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Abstract
The paper compares unrestricted and restricted reduced-form estimates of productivity and efficiency performance
constructed from non-structural stochastic frontier analysis (SFA) and the structural models of Olley–Pakes (OP),
Ackerberg–Caves–Frazer (ACF), Pakes–McGuire (PM), and Midrigan–Xu (MX). These methods are used to estimate
changes in firm-level manufacturing productivity in the British Isles before and after the 2007–2009 financial crisis using the
Financial Analysis Made Easy (FAME) data set over the period 2005–2012. The empirical results indicate that overall
technical efficiency was not impacted to any substantial degree by the financial crisis, according to all models. The empirical
results also indicate substantial agreement in the predictions of productivity growth for the three models. The SFA
framework (and related DEA approaches) is used internationally to set tariffs in regulated industries. To have SFA, and the
OP/ACF/PM/MX models that are more highly leveraged on economic optimizing assumptions, provide comparable
estimates of productivity and efficiency change is reassuring. However, it also would suggest that structural approaches may
not provide regulators much new information about efficiency and productivity than would less structural approaches such as
SFA, while being less transparent and more difficult to justify to regulators as well as to the courts to which regulated firms
often turn for relief from tariffs they perceive to be unfair or onerous.
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1 Introduction

The performance of a firm is usually measured by pro-
ductivity, the ratio of a weighted average of outputs to a
weighted average of inputs. Traditional productivity mea-
surement includes labor productivity, capital productivity,
and so on. Total Factor Productivity (TFP) accounts for the
portion of output not explained by traditionally measured
inputs utilized in production (Comin 2010). TFP effectively

evaluates overall productivity and has been widely used in
the literature (Boucinha et al. 2013; Cummins and Xie
2013; Ball et al. 2014; Curi and Lozano-Vivas 2015;
Asmild et al. 2016; Gong 2018a) and in the analysis of
growth by statistical agencies across the world.

Non-structural approaches (Perelman 1995; Van Dijk and
Szirmai 2011; Gong 2018b) have been extensively employed
to estimate productivity. Stochastic Frontier Analysis (SFA) is
a well-known method that estimates the average frontier
function as well as the level of technical efficiency and its
change over time. Neutral technical changes using a SFA
approach can also be identified with the panel stochastic
frontier model employed in our analysis. Such an approach
uses a normalization in which the firm with the highest level
of technical efficiency can be identified and the technical
efficiency of all other firms can be measured relative to the
most efficient firm in the sample at any point in time
(Cornwell et al. 1990). Although this non-structural model
can estimate the average technical efficiency level, and
therefore predict the overall relative TFP loss for each unit
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due to technical inefficiency, it cannot explain the sources of
the inefficiency or TFP loss without a more detailed expla-
nation of the inefficiency residual term. This has been done in
a variety of ways, typically by specifying a reduced form
model for the exogenous determinants of efficiency.1

Productivity defined in this way by a Solow residual is a
non-structural concept and cannot be given a structural
interpretation without a more formal model in which an
explicit set of orthogonality conditions are specified that allow
a counterfactual analysis to be undertaken. Our study com-
plements non-structural SFA with two structural models from
the literature and compares their restricted reduced-form
predictions, using panel data from firms in the British Isles.

The first group of structural models that we consider
include Pakes–McGuire (PM) model (Pakes et al. 1993;
Pakes and McGuire 1994) and Midrigan–Xu (MX) model
(Midrigan and Xu 2014). On the one hand, PM computes the
Markov Perfect Nash (MPN) Equilibria of an industry, where
a firm’s profit is a function of its own level of efficiency as
well as the efficiency level of all its competitors. This
approach can estimate an average efficiency level by solving
both the MPN equilibria and the social planner’s problem. On
the other hand, MX decomposes the residual and estimates
the partial TFP loss due to specific factors (financial friction or
financial misallocation, in this case). This approach sets up an
economic structure and calculates the efficient allocation (with
highest attainable productivity) to satisfy the labor market
clearing condition, the asset clearing condition, producer and
worker optimization, and the no-arbitrage condition. Both PM
and MX require only summary statistics data to solve equi-
librium and estimate productivity.

The second group of structural models that we consider
to estimate productivity contains the Olley–Pakes method
(OP) (Olley and Pakes 1996) and Ackerberg–Caves–Frazer
method (ACF) (Ackerberg et al. 2015) of the production
function estimation. Analogous to SFA, OP also estimates
productivity based on a production function, but the beha-
vioral framework of OP has similarities with the structural
PM. However, the estimation algorithm of OP is based on
five extra assumptions (see Ackerberg et al. 2015, page
2416), which relies heavily on the structural model in Pakes
(1996). Therefore, this paper treats OP as a model some-
where between the non-structural SFA and the structural
PM. ACF points out that OP fails to identify the labor
elasticity in the first step and should be estimated in the
second step. Different from PM and MX, OP and ACF
require firm-level data to estimate productivity, which is
similar with reduced form methods such as SFA.

Some studies also compare non-structural models and
structural models in productivity analysis. Eberhardt and
Helmers (2010) focus on the transmission bias problem of
the production function and compare dynamic panel esti-
mators (Arellano and Bond 1991; Blundell and Bond 1998)
with structural OP and ACF models. Del Gatto et al. (2011)
survey many productivity and efficiency methods, including
the non-structural stochastic frontier model and the struc-
tural OP and ACF models. Their contribution is to choose
the right model among available methodologies, especially
the difference in macro studies and micro studies.

In our paper, we emphasize that the non-structural sto-
chastic frontier model is the better option as it does not rely
on strong identifying assumptions and therefore is more
robust. The only way to reasonably make this argument is to
base it on empirical evidence, which is not included in Del
Gatto et al. (2011). Therefore, the purpose and motivation
of these two papers are different. Moreover, our paper also
introduces two structural models (Pakes–McGuire model
and Midrigan–Xu model) that are not included in Eberhardt
and Helmers (2010) and Del Gatto et al. (2011).

We analyze the effect of financial frictions on productivity
before and after the 2007–2009 financial crisis using firm-
level data for the manufacturing sectors of the British Isles.
The overall TFP loss estimate using SFA, OP, ACF and PM
will be compared. Our empirical findings indicate that the
overall TFP loss was not impacted to any substantial degree
by the financial crisis, according to all models. The fact that
we find similar results using very different methodologies
adds to the confidence that the overall TFP loss ratio was not
significantly affected by the financial crisis. Moreover, MX is
adopted to estimate productivity loss due to financial friction
from the recession, which further supports our findings
derived from SFA, OP, ACF and PM.

The remainder of the article is structured as follows.
Section 2 introduces the Stochastic Frontier Analysis. Sec-
tion 3 describes the Pakes–McGuire (PM) and
Midrigan–Xu (MX) models. Section 4 presents the
Olley–Pakes (OP) and Ackerberg–Caves–Frazer (ACF)
models. Section 5 summarizes the assumptions of different
non-structural and structural models. Section 6 provides
data descriptions. Empirical results derived from the three
approaches are presented and compared in Section 7. Sec-
tion 8 concludes.

2 Stochastic frontier analysis

2.1 Stochastic frontier analysis of cross-sectional
data

Aigner et al. (1977) and Meeusen and Van den Broeck
(1977) proposed the stochastic frontier production function

1 The usefulness and importance of SFA (and DEA) methods have
passed the market test as they are required to be used in a wide variety
of regulatory decision-making settings in Europe and elsewhere (e.g.,
Bogetoft 2013, Agrell and Bogetoft 2017, and Agrell and Bogetoft
2018).

244 Journal of Productivity Analysis (2020) 53:243–263



model of the form:

yi ¼ x0iβ þ νi � ui; i ¼ 1; ¼ ;N: ð1Þ
In this paradigm the deterministic frontier production

function is augmented by a symmetric random error vari-
able, vi, to account for measurement errors and other sour-
ces of non-systematic statistical noise. yi is the output of
firm i, often in logarithms xi is the vector of inputs often in
logarithms (Cobb–Douglas or translog specifications), and
ui is a non-negative random variable representing technical
inefficiency (the distance to the frontier).

In most cases vi is assumed to follow a normal dis-
tribution that is independent of each ui. Both vi and ui are
often assumed to be uncorrelated with the independent
variables xi. A variety of distributional assumptions are also
imposed on ui. Aigner et al. (1977) assumed ui to be i.i.d.
half-normal random variables and derived the Maximum
Likelihood (ML) estimates. Stevenson (1980) introduced a
normal truncated specification, while Greene (1990) con-
sidered the gamma specification.

2.2 Stochastic frontier analysis of panel data

The stochastic frontier literature in the early 1980s mainly
consists of analyses of cross-sectional data. Pitt and Lee
(1981) introduced a parametric MLE random effects gen-
eralization that allowed a constant firm specific efficiency
level to be consistently estimated while Schmidt and Sickles
(1984) addressed the difficulties with the canonical sto-
chastic frontier model, including inconsistent firm-specific
technical inefficiency estimations, strong assumptions about
the distribution of technical inefficiency and statistical
noise, and potentially incorrect assumptions that ineffi-
ciency is independent of the regressors. Cornwell et al.
(1990) provided a variety of estimators that not only solved
these problems but also allowed for the firm-specific effi-
ciency levels to vary over time. Their panel stochastic
frontier model is

yit ¼ αþ x0it β þ νit � uit ¼ αit þ x0it β þ νit;

i ¼ 1; ¼ ;N; t ¼ 1; ¼ ; T
ð2Þ

Cornwell et al. (1990) introduced the within estimator
(CSSW), the generalized least squares estimator (CSSG),
and a Hausman and Taylor (1981)-type estimator they
labeled the Efficient IV estimator that allow for time-variant
individual efficiency effects by replacing the firm effect
with heterogeneous environmental variables whose effect
on efficiency was firm specific. In their empirical example,
they assumed that only the coefficients on the time and
time-squared variables have such heterogeneous patterns,
resulting in a parameterization of the firm effects of αit that
took the form of αit= θi1+ θi2t+ θi3t

2. Sickles (2005) later

examined various specifications of the time-variant firm
effect αit modeled in other research, including αit= ηitαi=
exp[η(1− T)]αi (Battese and Coelli 1992), and the general
factor Kneip-Sickles-Song (KSS) model αit= ci1g1t+ ci2g2t
+ ⋯ + ciLgLt (Kneip 1994; Kneip et al. 2003),2 which are
widely used SFA approaches in literature (Kumbhakar and
Wang 2005; Gong 2019). Instead of choosing one of the
SFA models, Gong (2018c) used a jackknife model aver-
aging method to consider CSSG and KSS models
simultaneously.

2.3 Productivity and efficiency estimates under
different SFA models

We use the Fixed Effects (FIX), Random Effect (RND),
Kneip-Sickles-Song (KSS), and Battese–Coelli (BC) non-
structural specifications to estimate efficiency and pro-
ductivity. The first two are time-invariant estimators, and
the last two are time-varying effects estimators. We assume
a Cobb–Douglas stochastic frontier function with constant
returns to scale as the main model, because many studies
(Burnside 1996; Basu and Fernald 1997; Gong 2020) of
manufacturing have found it difficult to reject such a
restriction. However, in robustness checks, we also assume
a Cobb–Douglas stochastic frontier function without con-
stant returns to scale and a translog stochastic frontier
function, respectively. Thus the main model estimates:

log Yitð Þ ¼ αt þ β1 log Kitð Þ þ β2 log Litð Þ þ νit � uit s:t: β1 þ β2 ¼ 1

) log Yitð Þ ¼ αt þ β1log Kitð Þ þ 1� β1ð Þ log Litð Þ þ νit � uit
) log Yitð Þ � log Litð Þ ¼ αt þ β1 log Kitð Þ � log Litð Þð Þ þ νit � uitð

ð3Þ
In a single output world with constant returns to scale,

the TFP for firm i at time t is equal to exp(αt− uit+ vit),
which decomposes to the frontier (exp(αt+ vit)) and firm-
specific efficiency (exp(−uit)). Therefore, the growth in TFP
is equal to the sum of the frontier shifts over time that
measures the technical changes and the distance of a firm to
the frontier that measures efficiency changes. In the FIX and
RND models, αt= α+ δt and uit= ui, which implies the
degree of technical progress is fixed at δ and the firm-
specific efficiency doesn’t change over time. In the BC
model, αt= α+ δt and uit= exp(−η(t− T)) · ui, where uit ~
N+(μ, σ2μ) is a truncated normal distribution. Therefore, the
degree of technical progress is still fixed at δ, but the firm-
level efficiency is time-variant. However, the efficiency
changes at the same speed across firms and time in the BC
model, as the growth rate exp(−η) is fixed. In the KSS
model, uit ¼

PL
r¼1 θirgr tð Þ where g1(t), … , gL(t) are the

2 Factor models related to Kneip-Sickles-Song model has been studied
in Forni et al. (2000), Bai and Ng (2002), Stock and Watson (2002),
Pesaran (2006), and Bai (2009).
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basis functions and θi1,… , θiL are the coresponding para-
meters. The change in firm-level efficiency is semipar-
amatrically estimated, which is both firm-variant and time-
variant. The term αt quantifies a general mean process to
ensure identifiability and represents the degree of technical
progress in the KSS model.

The equation exp(αit)= exp(αt− uit+ vit) provides the
individual TFP level for the i-th firm at time t, which applies
to all SFA models. Assuming that the largest individual
TFP is the efficient level of TFP, the average level of TFP
loss in percentage can be derived, which indicates the
average level of efficiency in the economy.

TFP loss ratio

¼ 1� TFP

TFPe
� 1� 1

T

XT
t¼1

1
N

PN
i¼1 exp αt � uit þ νitð Þ

exp αtð Þ

 ! !

� 1� 1
T

1
N

XT
t¼1

XN
i¼1

exp �uitð Þ
 !

¼ 1� Average TE

ð4Þ

where TFPe is the efficient level of total factor productivity
and TFP is the average level of total factor productivity.
The ratio TFP

TFPe equals the average technical efficiency (TE)
that is typically used in the stochastic analysis. This study
can thus estimate the average technical efficiency using the
stochastic frontier analysis and then derive the TFP loss
ratio. The degree of appropriable technical progress
accessible by all firms is not taken into consideration when
calculating our TFP loss measure as αt is common to all
firms and as such it appears in both the numerator and
denominator of Eq. (4).

3 Pakes–McGuire model and Midrigan–Xu
model

The first structural model that we consider is the
Pakes–McGuire (PM) model (Pakes et al. 1993; Pakes and
McGuire 1994). This model computes the MPN equilibria
(Maskin and Tirole 1988a, 1988b) generated under the
constraints of Ericson and Pakes (1992), where a firm’s
profit is a function of its own level of efficiency as well as
the efficiency level of all its competitors. This approach can
estimate an average efficiency level by solving both the
MPN equilibria and the social planner’s problem. Detailed
information of PM can be found in Appendix 1.

The second structural model is the model of Midrigan
and Xu (MX) (Midrigan and Xu 2014), which is a more up-
to-date structural model that estimates productivity. MX
decomposes the residual and estimates the partial TFP loss
due to specific factors (financial friction or financial mis-
allocation, in this case). This approach sets up an economic
structure and calculates the efficient allocation (with highest

attainable productivity) to satisfy the labor market clearing
condition, the asset clearing condition, producer and worker
optimization, and the no-arbitrage condition. The factors of
interest are introduced into the model along with borrowing
constraints, which can lead to a lower possible TFP, and
therefore cause TFP loss. Detailed information of MXM can
be found in Appendix 2.

4 Olley–Pakes and Ackerberg–Caves–Frazer
models

Compared with frontier analysis, conventional production
function analysis can also be used to estimate efficiency and
productivity growth using the Olley and Pakes (1996)
approach. However, it is an average production function
rather than a frontier production function that is estimated in
this setting. Since the production function estimates may
suffer from simultaneity, as the efficiency/productivity
levels are known to firms when they decide their input
utilizations but are unobservable to economists, instruments
for endogenous inputs are also needed. For example, profit
maximizing firms may cut headcounts when they see
negative productivity shocks. This endogeneity problem can
lead to biased OLS estimates of the production function and
inaccurate TFP levels. Of course the use of instrumental
variables or control function modifications of the canonical
SFA model introduced over 40 years ago (Aigner et al.
1977) is an available option for the SFA model as well (see,
e.g., Amsler et al. 2016 and Kutlu 2018). Moreover, SFA
treatments that utilize panel fixed effects estimators, such as
those in the Schmidt and Sickles (1984) and the Cornwell
et al. (1990) model used in generating our SFA results,
address the potential correlation of efficiency effects and
input decisions.

Olley and Pakes (1996) established an approach to deal
with the simultaneity bias by using investment to proxy for
the unobserved productivity/efficiency shock. In this model,
the behavioral framework, including the entry and exit
decisions, the investment and capital accumulation equa-
tions, and the assumption of Markov perfect Nash equili-
brium, are very similar to those in the PM. Firms in the OP
model make labor and investment decisions to maximize
the net present value of future profits. Suppose the pro-
duction function follows a Cobb–Douglas formation

yit ¼ βkkit þ βllit þ wit þ ϵit; ð5Þ
where yit is the log of output, kit is the log of capital, and lit
is the log of labor. wit measures productivity/efficiency
shocks and εit is the usual idiosyncratic disturbance term. As
summarized in Ackerberg et al. (2015), there are five
assumptions in the OP model. These involve the firm’s
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information set of productivity shocks, first order Markov
evolution of productivity shocks, timing of input decisions,
the form of the investment function, and the strict
monotonicity of productivity and levels of investment.
The fourth assumption states that investment is a function of
capital and productivity shocks: iit= ft(kit, wit). The last
assumption of strict monotonicity of productivity and
investment levels, derived from Pakes (1996), results in
the function ft(kit, wit) that is strictly increasing in wit,
indicating that the inverse function wit ¼ f�1

t iit; kitð Þ exists.
Substituting this inverse function into the production
function in Eq. (5) yields yit ¼ βkkit þ βllit þ f�1

t iit; kitð Þ þ
ϵit ¼ βllit þ ϕ�1

t iit; kitð Þ þ ϵit: where the parameter βl is
point identified. OP treat ϕ�1

t as a non-parametric function
in order obtain β̂l when they estimate this last function.
However, since βkkit and f�1

t iit; kitð Þ are both included in the
non-parametric function ϕ�1

t , βk cannot be estimated
without a further step. In the second step, OP uses the
timing of capital decision (the third assumption) to point
identify and estimate βk. The innovation ξit is defined as the
difference between the expected productivity/efficiency of
the next period and realized productivity. The conditional
expectation of innovation at time t is zero given information
at time t− 1, i.e. E[ξit|Iit−1]= 0. The information set Iit−1

includes kit, since current capital equals previous capital less
depreciation plus previous investment and thus E[ξit|kit]= E
[ξitkit]= 0. This orthogonality condition identifies βk.

Next, given an estimate of βk, OP first derive the level
of efficiency/productivity as wit βkð Þ ¼ bϕt iit; kitð Þ � βkkit,
where bϕt iit; kitð Þ has been estimated in the first step. Then
the innovation is ξit βkð Þ ¼ wit βkð Þ � χ̂ wit�1 βkð Þð Þ where
χ̂ wit�1 βkð Þð Þ accounts for the fitted value of the conditional
expectation from the non-parametric regression. Finally, OP
use Generalized Method of Moments (GMM) to solve
minβk

1
T
1
N

P
t

P
t ξit βkð Þkit

� �
, which satisfies the orthogon-

ality E[ξit|kit]= E[ξitkit]= 0.
To summarize, OP derive βl in the first step and then

estimate βk as well as wit in the second step. The pro-
ductivity/efficiency term wit in OP is comparable with the
productivity/efficiency term αit in SFA. Finally, OP method
also uses Eq. (4) to calculate the TFP loss ratio.

Compared with OP, the Levinsohn-Petrin (LP) model
uses an intermediate input rather than investment to invert
and solve for wit. This alternative inversion is because
investment is often lumpy and is often zero when data are
disaggregated by firm/establishment. This of course also
puts into question the strict monotonicity assumption in
Olley–Pakes. Thus in LP we have mit= ft(kit, wit) and wit=
ft
−1(mit, kit), where mit is the log of the intermediate input.
Substituting this into the production function, we have
yit ¼ βkkit þ βllit þ βmmit þ f�1

t mit; kitð Þ þ ϵit. Similar to
OP, we can identify β1 in the first step regression (ft

−1 is
again a non-parametric function). In this model,

bϕt mit; kitð Þ ¼ βkkit þ βmmit þ f�1
t mit; kitð Þ. In the second

step, we have two parameters to estimate. The first para-
meter, βk, can be analogously identified as in the OP, where
innovation is orthogonal to capital. For βm, LP adds the
moment that innovation is orthogonal to lag intermediate
input. Econometrically, those two moments are: E[ξit(βk,
βm)|kit]= 0 and E[ξit(βk, βm)|mit−1]= 0. The reduced-form
regression (GMM) of the second step is similar to
that in OP.

The Ackerberg–Caves–Frazer (ACF) model argues that
the first stage of the OP and LP models correctly identify βl
only under several specific conditions. Otherwise, OP and
LP fail to provide consistent estimates of βl. The main
difference of ACF compared with OP and LP is that ACF
invert the conditional instead of the unconditional input
demand function to control for unobserved productivity wit.
Different from OP and LP that estimate βl in the first stage,
all the coefficients are estimated in the second stage in ACF
model. The detailed estimation strategy can be found in
Ackerberg et al. (2015). All these three models, including
OP, LP, and ACF, are control function approaches (Mollisi
and Rovigatti 2017).

5 Assumptions of non-structural and
structural models

This section summarizes and compares the assumptions of
non-structural SFA models and structural OP and ACF
models.3 To conclude, non-structural SFA model requires
many less assumptions than the structural OP and ACF
models.

Stochastic frontier methods include but are not limited to
the following assumptions (A.1–A.3): A.1 There is a pro-
duction frontier for all firms in the same industry, which
represents the highest attainable producitiy under current
technology; A.2 The gap between the frontier and actual
production of a companies is explained by technical inef-
ficiency; A.3 Some SFA estimators (e.g., BC estimator
introduced in this article) assume a parametric form for the
efficiency and the disturbance; however, other SFA esti-
mators (e.g., FIX and RND estimators introduced in this
article and CSS estimator (Cornwell et al. 1990)) are
semiparametric efficient under the assumptions of correlated
random effects (Mundlak 1978; Chamberlain 1984) as
shown in Schmidt and Sickles (1984) and by extension in
Cornwell et al. (1990); A.4: Endogenous inputs are
addressed in the panel estimators we utilize by the Schmidt
and Sickles and Corwell et al. estimators to address the
presence of firm effects that are potentially correlated with

3 For the more complicated PM and MX models, please read
Appendix 1 and Appendix 2 for details.
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the efficiency terms. These can be static or time-varying
effects. Endogenous input choice that is correlated with the
usual disturbance term is addressed via standard instruments
based on lagged input values as well as input prices, time
trends, and other available exogenous variables in the
model. The validity of the instruments are tested via the
methods introduced by Amsler et al. (2016).

The Olley–Pakes model is assumed to include but is not
limited to the following assumptions (B.1–B.6): B.1 Com-
pany i at time t knows its current and past productivity
shocks but does not know future productivity shocks (i.e.,
Iit= (wi1, wi2,…, wit). The transitory shocks εit follow E[εit|
Iit]= 0; B.2 Productivity shocks at time t+ 1 based on the
distribution p(wit+1|Iit)= p(wit+1|wit), are known to firm i
and stochastically increasing in wit; B.3 The state variables
at time t, including capital, evolve based on the investment
policy function that is determined in the previous period
(time t− 1), whereas free variables, including labor inputs,
are selected in the current period (time t) after the firm
observes its productivity shocks; B.4 Company i at time t
makes investment decisions according to iit= ft(kit, wit); B.5
the function ft(kit, wit) is strictly increasing in wit; and B.6
data generating process (DGP) of the production process is
one of the three DGPs mentioned in Ackerberg et al. (2015).

The Ackerberg–Caves–Frazer model is assumed to
include but is not limited to the following assumptions
(C.1–C.5): C.1 Company i at time t knows its current and
past productivity shocks but does not know future pro-
ductivity shocks (i.e., Iit= (wi1, wi2, … , wit). The transitory
shocks εit follow E[εit|Iit]= 0; C.2 Productivity shocks at
time t+ 1 based on the distribution p(wit+ 1|Iit)= p(wit+ 1|
wit), which is known to firm i and stochastically increasing
in wit; C.3 The state variables at time t, including capital,
evolve based on the investment policy function that is
determined in the previous period (time t− 1), whereas free
variables, including labor inputs, are chosen at time t− 1,
time t, or time t− b (which 0 < b < 1); C.4 Company i at
time t make investment decision according to iit= ft(kit, lit,
wit);

4 and C.5 the function ft(kit, lit, wit) is strictly increasing
in wit.

6 Data

As one of the developed countries with high financial risk
(Derbali 2016), much attention has been paid to the eco-
nomic performance of U.K. before and after the 2007–2009
financial crisis. Our data come from a commercial software

package called Financial Analysis Made Easy (FAME)5 and
cover the years 2005–2012. FAME contains comprehensive
information, including balance sheets and profit and loss
accounts, for the firms in the UK and Ireland. There are
some advantages of FAME data. Each registered firm in the
UK is required to provide accounting and other data about
their operations to an executive agency of the Department
of Trade and Industry know as Companies House, which
are then made available in FAME (Graham et al. 2010).
Since it covers the entire population of the registered firms
including the non-stock market listed firms, Draca et al.
(2011) pointed out that FAME can more comprehensively
reflect the overall situation of all sized firms than other
datasets such as National Minimum Wage (NMW). More-
over, accounting regulations in the UK require private firms
to report significantly more accounting information than
some other countries. For example, even publicly traded
firms may not provide remuneration information in the US,
which is available for most firms in FAME.

Because of the rich information and aforementioned
advantages, many scholars have used the financial data from
FAME in different fields of economics. Girma et al. (2008)
investigated the two-way relationship between R&D and
export activity using the sales, employment, and wage
information from FAME. Guariglia and Mateut (2010)
studied the links between firm’s global engagement status
and their financial health, where the profit and loss and
balance sheet data in FAME are utilized. Draca et al. (2011)
evaluated the impact of minimum wage on firm profitability
in the UK using FAME’s profit and remuneration
information.

More importantly, the FAME dataset has been used
extensively in empirical work involving productivity ana-
lysis (Eberhardt and Helmers 2010). In order to study the
relationship between the density of economic activity and
productivity in the UK, Graham (2007) used FAME data
and a production function to estimation TFP. Harris and Li
(2008) considered the contribution of exporters to aggregate
productivity growth using FAME database. Faggio et al.
(2010) also collected data from FAME to estimate TFP for
UK firms, which enabled them to further study the evolu-
tion of inequality in productivity.

Since FAME covers the entire population of registered
UK firms, some other databases use data from FAME to
augment the coverage of their data. For example, the
Oxford Firm Level IP (OFLIP) merges FAME and IP
activity of firms in the form of patents and trade-marks,
which is used in Helmers and Rogers (2010), Helmers et al.
(2011), and Helmers and Rogers (2011). AMADEUS, a
pan-European firm-level database, contains a subset of firms

4 This is the assumption for ACF correction to OP model. We can
replace investment with intermediate input for ACF correction to
Levinsohn–Petrin (LP) model when intermediate input rather than
investment is used as proxy variable.

5 http://www.bvdinfo.com/en-gb/our-products/company-information/
national-products/fame
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contained in FAME, which is also utilized by some scholars
(e.g., in Benfratello and Sembenelli 2002).

Each firm’s balance sheet provides total asset, liabilities,
and shareholder funds information, while the profit and loss
account provides operating profits, depreciation, amortiza-
tion, impairment, remuneration, directors’ remuneration,
and the number of employees. This information allows us to
construct a more accurate measure of the output (Y) and
inputs (L and K).

The labor expenditure is the sum of remuneration and
directors’ remuneration. Remuneration includes wages and
salaries, social security cost, pension costs, and other staff
costs, while directors’ remuneration includes director’s fees,
pension contributions, and other compensations. Labor
quantity is defined as the number of employees.

Capital expenditure is defined as the sum of depreciation,
amortization, and impairment. Capital services are based on
“capital employed”. Employed capital is the total assets less
current liabilities. These are the values of the assets that
contribute to a firm’s ability to generate revenues (liquidity),
including both sunk cost (not used in production) and capital
(used in production). We assume the same ratio between
sunk cost and capital across firms. We use an 8 percent
depreciation rate to adjust capital expenditures, which is
recommended for the UK during our sample period by
Chadha et al. (2016). Total sunk cost for all of the firms is
total capital employed minus the total capital. This provides
us with the average ratio between sunk cost and capital,
which can be applied to estimate the capital in each firm.

In many productivity analyses (McGuckin et al. 1992;
Timmer and Voskoboynikov 2014), the output is measured
by value added. One way to calculate value added is to use
revenue minus cost of intermediate goods if we can identify
the net expenditures on intermediate inputs, which is
denoted as the subtraction method. Otherwise, we can use
the addition method, which is to sum profit, depreciation
cost and labor cost. Since FAME does not have complete
intermediate input information, we use the second approach.
We calculate value added as the sum of operating profit,
labor expenditure, and capital expenditure, which is intro-
duced in Griffith et al. (2006) who use this summation

method to generate value added and treat it as the output in
a conventional Cobb–Douglas production function for
manufacturing firms in the UK.

All series are real prices in 2005 British Pounds (GBP).
We deflate value-added, labor cost, and capital cost using the
Producer Price Index (PPI) and Consumer Price Index (CPI):
PPI and CPI of Ireland for firms in the Republic of Ireland
and the PPI and CPI of the UK for firms in England, Scotland,
Wales, North Ireland, and British Crown dependencies.

Using the FAME data, Harris and Li (2008) found huge
differences between manufacturing and non-manufacturing
sectors, and hence calculated the productivity for the two
groups separately. In this paper, we utilize only firms in the
manufacturing sectors of the British Isles, rather than firms
in all sectors, in order to minimize heterogeneity in pro-
duction processes. Missing observations, obvious reporting
errors, and outliers (largest and smallest 0.5%) are excluded
from our sample, leaving us with 4,814 × 8= 38,512 firm-
year observations over an eight-year period from 2005
to 2012.

Table 1 shows the sample statistics of the FAME data we
utilize in our empirical analysis. Average output is £23
million before the crisis and £26 million after the crisis.
Capital on average increases from £31 million before the
crisis to £35 million after the crisis, while its expenditure
increases from £2.49 million to £2.82 million. The average
number of employees also increases from 447 to 454
between those two periods, while labor costs increase from
£14.04 million to £14.82 million. These statistics point to an
increase in output, capital, and labor of 11, 13, and 2%,
respectively, indicating that firms in the British Isles were
using more capital input in their portfolios after the financial
crisis.

7 Quantitative analysis

7.1 SFA/OP/ACF model estimates of overall TFP loss

Table 2 compares the estimation results for the stochastic
frontier models and control function approaches for the

Table 1 Summary statistics
Variable Pre-financial crisis

(2005–2007)
Post-financial crisis
(2008–2012)

Mean S.D. Min Max Mean S.D. Min Max

Output (Y) (£ million) 23.44 261.0 0.081 13,900 26.04 294.2 0.03 14,700

Capital (K) (£ million) 31.15 349.0 0.007 14,100 35.32 442.8 0.014 17,300

Labor (L) 447 3153 2 103,401 454 3331 2 107,046

Capital expenditure (δK) 2.49 22.7 0 1123 2.82 31.6 0 2047

Labor expenditure (WL) 14.04 114.4 0.01 5484.2 14.82 129.9 0.01 6478.7

Notes: The sample size of pre-financial crisis is 14,442 and the sample size of post-financial crisis is 24,070
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pre-crisis period (2005–2007). Table 3 provides similar
comparisons but for the post-crisis period (2008–2012). It is
worth noting that we use the method in Amsler et al. (2016)
to check the endogeneity of the inputs where input prices
and lagged input quantities are adopted as instruments. The
result shows that both labor and capital in our dataset are
exogenous. The first four columns of Tables 2 and 3 report
the estimations derived from four SFA models (FIX, RND,
KSS and BC) discussed in Section 2. The fifth columns of
Tables 2 and 3 report the OLS estimates of the conventional
production function as the benchmark, whereas the sixth
and seventh column reports the estimation of OP and ACF
models introduced in Section 4, respectively. The first two
rows in Tables 2 and 3 give the estimated coefficient and
standard error of the simple time trend, respectively. All
estimators show that the technology change increases TFP
in the first period, but decreases TFP after the financial
crisis. The second two rows are the coefficient estimation
and standard error of capital input, respectively.

Tables 2 and 3 also reports average technical efficiency,
as well as the TFP loss by different models for the pre- and
post-crisis periods, which can be directly derived after we
estimate the average technical efficiency using Eq. (4). The
estimated TFP losses based on estimates from the four SFA
models and the OP model are fairly robust, and the average

is 50% (equal to an average 50% technical efficiency)
before the financial crisis. These TFP losses by different
models are all stable after the recession and remain at 50%
(equal to 50% average efficiency).

This paper adopts four robustness checks. Firstly, Table 4
compares the distribution of technical efficiency under SFA/
OP/ACF models. The results show that different models not
only provide robust average technical efficiency, but also
robust 10, 25, 50, 75, and 90% quantile technical efficiency
estimates. Secondly, Table 5 reports the TFP loss ratio year
by year, which is fairly robust and further confirms the
stable TFP losses after the financial crisis. Thirdly, we
check the robustness of the results under different functional
form assumptions. Table 6 compares the TFP loss ratio the
pre-crisis period (2005–2007) under the main model where
the production function is Cobb–Douglas with constant
returns to scale, as well as the ones estimated under
Cobb–Douglas and translog formulations without constant
returns to scale. Table 7 provides similar estimations for the
post-crisis period (2008–2012). The results from the dif-
ferent specifications are quite robust. Finally, although SFA/
OP/ACF models generate similar average technical effi-
ciency and productivity loss in FAME data, whether similar
results can be yielded in other dataset is unknown. To this
end we examine a sectorial subsample of Chilean firm-level

Table 2 Stochastic frontier and
control function estimators for
pre-financial crisis (2005–2007)

Stochastic frontier approach Control function approach

FIX RND KSS BC OLS OP ACF

Time trend 0.020***
(0.002)

0.016***
(0.002)

– −0.014
(0.016)

0.013***
(0.005)

0.011**
(0.005)

0.015***
(0.006)

Capital 0.174***
(0.008)

0.244***
(0.006)

0.206***
(0.009)

0.244***
(0.006)

0.300***
(0.004)

0.359***
(0.039)

0.305***
(0.040)

Labor 0.826***
(0.008)

0.756***
(0.006)

0.794***
(0.009)

0.756***
(0.006)

0.700***
(0.004)

0.641***
(0.044)

0.695***
(0.016)

Average TE 0.485 0.507 0.485 0.524 0.535 0.514 0.529

TFP loss ratio 0.515 0.493 0.515 0.476 0.465 0.486 0.471

Significant at: *10, **5 and ***1 percent; Standard error in parentheses

Table 3 Stochastic frontier and control function estimators for post-financial crisis (2008–2012)

Stochastic frontier approach Control function approach

FIX RND KSS BC OLS OP ACF

Time trend −0.007***
(0.001)

−0.007***
(0.001)

– −0.160***
(0.007)

−0.008***
(0.002)

−0.007***
(0.003)

−0.008***
(0.002)

Capital 0.224***
(0.006)

0.273***
(0.005)

0.286***
(0.008)

0.252***
(0.005)

0.339***
(0.003)

0.394***
(0.031)

0.405***
(0.047)

Labor 0.776***
(0.006)

0.727***
(0.005)

0.714***
(0.008)

0.748***
(0.005)

0.661***
(0.003)

0.606***
(0.028)

0.595***
(0.046)

Average TE 0.497 0.504 0.490 0.519 0.512 0.492 0.495

TFP loss ratio 0.503 0.496 0.510 0.481 0.488 0.508 0.505

Significant at: *10, **5 and ***1 percent; Standard error in parentheses

250 Journal of Productivity Analysis (2020) 53:243–263



production data6 in Table 8 to check if SFA/OP/ACF
models still provide robust results. The estimated average
technical efficiency and productivity losses are again robust
across approaches.

Table 9 reports the average TFP loss for each of the
24 sectors in UK manufacturing according to UK SIC 2007
code. The average TFP loss is the mean value of four SFA
estimates (FIX/RND/KSS/BC). During the sample period,
14 manufacturing sectors suffered from less than a 50%
TFP loss, whereas 10 other manufacturing sectors suffered
more than 50% TFP loss. On the one hand, manufacture of
coke and refined petroleum products (SIC code 19), man-
ufacture of basic pharmaceutical products and pharmaceu-
tical preparations (SIC code 21), as well as repair and
installation of machinery and equipment (SIC code 33) are

the three sectors that experienced the least TFP loss. On the
other hand, manufacture of textiles (SIC code 13), manu-
facture of wood and of products of wood and cork, except
furniture; manufacture of articles of straw and plaiting
materials (SIC code 16), and manufacture of furniture (SIC
code 31) encountered the most TFP loss. To summarize,
significant TFP losses are broad-based across sectors, since
23 out of the 24 sectors experienced more than 40% TFP
loss. Bughin et al. (2018) and Tenreyro (2018) both point
out that the manufacturing sector has an outsize impact on
the productivity slowdown in the UK. Riley et al. (2018)
believe that the movement of jobs out of productive man-
ufacturing into other less productive sectors in the UK is an
important reason for the productivity slowdown at the
aggregate level. Our results of broad-based TFP losses in
manufacturing is consistent with the findings in Bughin
et al. (2018). This productivity slowdown can lead to less
employment in manufacturing and consequently can result
in the productivity slowdown for the whole economy as
described in Riley et al. (2018).

7.2 Pakes–McGuire algorithm based on overall TFP
loss

Pakes Gowrisankaran and McGuire (1993) and Pakes and
McGuire (1994) defined several constants in their algo-
rithm. The same parameters as the original paper, except for
three in the profit function, are utilized. We also allow the
profit function to change before and after the financial crisis.
PM provides the outputs, including the efficiency level of
all the active firms in every period, the average lifespan of
firms, the average investment and profit in one period, and
so on. To this end, we calibrate the three parameters in the
profit function (D, f, and γ) by requiring that the model
provides similar statistics with FAME data, including the
average lifespan of firms and the investment-to-profit ratio.
Then, the average efficiency level can be estimated.

We follow Pakes et al. (1993) and Pakes and McGuire
(1994) by assuming an economy that starts with one firm and
that the efficiency level of firms can range from 0 to 19. Pakes
et al. assume new firms enter with an efficiency level of 4. In
our analysis we calculate the average efficiency of the newly
established firms in the FAME data, which is 0.45 using
SFA and therefore assume new firms in the UK enter with

Table 5 TFP loss ratio by year in various models

FIX RND KSS BC OLS OP ACF

2005 0.515 0.493 0.517 0.470 0.473 0.489 0.478

2006 0.515 0.493 0.502 0.475 0.463 0.487 0.469

2007 0.515 0.493 0.517 0.473 0.460 0.484 0.467

2008 0.503 0.496 0.510 0.515 0.477 0.498 0.501

2009 0.503 0.496 0.511 0.498 0.497 0.522 0.521

2010 0.503 0.496 0.510 0.480 0.493 0.510 0.508

2011 0.503 0.496 0.500 0.463 0.470 0.493 0.488

2012 0.503 0.496 0.513 0.476 0.502 0.519 0.509

Table 6 Estimation of TFP loss
ratio under various
specifications for pre-financial
crisis (2005–2007)

Stochastic frontier approach Control function
approach

FIX RND KSS BC SFAs average OLS OP ACF

Cobb–Douglas with CRS 0.515 0.493 0.515 0.476 0.500 0.465 0.486 0.471

Cobb–Douglas without CRS 0.556 0.486 0.539 0.470 0.513 0.461 0.480 0.470

Translog without CRS 0.535 0.459 0.565 0.459 0.505 0.470 0.489 0.485

Table 4 Distribution of technical efficiency

FIX RND KSS BC OLS OP ACF

Pre-financial crisis (2005–2007)

10% quantile 0.374 0.396 0.393 0.417 0.436 0.410 0.429

25% quantile 0.458 0.482 0.452 0.502 0.484 0.461 0.478

50% quantile 0.485 0.508 0.488 0.527 0.531 0.511 0.526

75% quantile 0.564 0.591 0.567 0.609 0.583 0.565 0.578

90% quantile 0.641 0.675 0.644 0.683 0.638 0.622 0.634

Post-financial crisis (2008–2012)

10% quantile 0.382 0.393 0.371 0.389 0.409 0.382 0.386

25% quantile 0.469 0.478 0.462 0.449 0.461 0.438 0.442

50% quantile 0.498 0.504 0.487 0.532 0.510 0.490 0.494

75% quantile 0.578 0.588 0.574 0.586 0.561 0.544 0.548

90% quantile 0.651 0.655 0.651 0.634 0.617 0.601 0.604
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efficiency levels of 9 (i.e. 19*0.45). We also looked at the
stability of our results to the assumption that the economy
begins with one firm by starting with multiple firms and found
our results to be quite robust to varying this initial condition.7

All of these statistics are computed by simulating such an
economy. We also use the value function, investment, and
entry/exit decisions to evaluate the optimal policies and
update the industry structure. We have separate but similar
programs to evaluate the statistics for the MPN equilibrium
and for the social planner’s problem before and after the
crisis, respectively. The industry is simulated 10,000 times
and the average efficiency level is the mean of all the active
firms in those 10,000 periods.

Based on FAME data, the average lifespan of firms is
17.4 years before and 16.1 years after the crisis. Goodridge
et al. (2012) provide the total annual investment in the UK
from 2005 to 2011. The annual Gross Value Added (GVA)
of the UK is available in the Regional Gross Value Added
report from the Office for National Statistics (ONS). These
two datasets provide the investment-to-value added ratio.
FAME data provides the value added-to-profit ratio.
Therefore, the average investment-to-profit ratio can be
derived, which calculates to 0.582 before and 0.557 after
the recession in 2008.

Table 10 presents the parameters used in the PM, as well
as the outputs. The average efficiency level before and after
the crisis is 6.85 and 7.03, respectively. Since the highest
efficiency level witnessed is 13 in both periods, this study
predicts a 47.3 and 45.9% TFP loss ratio before and after
the crisis, respectively. As a comparison, the SFA and OP/
ACF results indicated around 46–51% TFP loss ratio for
both before and after the recession. Therefore, the estima-
tions of the overall TFP loss ratio in all SFA/OP/ACF/PM
models are robust around 45–51%, and the change in TFP
loss ratio after the recession is not significant.

7.3 Midrigan–Xu model based TFP loss

This model groups the parameters into two categories. The
first category includes parameters that determine the process
for entrepreneurial productivity, as well as the size of the
financing frictions. We calibrate these parameters by
requiring that the model accounts for the salient features
(Part A in Table 11) of the FAME data. The second cate-
gory includes preference and technology parameters that are
difficult to directly identify using the FAME data. We
assign these parameter values as follows: (1) labor elasticity
(α) is estimated using the FAME data; (2) span of control
(η), discount factor (β(1+ μ)−1), persistence of workers in
the unemployed state (λ0),

8 and relative efficiency in mod-
ern sector ((1+ η)ϕ) are similar to the ones in Midrigan and

Table 7 Estimation of TFP loss
ratio under various
specifications for post-financial
crisis (2008–2012)

Stochastic frontier approach Control function
approach

FIX RND KSS BC SFAs average OLS OP ACF

Cobb–Douglas with CRS 0.503 0.496 0.510 0.481 0.498 0.488 0.508 0.505

Cobb–Douglas without CRS 0.533 0.502 0.509 0.489 0.508 0.486 0.499 0.506

Translog without CRS 0.529 0.472 0.575 0.511 0.522 0.480 0.508 0.487

Table 8 Stochastic frontier and control function estimators for Chilean firm data

Stochastic frontier approach Control function approach

FIX RND BC OLS OP ACF

Time trend 0.017*** (0.003) 0.018*** (0.003) 0.016* (0.009) 0.019*** (0.004) 0.028*** (0.006) 0.019 (0.015)

Capital 0.226*** (0.027) 0.240*** (0.027) 0.238*** (0.026) 0.274*** (0.042) 0.291*** (0.020) 0.296*** (0.013)

Labor 0.561*** (0.013) 0.525*** (0.012) 0.528*** (0.012) 0.395*** (0.012) 0.411*** (0.053) 0.401*** (0.058)

Water −0.111*** (0.022) −0.103*** (0.022) −0.104*** (0.022) −0.085** (0.038) −0.051** (0.024) −0.076*** (0.013)

Electricity 0.323*** (0.012) 0.338*** (0.011) 0.337*** (0.011) 0.415*** (0.013) 0.349*** (0.043) 0.379*** (0.031)

Average TE 0.776 0.775 0.774 0.769 0.766 0.768

TFP loss ratio 0.224 0.225 0.226 0.231 0.234 0.232

Significant at: *10, **5 and ***1 percent; Standard error in parentheses. Besides labor and capital, the companies in Chilean firm data also use two
intermediate inputs including water and electricity. Similar with the major model in Tables 2 and 3, this table assumes Cobb–Douglas production
function with constant returns to scale. This table does not calculate KSS estimator, since the Chilean firm data is an unbalanced dataset

7 The SFA approaches in Section 7.1 also give an average efficiency
of 44.6% for the newly established firm in 2005 (the entrants) in the
British Isles. Therefore, this paper sets a corresponding efficiency level
of 9 (out of 19) in the PM approach for new firms. 8 The probability of unemployed workers staying unemployed.
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Xu (2014); (3) capital depreciation (δ) follows UK’s aver-
age level as discussed in Section 6; (4) growth rate (γ)
follows the UK’s average level discussed in the first cate-
gory (Part A in Table 11), which is calculated using the
FAME data; and (5) persistence of workers in the employed
state (λ1)

9 so that λ0 and λ1 guarantee that the fraction of
workers who supply labor before the crisis is 60 percent, a
number consistent with UK’s employment to population
and with a 1.75 percentage point decrease after the crisis.10

Table 11 summarizes the parameter values that we used in
our experiments, as well as the results.

Data in Part A of Table 11 represent average levels from
the FAME sample from 2005 to 2007 with the exception of

the autocorrelation coefficient and intangibles investment-
to-output ratio. The autocorrelation coefficient is calculated
using the entire dataset from 2005 to 2012. Intangible
investment information is the average level for the UK
during the relevant period. We assign the parameters in Part
B for the column market “Benchmark” to make the envir-
onment as close as possible to the data. Then, the para-
meters in Part C are calibrated to ensure that the outcome
statistics in Part A of the benchmark correspond to the
statistics in the column market “Data”. At the same time, the
calibrated parameters in Part C of the benchmark also
guarantee all the conditions of equilibrium.

As introduced in Appendix 2, the borrowing constraint
is θ that governs the strength of financial frictions in the
economy, which requires the debt below a fraction of its
capital stock. Part C of Table 11 shows that θ decreased
from 0.56 before the crisis to 0.45 after the crisis, which
implies financial constraints has been tightened indeed.
As a result, the TFP loss due to financial misallocation is
1.1% before the recession. After the financial crisis, the
TFP loss due to financial friction increases from 1.1 to
2.1%. MX model indicate that the TFP loss due to
financial frictions doubled after the crisis. However, this
increase in loss is economically insignificant (1%
increase), which again supports the stable overall pro-
ductivity loss derived from SFA/OP/ACF/PM models
after the recession.

8 Conclusions

Our paper has estimated the TFP loss in the British Isles
both before and after the Great Recession using SFA/OP/
ACF/PM models. The overall TFP loss ratio is around
45–51%, which is robust in all three methods. Moreover,
TFP loss does not change significantly after the financial
crisis. These findings imply that UK companies took some
actions to successfully prevent more TFP loss after the
recession. Pessoa and Van Reenen (2014) find that UK
GDP per worker fell by almost 4% in the five years after
2008 was mainly due to capital shallowing, rather than fall
in TFP. They claim that TFP has barely fallen at all, which
is consistent with our findings. Since TFP determines long-
run economic growth (Pessoa and Van Reenen 2014), the
strong resilience of TFP implies there is no permanent
structural change in underlying potential output growth after
the recession.

However, the TFP loss due to financial friction estimated
by MX model doubled after the recession, which shows the
negative effect of financial constraints on productivity.
Consequently, the ratio of finance-caused TFP loss increa-
ses significantly as a part of the overall TFP loss. In sum-
mary, the financial crisis resulted in stricter borrowing

Table 9 TFP loss ratio for different sectors

SIC code Sector TFP Loss

19 Mfg. of coke and refined petroleum products 0.349

21 Mfg. of basic pharmaceutical products and
pharmaceutical preparations

0.417

33 Repair and installation of machinery and
equipment

0.424

26 Mfg. of computer, electronic and optical
products

0.443

28 Mfg. of machinery and equipment n.e.c. 0.447

20 Mfg. of chemicals and chemical products 0.458

11 Mfg. of beverages 0.472

18 Printing and reproduction of recorded media 0.472

32 Other manufacturing 0.485

24 Mfg. of basic metals 0.491

27 Mfg. of electrical equipment 0.491

12 Mfg. of tobacco products 0.495

25 Mfg. of fabricated metal products, except
machinery and equipment

0.497

30 Mfg. of other transport equipment 0.497

14 Mfg. of wearing apparel 0.501

29 Mfg. of motor vehicles, trailers and semi-
trailers

0.514

23 Mfg. of other non-metallic mineral products 0.518

17 Mfg. of paper and paper products 0.528

22 Mfg. of rubber and plastic products 0.535

15 Mfg. of leather and related products 0.545

10 Mfg. of food 0.547

31 Mfg. of furniture 0.551

16 Mfg. of wood and of products of wood and
cork, except furniture; Mfg. of articles of
straw and plaiting materials

0.570

13 Mfg. of textiles 0.570

9 The probability of employed workers remaining employed.
10 Data are from Federal Reserve Bank of St. Louis at https://fred.
stlouisfed.org/series/GBREPRNA.
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constraints that inevitably caused more TFP loss. However,
UK manufacturing firms were able to reduce the loss from
factors other than financial frictions (e.g., divestment and
job cuts) to compensate the loss due to financial friction and
hence maintain the overall TFP loss in order to survive
during the recession.

Our study provides an example of how to use both non-
structural and structural models to estimate overall pro-
ductivity performance. Our paper can hopefully serve as a
template for future studies that rely on various approaches
to model TFP growth, both highly structured models and
more robust but possibly less insightful non-structural
alternatives. Future studies can investigate how these dif-
ferent non-structural and structural models perform using
other database or Monte Carlo Simulations.
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9 Appendix 1 Pakes–McGuire model

This method computes the MPN equilibria (Maskin and
Tirole 1988a, 1988b) generated under the constraints of
Ericson and Pakes (1992). We employ the same notations
and equations from the original work (see Pakes et al. 1993,
pp. 7–36) in this section.

9.1 Model

The definition of “industry structure” is the range of effi-
ciency levels among the various businesses in the model. A

Table 10 Calibration and result
of the Pakes–McGuire model

Pre-financial crisis
2005–2007

Post-financial crisis
2008–2012

Data MPNE Social
planner

Data MPNE Social
planner

A. Used to calibrate model

Average lifespan of firms 17.4 16.8 16.1 16.3

Average investment-to-profit ratio 0.582 0.597 0.557 0.538

B. Assigned parameters

Constant used in investment fn. α 3

Cost for a GBP investment c 1

Maximum Number of firms N 3

Highest efficiency level attainable w 19

Efficiency level for entrants W_E 9

Sunk cost of entry X_E 0.2

Lowest sunk entry cost X_EL 0.15

Highest sunk entry cost X_EH 0.25

Discount factor β 0.92

Prob. of outside alternative rising δ 0.7

Scrap value at exit ϕ 0.1

C. Calibrated parameters

Vertical intercept of demand D 4 4.95

Fixed cost of production f 0.3 0.8

Capital-to-cost parameter γ 1 1.1

D. Result

Average efficiency level 6.85 8.71 7.03 8.9

Max. efficiency level appeared 13 – 13 –

Average TE 0.527 0.541

TFP Loss Ratio 0.473 0.459
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firm’s profits arise from the industry structure as well as
from the individual level of operational efficiency. Over the
operating life of the firm, the efficiency of the business will
change based on the stochastic environment of its opera-
tions. Decisions about investments, entries, and exits are
made to achieve the highest level of future cash flow, based
on expected discounted value (EDV), according to the
current information set. Each business bases its decisions
upon its prediction of the industry structure in the future
conditional on its current information set. As a con-
sequence, a given perception by each firm determines next
period’s true distribution of the industry structure. Equili-
brium is reached when the projected industry structure (i.e.,
the predicted distribution of the efficiencies of opponents)
is, in fact, the distribution that results from the predictions.
Therefore, the perceived distribution of future industry
structures is the same as the actual distribution that results

according to the behaviors of all opponents when those
behaviors are selected to achieve EDV maximization of
future net cash flows generated from those perceptions.
Thus, as the authors claim (Pakes and McGuire 1994,
p.557), this is a Markov-perfect Nash equilibrium where the
variables of choice are the investment volume combined
with the exit and entry decisions.

Industry structure: W ¼ 0; ¼ ;wf g is the set of effi-
ciency values for each firm, where 0 is zero efficiency and w
is the maximum level of efficiency. N is the maximum
number of firms that can be simultaneously active in the
industry. A state [w, n] consists of a w∈W*, n∈N, where
W*= {(w1, … , wN)|wj∈W, w1 ≥w2 ≥ ⋯ ≥ wN}. For any
firm, w represents the economic environment, including the
efficiency level of all firms, while n indicates which element
of this vector is the efficiency of its own. W* guarantees that
the industry structure is represented as a weakly decreasing

Table 11 Calibration and results
of the Midrigan–Xu model

Pre-financial crisis
2005–2007

Post-financial crisis
2008–2012

Data Benchmark Data Benchmark

A. Used to calibrate model

S.D. output growth 0.3 0.3 0.3 0.3

S.D. output 1.2 1.3 1.2 1.3

1-year autocorrelation 0.98 0.97 0.98 0.98

3-year autocorrelation 0.95 0.93 0.95 0.96

5-year autocorrelation 0.93 0.90 0.93 0.94

Intangibles investment-to-output, % 12.0 8.5 12.0 3.3

Output growth rate, % 3.9 3.9 1.3 1.3

Debt-to-output 1.9 2.1 2.1 2.1

Equity-to-output 1.1 1.0 1.3 1.2

B. Assigned parameters

Labor elasticity α 0.6 0.6

Span of control η 0.85 0.85

Capital depreciation δ 8.0 8.0

Discount factor β(1+ μ)−1 0.92 0.92

Growth rate γ 1.039 1.013

Persistence unit worker state λ1 0.667 0.646

Persistence zero worker state λ0 0.5 0.5

Relative efficiency in modern sector (1+ η)ϕ 0.2 0.2

C. Calibrated parameters

Collateral constraint θ 0.56 0.45

Equity issuance constraint χ 0.705 0.56

Standard deviation transitory shocks σε 0.37 0.485

Persistence transitory shocks ρ 0.86 0.745

Cost of entering modern sector κ 16 9

Wage W 0.94 0.94

D. Result

Loss misallocation, % 1.1 2.1
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N-tuple to avoid having multiple w for the same industry
structure.

Investment: A firm’s efficiency level for the next period
is determined by a Markov process that depends on its
current efficiency level, current investment, and exogenous
factors. This model denotes x as the current investment, k∈
W as the current efficiency level of a firm, and k′∈W as its
efficiency level in the next period. Let τ be the effect of
firm-specific investment and v the effect of other firm-
invariant exogenous variables that are the same for all firms.
α is a coefficient relates to self-investment rising and δ is the
probability of outside alternative rising, both decide the next
period efficiency level. Then the controlled Markov process
for the evolution of k′ is

k0 ¼ k þ τ � v; ð6Þ

where p τð Þ ¼ αxð Þ= 1þ αxð Þ; if τ ¼ 1
1= 1þ αxð Þ; if τ ¼ 0

�
and p vð Þ ¼

δ; if v ¼ 1
1� δ; if v ¼ 0:

�
Maximum level of efficiency. Equation (6) ensures that

efficiency can only improve with investment and shows that
the incremental efficiency in a period is bounded with
probability one. Hence, there exists an upper bound of
efficiency w. PMM computes w as the maximum efficiency
level that a monopolist would ever reach by starting with a
very large efficiency level and computing the monopolist’s
problem to see where the monopolist stops his or her
investment.

Exit and entry: Firms make the decision to exit if the
future cash flow value drops below the stated scrap value of
the business, which is denoted ϕ. The exiting business will
only receive the current scrap value, not the current period
profit. Business enters when the potential and expected
future cash flow value is greater than the one-time cost of
entry. The sunk cost of entry, X_E, is a random variable
uniformly distributed between X_EL (lowest) and X_EH
(highest). The potential entrants know the draw of X_E once
they decide to enter. If they enter, they will not receive
profit for that period, and enter with efficiency level W_E or
W_E−1, depending on the value of v.

9.2 The algorithm

Matrices: Profit, Π, is an iteration-invariant matrix that
calculates the one-shot game profit for each possible
industry structure. Each iteration begins with the investment
matrix, X, and the value function, V, from the output of the
last iteration.

Iterative procedure: The algorithm calculates Π and
iterates on X and V until the maximum of the element-by-
element difference between successive iterations in these

two matrices is below a specified tolerance level. For each
iteration, the calculation is done separately for each of the
industry structures, using the previous values of X and V.
Beginning with the most efficient firm within the industry
structure, its choice is updated using the most recent value
of the iteration. The decision is renewed based on the value
of the investment, exit, and entry. The value function is not
included. These figures are used to calculate the policies for
the firm with the next-highest efficiency. In turn, these
updated choices are applied to the firm ranked third in
efficiency, and so on.

Updating exit and entry: By comparing the value
function of an incumbent competitor with the scrap value, a
firm can predict if that incumbent competitor exits. The
PMM defines the strategy set so that a firm must exit if it
perceives that a competitor with a higher efficiency level
than its own has exited. For any [w, n], this model defines w′
as the industry structure that results after exit has been
accounted for, and m as the number of active firms in w′.
After the decision of exit, this model iterates on whether
there will be an entry if m < N. The value of future cash
flows in state [w′, n] is compared with the one-time sunk
cost in this process.

Updating investment: Each firm chooses an optimal
investment policy based on its perception of future com-
petitors. The calculation is done separately for every [w,
n]∈ (W*, N). The value function at the ith iteration is

Vi w; nð Þ ¼ max ϕ; supx� 0

Π w0; nð Þ � cx

þ βαx

1þ αx
Cl w0 þ e nð Þ; nð Þ

þ β

1þ αx
Cl w0; nð Þ

266664
377775

8>>>><>>>>:

9>>>>=>>>>;;

ð7Þ
where

Clðw0; nÞ ¼ λðw0; nÞ
(P1

τ1¼0
¼
P1 ��

τn¼0
¼

P1
τN¼0

P1
V¼0

Vi�1½w0 þW EeðneÞ þ τ � iv; n�

Pr½τ1jxi�1
1 ; v�¼ Pr½τnj ::x; v�¼ Pr½τN jxi�1

N ; v�pðvÞ
)

þ½1� λðw0; nÞ�
(P1

τ1¼0
¼
P1::
τn¼0

¼
P1
τN¼0

P1
V¼0

Vi�1½w0 þ τ � iv; n�

Pr½τ1jxi�1
N ; v�¼ Pr½τnj ::x; v�¼ Pr½τN jxi�1

N ; v�pðvÞ
)
:

In this value function, w′ is the incumbent’s efficiency
level after updating for exit; m(w′) is the number of active
competitors at w= w′; c is the cost in dollars of a dollar’s
worth of investment (equals 1 if no tax); λ(w′, n) is the
probability of entry; e(j) is a vector, all of whose elements
are zero except for the jth element, which is one; i is a
vector, all of whose elements are one; τ is the vector con-
taining the random τ of competitors; ne is the position of the
entrant for any industry structure; ne=m(w′)+ 1 unless the
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permutation cycle has been reordered; w0
1; ¼ ;w0

N are the
elements of the vector w′; and x1, … , xN (except xn) is the
investment of the N− 1 competitors at w′. A symbol (..) in a
summation indicates that the element is omitted. Cl(·) sums
over the probability-weighted average of the possible states
of future competitors, but not over the investing firm’s own
future states. It also indicates the firm’s expected discounted
value for each of the two possible realizations of the firm’s
own investment process, τ.

We denote xi[w′, n] as the investment level that solves
Eq. (7). To calculate it, the model first derives the optimal
level of investment, x[w′, n], given that this investment is
nonzero and that the firm does not exit. The actual level of
investment, therefore, is either this number or zero, where
zero is the solution if the optimal investment still leads to
an exit decision or if x[w′, n] is negative. Let Dx denote the
derivative with respect to x. The first-stage investment is
thus

x w0; n½ � ¼ argsolvx c ¼ β
Dx

αx
1 þ αx

n o
Cl w0 þ e nð Þ; nð Þ

�Dx
αx

1 þ αx

n o
Cl w0; nð Þ

264
375

8><>:
9>=>;

ð8Þ
It is worth noting that Dx

1
1 þ αx

n o
¼ α

1 þ αxð Þ2 ¼
α 1� p xð Þð Þ2, where p xð Þ ¼ αx

1 þ αx. So, if v1= Cl(w′+ e(n),

n) and v2= Cl(w′, n), the investment can be rewritten as

x ¼ argsolvxfc ¼ βα 1� p xð Þ½ �2 v1� v2ð Þg ) p xð Þ

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
βα v1� v2ð Þ

s
:

Taking the inverse of p(x), it can be seen that

x w0; n½ � ¼ p xð Þ
α� αp xð Þ :

It is straightforward to derive the optimal value function
by plugging the optimal investment into Eq. (8) and com-
puting

Vi w; nð Þ ¼ max
ϕ; Π w0; nð Þ � cx w0; n½ � þ βαx w0;n½ �

1þ αx w0;n½ �
Cl w0 þ e nð Þ; nð Þ þ β

1þ αx w0;n½ �Cl w
0; nð Þ

24 358<:
9=;

If Vi(w, n)= ϕ, then this model sets x= 0 with prob-
ability one. Hence, the actual investment is determined as

xi w0; n½ � ¼ I Vi w; nð Þ>ϕ
� �

x w0; n½ �;

where I{·} is the indicator function that takes the value of
one if the condition is true, and the value of zero otherwise.

Calculating the probability of entry: After the exit
decision is made, the value of entry is the value of an

incumbent who realized that (1) there would be no other
entry, and (2) if she enters, there would be no profits or
investments in the current period for her. The expected
discounted value of entering is

Ve w0ð Þ ¼ βCl w0 þW Ee m w0ð Þ þ 1½ �;m w0ð Þ þ 1; λ ¼ 0½ �:
A firm would like to enter if and only if Ve > X_E, which

is the random entry cost. Since the random cost is uniformly
distributed between X_EL and X_EH, the probability of
entry by an incumbent whose competitors are specified by w′
and m(w′) < N is

λ w0; nð Þ ¼ min max
Ve w0ð Þ � X EL

X EH � X EL
; 0

� 	
; 1

� 

:

Updating N: This model starts with the one-firm pro-
blem and solves for its value function and optimal policies.
Then it proceeds to the two-firm problem, using the fixed
values that is solved for in the one-firm problem as the
starting values for X and V:

V0 w1;w2ð Þ; 1½ � ¼ V1 w1ð Þ; 8w1;w2 2 W ;

V0 w1;w2ð Þ; 2½ � ¼ V1 w2ð Þ; 8w1;w2 2 W ;

where V ∞(·) is the fixed point for the one-firm problem.
Analogously, for the N-firm problem with N > 2, the starting
values are

V0 w; n½ � ¼ V1 ðw1; ¼ ; wN�1Þ; n½ �; if n<N

V1 ðw1; ¼ ;wN�2;wnÞ; n� 1½ �; if n ¼ N:

�

The elements of X are updated in the same way as V.
This process is then repeated until λ(w′, n)= 0 for all (w′, n)
with m(w′) ≥N− 1.

9.3 Profit function

The one-shot profit function that is utilized in this model
is based on a homogenous product, Nash-in-quantities
(Cournot) market11 where differences in efficiencies among
firms are reflected by differences in marginal costs. Let
producers’ different but constant marginal costs, θ(wn), be a
firm’s specific efficiency index multiplied by a common
factor price index. Accordingly, if sτ and sv are the loga-
rithms of the firm’s efficiency index and of the factor price

11 Nash-in-quantities means the quantity is the strategic variable. In
other words, the strategy space for each firm contains all the finite and
non-negative levels of output. And each firm chooses the output to
maximize profit, taking the output choice of its opponents as fixed.
Nash-in-price is a similar game, but here it is supposed that the firms
choose price instead of the output.
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index, respectively, then wn≡ sτ− sv and θ(wn)= γexp
(−Wn).

Let qn be firm n’s output, Q= Σqn, f be the fixed cost of
production, and D be the vertical intercept of the demand
curve. The profits are given by

πn ¼ p Qð Þqn � θ wnð Þqn � f ¼ D� Q� θ wnð Þð Þqn � f :

The unique Nash equilibrium for this problem has
quantities and price as

q�wn
¼ max 0; p� � θif g; and p� ¼ 1

n� þ 1
Dþ

Xn�
j¼1

θ wj

� �" #
:

where n* is the number of firms with positive q*. Finally,
the profit of the current period is

π w; nð Þ ¼ maxf�f ; p� w; nð Þ � θ wnð Þ½ �2 � f g

¼ max �f ;
1

n� þ 1
Dþ

XN
j¼1

θ wj

� �� θ wnð Þ
"" #2

� f

8<:
9=;:

9.4 Social planner’s problem

We are interested in finding out how the social planner will
respond when the technology is exactly the same as that
faced by the MPN competitors. The result enables us to
compare the average efficiency level (and TFP loss ratio) to
the MPN case.

In the homogenous products, Nash-in-quantities profits
model, the social planner will set p=mc for the firm with
the lowest marginal cost (with the highest efficiency level),
and produce until supply equals demand. The methodology
used to solve the social planner’s issues is similar to the one
used in the case of MPN competitors. The social planner’s
role is to maximize the stochastic profit function or the
projected value of social surplus, i.e. the producer plus
consumer surplus. The value function is then constructed
using the value function, as defined in Eq. (7).

Since the social planner controls the entire economy,
any industry structure results in only one state, not in
N states. Moreover, one does not need to form perceptions
about entry and exit or the behavior of cohorts, as the single
agent (i.e., the social planner) controls all active firms at
any time.

10 Appendix 2 Midrigan–Xu model

We also apply the benchmark model introduced by
Midrigan and Xu (2014). We outline below its set-up,
decision rules, definition of equilibrium, TFP function,
and first-best allocation of the economy. Our discussion

uses the same notations and equations from Midrigan and
Xu (2014).

10.1 Set up

The economy is populated by a measure Nt of producers and
a measure one of workers. The labor productivity and
producer’s population grow at constant rates. Producers
operate either in a traditional sector that uses only labor and
an unproductive technology, or in a modern sector that uses
capital and labor and a more productive technology. We
will focus on financial misallocation in the modern sector. A
one-time sunk entry cost is required for producers in the
traditional sector who want to enter into the modern sector.
Moreover, one-period noncontingent security and equity
claims to producers’ profits are the only two kinds of
financial instruments in the model.

Traditional sector producers: A certain amount, (γ− 1)
Nt, of new producers enter the economy at the end of period
t, but only in the traditional sector. Producers in this sector
face decreasing returns on technology (η < 1) that produces
output Yt using labor Lt as the only factor of production:

Yt ¼ exp zþ etð Þ1�ηLηt ð9Þ

The model assumes that entrants draw the permanent
productivity component z from some distribution G(z),
whose mean is normalized to unity. et is a transitory pro-
ductivity component that evolves over time according to a
finite-state Markov process of E= (e1, … , eT) with tran-
sition probabilities fi,j= Pr(et+1= ej|et= ei). Entrants draw
their initial productivity component ei from the stationary
distribution associated with f, which we denote with fi.

All producers in the traditional sector aim to maximize
their lifetime utility, which is E0

P1
t¼0 β

t logðCtÞ. However,
the budget constraints they face depend on whether
remaining in the traditional sector or switching to the
modern sector.

On the one hand, the budget constraint for those who
stay in the traditional sector is

Ct ¼ Yt �WLt � 1þ rð ÞDt þ Dtþ1; ð10Þ
where Dt denote the producer’s debt position, which is non-
positive since these producers are not allowed to borrow.
All entering producers have no wealth, i.e. the initial D is
equal to zero. Moreover, W and r are the equilibrium wage
and interest rate.

On the other hand, traditional sector producers who enter
the modern sector require an investment equal to exp(z)κ
units of output, which is proportional to the permanent
productivity component. Besides internal funds, both of the
two financial instruments including one-period risk-free
debt and equity claims to future profits are potential
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channels to finance the physical capital, Kt+1, and intangible
capital, exp(z)κ. In terms of debt, the borrowing constraint is

Dtþ1 � θ Ktþ1 þ exp zð Þκð Þ: ð11Þ

where θ∈ [0, 1] governs the strength of financial frictions in
the economy, which requires the debt below a fraction of its
capital stock. For equity claims, denote Pt as the price of the
claim to the entire stream of profits, where profits are
defined as Πm

t ¼ Yt �WLt � r þ δð ÞKt, where δ is the
capital depreciation rate. The model assumes that producers
can only issue claims to a fraction, θχ, of their future profits,
where χ∈ [0, 1]. θ is characterizing the degree of financial
development of the economy since it decides the producer’s
ability to both borrow and issue equity. The budget
constraint of a producer that enters the modern sector is
therefore

Ct þ Ktþ1 þ exp zð Þκ ¼ Yt �WLt � 1þ rð ÞDt þ Dtþ1 þ θχPt:

ð12Þ

Modern sector producers: The production function for
the producers in the modern sector is

Yt ¼ exp zþ et þ ϕð Þ1�η Lαt K
1�α
t

� �
where ϕ ≥ 0 determines the relative productivity of this
sector, α controls the share of labor in production, and Kt is
the amount of capital used in the previous period.

Producers in the modern sector can save and borrow at
the risk-free rate, r, subject to the constraint (11). Their
budget constraint is

Ct þ Ktþ1 � 1� δð ÞKt ¼ Yt �WLt � 1þ rð ÞDt � θχΠm
t þ Dtþ1:

ð13Þ

The model assumes, as is standard in the investment
literature, that output at date t+ 1 is produced with capital
held in period t. The choice of how much to invest at the
end of period t is, however, measurable with respect to et+1.
This assumption of timing explains why the expected return
to equity equals the risk free return.

Workers: A unit measure of workers is available in the
economy, each of whom supplies γ tvt efficiency units of
labor, where vt is the worker’s idiosyncratic efficiency that
evolves over time according to a finite-state Markov pro-
cess. These workers have the same log preferences (utility
function) as producers do. However, their budget constraint
is

cþ atþ1 þ
Z

Pi
tω

i
tþ1di ¼ Wγtνt þ 1þ rð Þat þ

Z
Pi
t þ Πm;i

t

� �
ωi
tdi;

where at denote a worker’s holdings of risk-free assets and
ωi
t denote the number of shares he or she owns of producer i.

The total asset holdings, atþ1 þ
R
Pi
tω

i
tþ1di, are non-negative

because the model assumes that workers cannot borrow.
Once again, there is no aggregate risk in this economy

due to the assumption of timing. As a result, the lack of
arbitrage implies that the return on the risk-free security is
equal to the expected return on equity claims:

1þ rð Þ ¼ Et Pi
tþ1 þ Πm;i

tþ1

� �
Pi
t

:

10.2 Recursive formulation and decision rules

Modern sector producers: The risk-free assumption on
capital implies that producer profits are solely a function of
its net worth, which is denoted as A= K−D. Moreover,
profits, output, and the optimal choice of capital and labor
are all homogeneous of degree one in (A, exp(z)) so this
model can rescale all variables by exp(z) including the
rescaled net worth a= A/exp(z). Given the new notation,
the Bellman equation is

Vmða; eiÞ ¼ max
a0;c

logðcÞ þ β
X
m

fi;jV
mða0; ejÞ: ð14Þ

Similarly, the budget constraint in Eq. (13) can be
rewritten as

cþ a0 ¼ 1� θχð Þπm α; eð Þ þ 1þ rð Þa; ð15Þ

where

πm α; eð Þ ¼ max
k;l

exp eþ ϕð Þ1�η lαk1�α
� �η�Wl� r þ δð Þk:

ð16Þ
Furthermore, the borrowing constraint in Eq. (11) redu-

ces to

k � 1
1� θ

aþ θ

1� θ
κ ð17Þ

This model characterizes the producer’s net worth
accumulation decision of the producer by

1
c a; eið Þ ¼ β

X
fi;j 1þ rð Þ þ 1

1� θ
μ a0; ej
� �� 	

1

c a0; ej
� �;

ð18Þ

where μ(a, e) is the multiplier on the borrowing constraint
(17). The producer’s return to savings increases with the
expectation that the borrowing constraint will be binding in
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future periods. Therefore, the producers have the incentive
to accumulate net worth.

Accordingly, the decisions on the optimal level of capital
and labor simplifies to

αη
y a; eð Þ
l a; eð Þ ¼ W ð19Þ

and

1� αð Þη y a; eð Þ
k a; eð Þ ¼ r þ δþ μ a; eð Þ: ð20Þ

Dispersion of net worth and productivity of businesses
due to borrowing constraints causes dispersion in the mar-
ginal product of capital of individual producers. In turn, this
causes TFP reductions due to misallocation. In the rescaled
formulation of the problem, it is worth noting that the
producer’s permanent productivity component, z, has no
independent effect on allocations.

Traditional sector producers: The next thing to con-
sider is the problem of producers in the traditional sector.
Since capital is not an input for these producers, their net
worth is a=−d. This model also denotes x as their savings.
The Bellman equation for such producers is

V τ a; eið Þ ¼ max
a0; c

log cð Þ þ βmax
P
j
fi;jV τ a0; ej

� �
;
P
m
fi;jVm a0; ej

� �( )
;

subject to

cþ x ¼ πτ eð Þ þ 1þ rð Þa ð21Þ

where

πτ eð Þ ¼ max
l

exp eð Þ1�ηlη �Wl:

In each period, the producer’s decision on whether to stay
in the traditional sector or switch to the modern sector depends
on the relative value of these two options. This decision also
determines the evolution of its net worth. A producer who
remains in the traditional sector simply inherits its past sav-
ings, a′= x, while a producer that enters the modern sector has

a0 ¼ x� κ þ θχp a0; eið Þ ð22Þ

where p(a′, ei) is the rescaled price of the equity claim to
that satisfies

p a; eið Þ ¼ 1
1þ r

X
j

fi;j p a0; ej
� �þ πm a0; ej

� �� �
ð23Þ

The producers in the modern sector may have negative
net worth since they can borrow against the intangible

capital. Besides the collateral constraint in Eq. (17), the
natural borrowing constraint is

a> amin ¼ � 1� θχð Þπm amin; e1ð Þ
r

ð24Þ

which guarantees the producer’s solvency even under the
worst possible sequence of productivity shocks. This
constraint may be more stringent than the collateral
constraint and motivate producers to accumulate enough
savings before entering the modern sector even in the
absence of a collateral constraint.

10.3 Equilibrium

Denote nmt a; eð Þ as the measure of modern-sector producers
and nτt a; eð Þ as the measure of traditional sector producers.
The population of producers in these two sectors sum to
Nt= γt:

R
A	Edn

m
t a; eð ÞþRA	Edn

τ
t a; eð Þ ¼ Nt.

On the one hand, the number of producers in the modern
sector evolves according to

nmtþ1 A; ej
� � ¼ Z

A

X
i

fi;jI am a;eið Þ2Af gdnmt a; eið Þ

þ
Z
A

X
i

fi;jI ξ a;eið Þ2Af gdnτt a; eið Þ;
ð25Þ

where ξ(a, e) is an indicator of whether a producer in the
traditional sector switches, A ¼ a; a½ � is the compact set of
values that a producer’s net worth can take and A is a family
of its subsets, am(.) is the amount of net worth for a producer
in the modern sector, and aτ,s(.) is the savings decision of a
producer who switches.

On the other hand, the measure of producers in the tra-
ditional sector is

nτtþ1 A; ej
� � ¼ Z

A

X
i

fi;jI ξ a;eið Þ¼0;aτ a;eið Þ2Af gdnτt a; eið Þ

þ γ � 1ð ÞNtI 02Af gf J ;

ð26Þ

where fj is the stationary distribution of the transitory
productivity and aτ(.) is the net worth of a producer that
stays in the traditional sector.

A balanced growth equilibrium must satisfy the follow-
ing five conditions:

(I) the labor market clearing condition:

Z
A	E

lτ eð Þdnτt a; eð Þ þ
Z
A	E

lm a; eð Þdnmt a; eð Þ ¼ Lt ¼ γt;
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(II) the asset market clearing condition:

Aw
tþ1 þ

P
i¼m;τ

Z
A	E

X
aitþ1 a; eð Þdnitþ1 a; eð Þ

¼
Z
A	E

kmtþ1 a; eð Þdnmtþ1 a; eð Þ;
ð27Þ

or

Ct þ Ktþ1 � 1� δð ÞKt þ Xt ¼ Yt; ð28Þ
(III) producer and worker optimization,
(IV) the no-arbitrage condition in Eq. (23),
(V) the laws of motion for the measures in Eqs. (25) and

(26).
All variables with time subscripts grow at a constant rate

γ while all other variables are fixed. Solving the balanced
growth equilibrium is equal to solving the stationary system
where all the time-variant variables are rescaled by γt.

10.4 Efficient allocations

The value of TFP in the economy is reduced by financial
frictions, which occur in two ways: either by affecting a
company’s entry decision into the modern sector or by causing
losses in the modern sector due to misallocation. The strength
of these two paths is defined using two separate computations.
The first computation determines the level of TFP losses in the
modern sector as a result of capital misallocation when the
number of modern producers (nm) is given. The equilibrium of
the model is taken as the stationary level. This calculation is
similar to the one that was stated by Hsieh and Klenow (2009).
The second computation calculates the optimal allocation of
producers across the traditional and modern sectors by solving
a planner’s problem (i.e. nm is not fixed). The broader question
in this calculation is identifying the level of consumption in the
economy and how it is limited by financial frictions that
develop along the way at both intensive and extensive margins.

TFP losses from misallocation in the modern sector:
Let i index producers and M be the set of all producers in
the modern sector. Also, let L and K be the total amount of
labor and capital used in that sector, respectively. Integrat-
ing the decision rules (19) and (20) across producers, the
total amount of output produced by the modern sector is

Y ¼ exp ϕð Þ

Z
i2M

exp eið Þ r þ δþ μið Þ� 1�αð Þη
1�η di


 �1�αη

Z
i2M

exp eið Þ r þ δþ μið Þ�αη�1
1�η di


 � 1�αð Þη

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼TFP

Lαt K
1�α
t

� �η

ð29Þ

This expression shows that TFP of the modern sector is
determined by the exogenous productivity gap, ϕ, and an
endogenous component that depends on the measure of

producers, their efficiency, and the extent to which they
are bind.

To calculate the efficient level of TFP given a measure of
M producers, the model allocates capital and labor across
producers so that the marginal products of capital and labor
are the same across producers in order to maximize total
output in the modern sector. Accordingly, the efficient level
of output is given by

Ye ¼ exp ϕð Þ1�η
Z
i2M

exp eið Þdi

 �1�η

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼TFPe

LαK1�α
� �η

: ð30Þ

Comparing Eqs. (29) and (30) and using the fact that the
shadow cost of capital, r+ δ+ μ, is proportional to its average
product, as in Eq. (20), the TFP losses from misallocation are

TFP losses ¼ log
Z
i2M

exp eið Þ

 �1�η

� log

Z
i2M

exp eið Þ yi
ki


 �� 1�αð Þη
1�η

 !1�αη

Z
i2M

exp eið Þ yi
ki


 �αη�1
1�η

 ! 1�αð Þη :

ð31Þ

To clarify Eq. (31), suppose that the logarithm of yi/ki and ei
are jointly normally distributed. Equation (31) then reduces to

TFP losses ¼ 1
2

1� αηð Þ 1� αð Þη
1� η

var log yi=kið Þð Þ; ð32Þ

so that the TFP losses are proportional to the variance of the
average product of capital. In other words, higher variability
in the average product of capital across producers generates
more TFP losses.

Efficient (first-best) allocations: To calculate the effi-
cient allocation, this model must also derive the optimal
number of producers across the two sectors. This can be done
by solving the social planner’s problem that is only con-
strained by the aggregate resource constraint in Eq. (28) and
by the production technologies that we have assumed.
Accordingly, their study chooses the amount of capital, K, the
number of producers in the two sectors, nτi and nmi , and the
allocation of labor across those sectors, Lτ and Lm, to maximizeX

i
exp eið Þnτi

� �1�η
Lτð Þη|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

output in traditional sector

þ
X

i
exp ei þ ϕð Þnmi

� �1�η
Lmð Þα Kð Þ1�α

� �η
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

output inmodern sector

� δþ γ

β
� 1


 �
K|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

cost of capital

� γ � 1ð ÞκPi n
m
i

β|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
sunk cost of entering

;

ð33Þ
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subject to the restrictions on the measurements implied by
Markov transition probabilities, fi,j, and to the labor
constraint, Lτ+ Lm= 1.

10.5 Summary

In short, the model has three kinds of players: workers,
traditional producers, and modern producers. Traditional
producers use only labor and unproductive technology, and
cannot borrow money. Modern producers, on the other
hand, use capital, labor, and more productive technology;
they can also borrow. Traditional producers can become
modern producers, but to do so they must incur a sunken
entry fee, and they are allowed to borrow and issue claims
to part of the future profit during that period of transfor-
mation. The amount that a producer can borrow is subject to
collateral constraints. Workers face uninsurable idiosyn-
cratic labor income risk and have access to financial mar-
kets. There are two types of financial instruments available:
a one-period non-contingent security and equity claims to
producers’ profits.

These three kinds of players all try to maximize their
lifetime utility. The equilibrium requires (I) a labor market
clearing condition, (II) an asset market clearing condition,
(III) producer and worker optimization, (IV) the no-
arbitrage condition, and (V) the laws of motion. Equation
(3) is used to calculate the TFP loss due to financial mis-
allocation. On the one hand, the actual TFP level in the
equilibrium can be derived under this setup. On the other
hand, the efficient level of TFP, TFPe, is the solution to the
planner’s problem that is not restricted in any way con-
cerning the allocation of labor and capital across firms.
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