0.019) (0.018)

dyear1992 0.046 0.111 *** 0.094 *** 0.094 *** 0.109 *** 0.083 *** 0.078 ***
(0.058) (0.017) (0.017) (0.017) (0.023) (0.019) (0.018)

dyear1993 0.015 0.100 *** 0.081 *** 0.081 *** 0.092 *** 0.069 *** 0.062 ***
(0.057) (0.017) (0.017) (0.017) (0.023) (0.020) (0.017)

dyear1994 -0.001 0.082 *** 0.063 *** 0.063 *** 0.069 ** 0.049 * 0.042 *
(0.056) (0.017) (0.017) (0.017) (0.022) (0.020) (0.017)

dyear1995 0.019 0.059 *** 0.048 ** 0.047 ** 0.045 * 0.031 0.032
(0.057) (0.016) (0.016) (0.016) (0.022) (0.021) (0.017)

dyear1996 0.027 0.037 * 0.028 0.027 0.018 0.010 0.019
(0.057) (0.017) (0.016) (0.016) (0.022) (0.022) (0.018)

dyear1997 0.019 0.038 * 0.030 0.029 0.009 0.009 0.016
(0.060) (0.018) (0.017) (0.017) (0.023) (0.024) (0.019)

Constant -8.310 *** -2.682 *** -4.895 *** -4.929 *** -4.626 *** -4.871 *** -6.577 ***
(0.976) (0.652) (0.643) (0.634) (0.637) (0.637) (0.505)

t - - - - 0.023 - -
- - - - (0.015) - -

t2 - - - - -0.002 - -
- - - - (0.001) - -

η - - - - - -0.002 -
- - - - - (0.002) -

λ 2.882 7.900 11.366 7.716 23.930 7.887 1.310
σ 0.464 0.566 0.807 0.551 1.682 0.562 0.097
σu 0.438 0.562 0.804 0.546 1.681 0.557 0.077
σv 0.152 0.071 0.071 0.071 0.070 0.071 0.059
θ - - - - - - 0.271
Estimated cost inefficiencies, ûit
Mean 0.350 0.813 0.663 0.679 1.399 0.692 0.068
SD 0.233 0.550 0.429 0.425 0.906 0.434 0.039
Min 0.060 0.000 0.015 0.020 0.032 0.020 0.018
Max 1.134 2.507 2.006 1.991 4.220 2.031 0.362
Log-likelihood -116.572 - 595.159 596.523 597.649 597.285 577.898
Notes: Standard errors for ancillary parameters not reported.
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Table 6: Swiss railways, correlation of inefficiency estimates

Variables pcs ss84 pl81 bc88 kumb90 bc92 tre
pcs 1.000
ss84 0.439 1.000
pl81 0.595 0.969 1.000
bc88 0.608 0.971 0.991 1.000
kumb90 0.573 0.984 0.991 0.998 1.000
bc92 0.603 0.974 0.992 1.000 0.999 1.000
tre -0.029 -0.222 -0.249 -0.248 -0.243 -0.247 1.000
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6.2 Spanish dairy farms

This application is based on a balanced panel of 247 dairy farms located in Northern
Spain over a six years period (1993− 1998). This dataset is interesting as it represents
what is generally available to researchers: short panel, information only on input and
output volumes, heterogeneity of output and less than ideal proxies for inputs. The
output variable is given by the liters of milk produced per year. This measure explains
only partially the final output of this industry, as milk can be also considered as an
intermediate input to produce dairy products. Furthermore, variables like slaughtered
animals should be also considered as part of the final output.

The functional form employed in the empirical analysis is the following translog
production function with time dummy variables to control for neutral technical change

ln yit = β0 +

4∑
j=1

βj lnxjit +
1

2

4∑
j=1

4∑
k=1

βjk lnxjit lnxkit

+

1998∑
t=1993

βtdyeart − uit + vit (36)

where j and t are the subscripts denoting farm and year, respectively. Four inputs
have been employed in the production frontier: number of milking cows (x1), number
of man-equivalent units (x2), hectares of land devoted to pasture and crops (x3) and
kilograms of feedstuffs fed to the dairy cows (x4). More details on these variables are
available in Cuesta (2000) and Alvarez and Arias (2004).

We have estimated three models with time-varying inefficiency: the Normal-Half
Normal Kumbhakar (1990) model (kumb90), a random effect model by means of the
Feasible Generalized Least Squares (FGLS) method, the Cornwell et al. (1990) model
(css90) estimated through the modified-LSDV technique and, finally, the Lee and
Schmidt (1993) model (ls93) estimated using ILS. It is worth noting that the latter
two models are estimated using approaches that do not allow intercept (β0) and time
dummies (dyeart) to be simultaneously included into the frontier equation. Finally,
we also considered two models with time-invariant inefficiency, i.e. the uit term boils
down to be uiin equation (36): the first proposed by Schmidt and Sickles (1984) and
estimated without any distributional assumption through the LSDV approach (ss84)
and the second proposed by Pitt and Lee (1981) estimated through ML assuming a Half
Normal inefficiency (pl81).

Table 7 reports the results of our exercise. There is a certain degree of similarity
between the different models, as both parameters significance and magnitudes are com-
parable. Since for ss84, css90 and ls93 models the most efficient firm in the sample
is considered as fully efficient, the smallest value of inefficiency is 0. On average and
as expected, the css90 model shows a higher level of inefficiency, whose distribution
has also more variability while the other models seem to behave very similarly in this
application. Finally, as we can see in table 8, linear correlations between inefficiencies
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are very high. This does not come as a surprise given the similarity of the estimated
frontier parameters and it looks like an indication that in medium-short panels and in
certain economic sectors/contexts, a time-invariant inefficiency specification is a valid
solution.
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Table 7: Spanish dairy farms, estimation results (247 firms for a total of 1482 observa-
tions)

ss84 css90 ls93 kumb90 pl81
x1 0.642 *** 0.527 *** 0.641 *** 0.661 *** 0.660 ***

(0.036) (0.046) (0.036) (0.028) (0.028)
x2 0.037 * 0.043 * 0.037 * 0.038 ** 0.041 **

(0.017) (0.019) (0.017) (0.015) (0.015)
x3 0.011 0.079 0.010 0.050 ** 0.049 **

(0.025) (0.044) (0.025) (0.018) (0.018)
x4 0.308 *** 0.226 *** 0.307 *** 0.351 *** 0.356 ***

(0.020) (0.024) (0.020) (0.018) (0.017)
x11 0.135 -0.187 0.133 0.308 0.314

(0.157) (0.135) (0.155) (0.171) (0.178)
x22 -0.002 0.060 -0.001 -0.111 -0.112

(0.069) (0.078) (0.068) (0.064) (0.067)
x33 -0.242 -0.168 -0.243 -0.129 -0.131

(0.188) (0.223) (0.187) (0.119) (0.115)
x44 0.105 * -0.125 * 0.105 * 0.112 * 0.118 *

(0.050) (0.059) (0.050) (0.048) (0.049)
x12 -0.010 0.059 -0.009 -0.060 -0.064

(0.073) (0.070) (0.072) (0.077) (0.081)
x13 0.084 -0.114 0.085 0.088 0.091

(0.102) (0.111) (0.101) (0.090) (0.090)
x14 -0.075 0.142 -0.074 -0.140 -0.146

(0.083) (0.093) (0.082) (0.084) (0.088)
x23 0.001 0.067 0.002 0.020 0.011

(0.050) (0.076) (0.050) (0.049) (0.050)
x24 -0.011 -0.062 -0.011 0.025 0.025

(0.041) (0.042) (0.041) (0.039) (0.040)
x34 -0.012 0.110 -0.013 -0.015 -0.017

(0.046) (0.060) (0.046) (0.041) (0.041)
dyear1994 0.035 *** 0.042 *** 0.027 ***

(0.007) (0.010) (0.007)
dyear1995 0.062 *** 0.072 *** 0.048 ***

(0.009) (0.014) (0.008)
dyear1996 0.072 *** 0.078 *** 0.052 ***

(0.010) (0.016) (0.009)
dyear1997 0.075 *** 0.074 *** 0.051 ***

(0.010) (0.017) (0.009)
dyear1998 0.092 *** 0.077 *** 0.064 ***

(0.012) (0.018) (0.010)
Constant 11.512 *** 11.695 *** 11.711 ***

(0.016) (0.019) (0.016)
t - - - -0.347 -

- - - (0.212) -
t2 - - - 0.045 -

- - - (0.028) -
λ 1.948 4.807 2.010 4.485 2.775
σ 0.168 0.234 0.171 0.356 0.230
σu 0.149 0.229 0.153 0.348 0.216
σv 0.077 0.048 0.076 0.077 0.078
Estimated technical inefficiencies, ûit
Mean 0.315 0.685 0.353 0.288 0.179
SD 0.149 0.229 0.153 0.188 0.117
Min 0.000 0.000 0.000 0.014 0.009
Max 0.873 1.412 0.966 1.008 0.623
Log-likelihood - - - 1355.248 1351.826
Notes: Cluster-robust standard errors in parenthesis. Standard errors for ancillary

parameters are not reported.
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Table 8: Spanish dairy farms, correlation of inefficiency estimates

Variables ss84 css90 ls93 kumb90 pl81
ss84 1.000
css90 0.861 1.000
ls93 0.980 0.890 1.000
kumb90 0.942 0.721 0.921 1.000
pl81 0.931 0.704 0.910 0.999 1.000



36 Stochastic Frontier using Stata

7 Concluding remarks

In this article we introduce the new Stata commands sfcross and sfpanel, which
implement an extensive array of SF models for cross-sectional and panel data. With
respect to the available official Stata commands, frontier and xtfrontier, we add
multiple features for estimating frontier parameters and for postestimating unit ineffi-
ciency/efficiency. In the development of the commands we widely exploit Mata poten-
tiality. By using Mata structures, we provide a very readable code prone to be easily
developed further by the Stata users community.

We illustrate the commands estimation capabilities through simulated data, focus-
ing on some of the models that cannot be estimated using official Stata commands.
Finally, we illustrate the proposed routines using real data sets under different possible
empirical scenarios: short vs. long panels, cost vs. production frontiers, homogenous
vs. heterogeneous outputs.
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