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This article opens the black box of total factor productivity by decomposing this “all-in-one” index into
various input-embedded and input-free productivities in a new growth accounting framework. The new
method identifies different channels through which growth drivers affect economic growth and finds
the most effective way to boost the economy, which is unidentified in standard method. This new
approach uses a varying coefficient stochastic frontier model, which integrates the standpoints of the
endogenous growth theory and the induced innovation theory into a reduced-form productivity analy-
sis. The new growth accounting is then applied to study the impacts and contributions of R&D invest-
ments, international trade, and structural transformation to world agricultural growth during the period
of 1962 to 2014. The empirical results provide new evidence to support the endogenous growth theory
and the induced innovation theory, indicating the necessity of using the new growth accounting
method.
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Since the seminal work of Solow (1956),
growth accounting has provided a framework
to decompose the growth of a country’s
observed output into two sources: the contri-
butions due to changes in its factor inputs
and the residual that cannot be accounted for
by changes in input utilization. This unex-
plained part of growth is usually measured by
an increase in total factor productivity (TFP),
which is an indicator of technological progress.
Therefore, growth accounting is very useful to
study whether an economy experiences exten-
sive growth, which relies more on the expan-
sion of inputs, or intensive growth, which is
mainly driven by technical change. Moreover,
growth accounting is a popular tool to mea-
sure the contribution of different economic
drivers to economic growth through their
impacts on TFP growth.

Productivity analysis plays an important
role in growth accounting studies. In standard
growth accounting, the production function is
used to estimate coefficients of inputs and
derive total factor productivity, which can
decompose economic growth into growth due
to expansion of inputs and growth due to tech-
nological progress. Furthermore, some
scholars use the TFP determination function
to predict the effect of different TFP determi-
nants and then calculate their contributions
to economic growth in growth accounting.
However, this standardmethod has two prob-

lems. First, the fixed coefficients assumption in
the standard production function, along
with the exogenous growth theory, fails to cap-
ture the changing input–output relation across
countries and over time,1 and it contradicts the
endogenous growth theory in Romer (1986)
and Lucas (1988), as well as the induced innova-
tion theory in Hicks (1932) and Hayami and
Ruttan (1971). Some studies (e.g., Kumbhakar,
Denny and Fuss, 2000; Young 2003) use the
time-varying shares of input costs as the time-
varying coefficients of inputs, which rely on the
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1 Take fertilizer in agricultural production as an example; the
contribution of 1 kg of fertilizer to output must be greater today
than it was five decades ago, as new technologies make fertilizer
more efficient and effective.
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assumption of constant returns to scale that may
not be valid at macrolevel in endogenous growth
theory as shown inBarro (1999).2

Second, standard growth accounting can
only estimate the overall effect of a growth
driver on economic growth but is unable to
identify the pathways or channels through
which the growth drivers affect economic
growth, because all the possible routes are
mixed in the “all-in-one” TFP measured by
a Solow residual. The lack of identification
and partition of the overall effects is some-
times problematic. For example, suppose a
country has a constraint in its public R&D
budget: Where should we invest and how
much should we invest in each field to maxi-
mize economic growth? This is an important
decision in the real world and requires com-
paring the effects of R&D on economic
growth through different channels, which
are unable to be fulfilled by the standard
growth accounting approach.
This article introduces the ideas of the

endogenous growth theory and the induced
innovation theory into a reduced-form frame-
work, which allows a varying coefficient pro-
duction function to reflect the quality change
of inputs without the restriction of constant
returns to scale. This article then opens the
black box of the “all-in-one” TFP by decom-
posing its growth into changes in different
input-embedded productivities and input-
free productivity. As a result, the second
source of economic growth in standard
growth accounting, the growth in TFP, can
be further separated into growth in various
input-embedded productivities and input-
free productivity in our new growth
accounting framework. Finally, new growth
accounting can evaluate various channels
through which the growth drivers affect eco-
nomic growth, including their effects on
input quantity, input quality, and input-free
productivity, which is unidentified in stan-
dard growth accounting.
This study makes three central contribu-

tions. First, this study uses the endogenous
growth theory and the induced innovation the-
ory to justify the utilization of varying coeffi-
cient production functions. Second, this study
decomposes “all-in-one” total factor produc-
tivity into various input-embedded productiv-
ities and input-free productivity. Third, this is
a generalization of the traditional neoclassical

growth accounting methodology to investigate
various channels through which growth
drivers affect economic growth.

This article applies the newmodel to investi-
gate agricultural growth in 107 countries dur-
ing the period of 1962 to 2014. Agricultural
sector is selected as an application because
therearemore input types in this sectorbesides
labor and capital, such as land and feed, which
makes it a good example to show how eco-
nomicdrivers canaffect growth throughdiffer-
ent channels. The empirical results show that:
(a) labor is being replaced by capital and land
is being replaced by fertilizer, which is consis-
tentwith theopinion in the induced innovation
theory; (b) there is an increasing trend of
returns to scale, indicating that the same
amount of inputs can generate more output
over time, which is consistent with the stand-
point of the endogenous growth theory;
(c) R&D investment and international trade
made great contributions to world agricultural
growth, because 15% of all growth is due to
these two driving forces; (d) themost effective
ways forR&D toboost agricultural growth are
through fertilizer and machinery improve-
ment, whereas the most effective ways for
trade to boost agricultural growth are through
land and livestock capital; and (e) input expan-
sioncontributedmore toagricultural growth in
earlier years and in lagging countries, whereas
productivity growth (mainly driven by R&D
and trade) played a more important role in
recent years and in leading countries, which
provides evidence of the appropriate technol-
ogy hypothesis in Basu andWeil (1998).

The remainder of the article is structured as
follows. The next section reviews standard
growth accounting, the endogenous growth
theory, and the induced innovation theory.
The following section establishes the new
growth accounting model. In the subsequent
section, data description is provided. Next,
we present empirical results, and in the final
section we conclude.

Literature Review

This section begins with a brief review of the
literature on growth accounting, which is a
popular procedure used in economics to
measure the contribution of different factors
to economic growth. This methodology,
along with the exogenous growth theory,
was originally introduced in Solow (1956,2 More detailed discussion is provided in the next section.
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1957) and Swan (1956); they were later
applied by many scholars (e.g., Lin 1992;
Jorgenson and Stiroh 2000; Jones 2002; Bai
and Zhang 2010). Growth accounting pro-
vides a framework for allocating changes in
a country’s observed outputs into two
sources: the contributions due to changes in
its factor inputs and the residual that cannot
be accounted for by changes in input quanti-
ties. The latter is usually called total factor
productivity growth, which is measured by
the Solow residual in a production function.
Therefore, the productivity analysis that esti-
mates the production function plays an
important role in growth accounting studies,
as it can predict the parameters required to
decompose output growth.

Standard Growth Accounting in the
Exogenous Growth Theory

A classic production function with Cobb–
Douglas formation is frequently used by many
scholars (e.g., Gallup and Sachs 2000; Miller
2002; Deininger and Jin 2005; Hammond and
Thompson 2008; Pope and LaFrance 2013;
Shee and Stefanou 2014; Sheng, Ding, and
Huang 2019). For illustration purposes, con-
sider a deterministic Cobb–Douglas produc-
tion function with constant returns to scale in
the form:

ð1Þ yit = αit + βkit + 1−βð Þlit
where yit is the quantity of output, αit is total
factor productivity (TFP) or level of technol-
ogy, kit is the capital stock, and lit is the quan-
tity of labor, all for country i at time t and all
in logarithms. Then, the output growth is
Δyit = Δαit + βΔkit + (1 − β)Δlit, which implies
that the output growth (Δyit = yit − yit−1) only
comes from changes in input quantities
(Δkit = kit − kit−1 and Δlit = lit − lit−1) and
changes in TFP (Δαit = αit − αit−1).

3 The contri-
butions due to quantity changes in capital and
labor are βΔkit/Δyit and (1 − β)Δlit/Δyit,
respectively, whereas the contribution due to
productivity is Δαit/Δyit.

TFP is often regarded as the major driving
force of economic growthwith input constraints
(Sickles and Streitwieser 1998; Jin et al. 2002;
Deininger and Jin 2006). However, it is a Solow
residual that measures the portion of output

not explained by the amount of inputs used in
production (Sickles 2005). Therefore, a grow-
ing volume of empirical work aims to investi-
gate the determinants or sources of TFP or its
growth by further decomposing the unex-
plained part αit orΔαitwith the help of a typical
TFP determination regression:

ð2Þ αit = α+ λZit

where Z vectors a series of potential TFP
determinants that may be the real drivers of
economic growth. R&D investment and
international trade are usually treated as
the growth drivers and can therefore be
included in Z. λ vectors the corresponding
parameters that indicate the sign and magni-
tude of the effects on productivity. Because
the only channel designed for growth drivers
to affect economic growth is through their
effect on the “all-in-one” TFP, the contribu-
tion due to the growth drivers can be calcu-
lated by λ̂ΔZit=Δ yit. Many scholars pay
attention to the parameters λ̂, which reflect
the effects of the variables of interest on
productivity.

Some Ideas of the Endogenous Growth Theory

The exogenous growth theory treats techno-
logical progress, measured by TFP, as the
source of economic growth, whereas the
endogenous growth theory, building on the
studies of Romer (1986) and Lucas (1988),
emphasizes the importance of physical and
human capital accumulation and spillovers in
economic growth. Inspired by the learning-
by-doing model in Arrow (1962), Romer
(1986) believes the output yjt for company
j depends not only on its own inputs kjt and ljt
but also on the capital stock of other compa-
nies due to spillover effects. Mathematically,
the production function is

ð3Þ yjt = αjt + βkjt + γkt + 1−βð Þljt

where yjt is the quantity of output, αjt is the
TFP, kjt is the capital stock, and ljt is the quan-
tity of labor, all for firm j at time t and all in log-
arithms. kt accounts for the economy-wide
capital stock at time t. For company j, positive
spillover effects exist if γ > 0. InRomer (1986),
k refers to capital stock and therefore repre-
sents a learning-by-investing model. A similar
idea can be found in Griliches (1979), where k
is a knowledge capital measure based on3 Δyit ≈ ΔYit/YitwhenΔYit is relatively small with respect toYit.
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knowledge-creating activities, such as R&D,
so that the spillovers represent the spread of
knowledge across companies. In Lucas
(1988), however, k represents human capital
measured by education level to capture spill-
over effects due to cooperation and learning
in groups. Given the firm-level production
function in equation (3), Barro (1999) shows
that the economy-wide production function
in equilibrium for country i is

ð4Þ yit = αit + β + γð Þkit + 1−βð Þlit:

Increasing returns to scale is observed at the
country level if γ > 0. Decreasing returns to
scale (γ < 0) is also possible for reasons such
as traffic congestion and environmental dam-
age, which implies negative spillover effects
and diseconomies of scale (Barro 1999).
To summarize, the endogenous growth

theory illustrates that the country-level pro-
duction function does not have to follow con-
stant returns to scale due to spillovers. This
article therefore relaxes the assumption of
constant returns to scale that is heavily relied
on by some scholars (e.g., Kumbhakar,
Denny and Fuss, 2000; Young 2003) who
use time-varying shares of input costs as
input elasticities.4 Moreover, the spillover
effects, measured by γ, depend on R&D in
Griliches (1979), which can be positive or
negative. Based on these findings concerning
the endogenous growth theory, γ may vary
across countries and over time, as the condi-
tion of R&D changes across countries and
over time. As a result, the input elasticity
(β + γit) may be country specific and time
variant.

Some Ideas of the Induced Innovation Theory

In his book, Hicks (1932) wrote: “A change in
the relative prices of the factors of production
is itself a spur to invention, and to invention of
a particular kind—directed to economizing
the use of a factor which has become relatively
expensive.” The Hicksian model of induced
innovation (also known as induced technical
change) believes that changes in relative input
prices would not only lead to changes in input
proportions but would also affect the direction
of innovation. In the Cobb–Douglas

production function in equation (1), compa-
nies will substitute capital for labor if the rela-
tive price (wage–rental ratio) increases. That
is, if labor becomes more expensive, compa-
nies will try to invent machines to replace
labor. As a result of technology changes, β in
equation (1) may change.

A group of development economists
(e.g., Hayami and Ruttan 1971; Binswanger
et al. 1978) uses the model of induced innova-
tion and finds that the direction of technical
change in agriculture was induced by changes
(or differences) in relative resource endow-
ments and factor prices. In general, mechani-
cal technology is developed to substitute
power and machinery for workforce, whereas
biological and chemical technology is inno-
vated to substitute fertilizer and other chemi-
cals for land over time. Moreover, the pace
of these two trends also depends on the
resource endowments of a country. Ruttan
(2002) illustrates the process of induced tech-
nical change in Japan and the United States,
where both of the aforementioned trends are
witnessed over time. However, Japanese
farmers use more fertilizer and U.S. farmers
use more power due to the difference in labor
and land endowments in these two countries.

In summary, the difference in resource
endowment across countries and the variation
of relative input prices over time can change
the direction of innovation, which can lead to
a change in technology and therefore the
shape of the production function. Mathemati-
cally, β in equation (1) may be country-specific
and time-variant. Moreover, the change in β
may depend on the R&D investment in capital
and labor.

Some More Extensions

Although having different setups, both the
endogenous growth theory and induced inno-
vation theory support that the country-specific
and time-variant input elasticities are affected
by some variables, such as R&D investment.
Mathematically, the production function is

ð5Þ yit = αit + βitkit + δit lit

where βit = f1(Zit) and δit = f2(Zit). At this point,
we assume linear effects of Zit on input elasiti-
cies, which determine the linear relations
between growth drivers (e.g., R&D) and the
input elasticities. It is worth noting that δit does
not need to equal 1 − βit due to the potential

4 These parameters represent output elasticity with respect to
different inputs. For simplicity, this article calls them input
elasticities.
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spillovers introduced in the endogenous growth
theory. Therefore, the production function that
assumes linear effects ofZit on input elasticities
and productivity is

ð6Þ yit = α0 + λZit + β0 + ρZitð Þkit + δ0 + τZitð Þlit

where α0, β0, and δ0 are the level of TFP, capi-
tal elasticity, and labor elasticity when Z = 0,
respectively. λ, ρ, and τ measure the effects of
Z on TFP, capital elasticity, and labor elastic-
ity, respectively.

Besides the illustration of the aforemen-
tioned two strands of literature, this article
provides more reasons to allow for varying
input elasticities. In the production function,
kit and lit measure the quantity of the inputs,
whereas the input elasticities to some extent
can be regarded as the “quality” of the inputs.
For a given amount of input, a greater input
elasticity can increase output. Considering fer-
tilizer in agricultural production again, other
things being equal, the contribution of the
same amount of fertilizer to output must be
greater today than five decades ago, as new
technologies make fertilizer more efficient
and effective. Under this condition, fertilizer
elasticity (βit) increases, which may be the
result of more R&D investment in fertilizer,
hence the relation βit = f1(Zit). The endoge-
nous growth theory introduces spillovers on
inputs, whereas induced innovation theory
introduces invention on inputs, but both can
result in better quality of the inputs and hence
more output given fixed inputs.

International trade is another growth driver
in Zit that can affect input elasticities and pro-
ductivity in addition to R&D. The theory of
induced innovation emphasizes that the differ-
ences in resource endowment and input prices
across countries and over time can change the
shape of the production function. International
trade, however, can change resource allocation
and input prices, and therefore affect input
elasticities and productivity. The third growth
driver is structural transformation, which refers
to the reallocation of economic activity across
the broad sectors of agriculture,manufacturing,
and services (Herrendorf, Rogerson, and
Valentinyi 2014). In most cases, manufacturing
and services are more productive than agricul-
ture. Therefore, countries can improve their
aggregated TFP by increasing the share of their
non-agricultural sector. More importantly,
structural transformation can also affect input
elasticities, as each sector has its own produc-
tion technologies and therefore sector-specific

input elasticities. Improving the share of a spe-
cific sector can make the overall input elastici-
ties of the economy closer to the input
elasticities of that sector. Because the ratio of
the three sectors varies across countries and
structural transformation happens all the time,
country-level input elasticities are not constant.
What if equation (6) is the true data-

generating process, but we assume constant
input elasticities? Equation (6) can be rewrit-
ten as

ð7Þ yit = α0 + λZit + β0−β̂
� �

+ ρZit
� �

kit

+ δ0−δ̂
� �

+ τZit
� �

lit +β̂kit +δ̂lit

where β̂ and δ̂ are estimates of capital and
labor elasticities derived by the conventional
production function that assumes constant
input elasticities. Then, the estimated TFP is

ð8Þ TF̂Pit = α0 + λZit + β0−β̂
� �

+ ρZit
� �

kit

+ δ0−δ̂
� �

+ τZit
� �

lit:

Rearranging equation (8), we get

ð9Þ TF̂Pit = λ+ ρkit + τlit½ �Zit + α0

+ β0−β̂
� �

kit + δ0−δ̂
� �

lit:

Finally, when the TFP determination func-
tion in equation (2) is utilized to decompose
the estimated TFP given in equation (9), the
estimated effect of Z on productivity equals
λ + ρkit + τlit, which not only includes the true
impact, λ, but also mistakenly covers the
impacts of Z on capital elasticity (ρ) and labor
elasticity (τ).
When the main purpose is to estimate the

overall effects ofZ on output, standard growth
accounting is fine, as the impacts of Z on pro-
ductivity and input elasticities (i.e., λ, ρ, and
τ), at the end, all contribute to output. More-
over, because the definition of TFP is the por-
tion of output not explained by the amount of
input used in production, it is reasonable to
contribute all the residuals besides input quan-
tities, even input qualities, into TFP. There-
fore, this article does not negate the
credibility of the large volume of empirical
studies based on standard growth accounting,
if their goal is only to evaluate the sources
and the overall contribution of each source to
economic growth.
However, standard growth accounting fails

to identify the pathways or channels through
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which the growth sources (Z) affect economic
growth because all the possible routes are
mixed in the “all-in-one” TFP in equation (9),
not to mention quantifying the contribution of
a specific source, such as R&D, to economic
growth across various pathways. The lack of
identification and partition can be problematic
when we are looking for the most effective
channels to boost economic growth. This is
an important issue in the real world and
requires a comparison of the magnitude of λ,
ρ, and τ, which is unable to be fulfilled by stan-
dard growth accounting approach.
To summarize, both the endogenous growth

theory and induced innovation theory, as well
as the idea of input quality heterogeneity, sug-
gest the use of varying input elasticities in the
production function. This article establishes a
new growth accounting approach with varying
coefficient concern. Moreover, this new
method allows the impacts of growth drivers
on input elasticities in addition to their effects
on productivity. Finally, new growth account-
ing aims not only to partition the economic
growth to changes in input quantities and total
factor productivity but also to further decom-
pose the growth of “all-in-one” TFP into
growth in different input-embedded produc-
tivities and input-free productivity. It is worth
noting that growth in input-embedded produc-
tivity refers to the productivity gain on input
quality improvement. Therefore, new growth
accounting can identify and quantify the path-
ways or channels through which the growth
drivers affect economic growth. Figure 1 illus-
trates the difference between standard growth
accounting and new growth accounting.
Figure 1 shows how standard growth

accounting and new growth accounting evalu-
ate the effect of R&D on economic growth.

In the left-hand graph in figure 1, standard
growth accounting can only estimate the over-
all effect of R&D on TFP growth, which is the
only channel through which R&D affects eco-
nomic growth. In the right-hand graph of fig-
ure 1, however, new growth accounting can
decompose TFP growth into three parts,
including capital-embedded, labor-embedded,
and the remaining (input-free) productivity
growth. As a result, new growth accounting
can investigate and calculate howR&D affects
economic growth through these three chan-
nels. Moreover, as will be shown in the next
section, R&D can also affect the contribution
of input quantity growth on economic growth,
which provides another channel by which
R&D affects economic growth. Consequently,
it is possible to evaluate and compare the
effectiveness of R&D investments through dif-
ferent channels, which is unavailable in stan-
dard growth accounting.

Methodology

This section establishes a new growth account-
ing method. Although themodel is built in gen-
eral, agricultural production is used as an
example to illustrate this model and is later
used as an application of this model for the fol-
lowing reason. In the production function of the
whole economy, as analyzed in the previous
section, labor and capital are the only two fac-
tor inputs in many datasets and previous stud-
ies. For agricultural production, however,
capital is further decomposed into land, live-
stock capital, machinery, fertilizer, and animal
feed in datasets such as the Food and Agricul-
ture Organization of the United Nations

Figure 1. Standard growth accounting and new growth accounting
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(FAO) and the Economic Research Service of
the United States Department of Agriculture
(USDA-ERS). As a result, the central contri-
bution of the new model, identifying the best
channel for the growth driver to boost eco-
nomic development, is greatly expanded. For
example, this model can instruct if the fertilizer
industry ormachinery industry should getmore
R&D funding to maximize their output level,
which leads tomore pertinent and effective pol-
icy implications.

It is worth noting that this presentmodel can
easily be applied to analyses of other sectors,
or even the whole economy. However, the
value added of the new growth accounting
depends on the input variables in hand. If we
only have data on labor and capital inputs,
TFP can only break down to labor-embedded,
capital-embedded, and input-free productivity
as shown in figure 1. Suppose we find that the
marginal effect of R&D on economic growth
is the most efficient through investment in
capital-embedded productivity. This finding
is more informative than the one in standard
growth accounting because it indicates that
R&D investment on capital is more efficient
than on labor and input-free productivity.
But it is still too vague in terms of where to
invest, as there are so many fields within capi-
tal investment. In contrast, if we have data of
different types of capital, such as the afore-
mentioned agricultural datasets, we will have
a better idea of where to invest. To summarize,
the more detailed information of the input
portfolio we have, the more value added from
the new growth accounting we can get.

As discussed, the major disadvantage of
standard growth accounting based on the con-
ventional production model is the rigid
assumption of constant input elasticities.
Therefore, it fails to measure the variation of
input elasticities and leaves it in the total factor
productivity. Under this setup, the pathways
through which the growth drivers affect output
are unidentified nor do they quantify the con-
tributions across various channels to find the
most effective pathway to boost economic
growth. Take the effect of R&D investment
on agricultural growth as an example: Egli
(2008) lists some sources of agricultural pro-
ductivity, including mechanization, fertilizers,
more digestible animal feed, and so on. All
these factors can be improved through agricul-
tural R&D spending. Hence, there are multi-
ple pathways by which R&D investment can
affect productivity and output growth, which
cannot be identified by standard growth

accounting, as it combines all these sources to
the “all-in-one” TFP.
Let us now focus on the sources of agricul-

tural productivity in Egli (2008), most of which
are input related or input embedded. More-
over, R&D investments are improving the
quality of these inputs. For example, R&D in
the fertilizer industry makes it more effective,
R&D on animal feed factories makes them
more endurable and efficient, and R&D on
machinery results in more powerful and pro-
ductive tractors today than five decades ago.
Therefore, a production function that captures
the quality changes of the inputs is needed in
order to identify the channels through which
a growth driver, such as R&D, affects eco-
nomic growth.
This article introduces a varying coefficient

production frontier model to control the
impacts of growth drivers, not only on produc-
tivity as in the literature but also on input elas-
ticities that were overlooked by standard
growth accounting studies. The estimated
varying input elasticities and productivity are
then regressed on the growth drivers to iden-
tify their effects, which sheds light on the path-
ways of various sources to growth. Moreover,
new growth accounting is established to fur-
ther quantify the channels and contributions
of each growth driver on economic develop-
ment, which is shown in figure 1.
A varying coefficient production frontier

model can be established by introducing the
varying coefficient model and stochastic fron-
tier model into the conventional production
function. On the one hand, the varying coeffi-
cient model is proposed by Hastie and Tibshir-
ani (1993) in the form:

y= x1h1 θ1ð Þ+…+ xkhk θkð Þ+ ε

where the coefficients of independent variables
(xk) are nonparametric functions (hk(�)) of
“threshold” variables θk. In other words, the
magnitudes of the coefficients (assumed to be
fixed β in the conventional model) are affected
by these “threshold” variables. Because the
coefficients are not fixed, this method is called
the “varying coefficient model.”
On the other hand, the stochastic frontier

model is proposed by Aigner, Lovell, and
Schmidt (1977) and Meeusen and Van den
Broeck (1977), and has been widely used by
many scholars (e.g., Jin et al. 2010; Wang,
Yamauchi, and Huang 2016; Yang et al.
2016). A classic stochastic frontier model has
the form:
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yit = f Xit ;βð Þ+ τT + νit−uit

where f(Xit; β) measures the production fron-
tier, T vectors a group of year dummy vari-
ables, and TEit = exp(−uit) accounts for
technical efficiency. It is worth noting that the
conventional production function can be writ-
ten as yit = f(Xit; β) + τT + νit, where f(Xit; β)
+ τT measures the average input–output rela-
tion over time and any deviation from this
function is explained by the disturbance νit
rather than inefficiency. In the stochastic fron-
tier model, however, f(Xit; β) + τT generates
the highest attainable output given inputs in
each period and therefore measures the opti-
mal input–output relation over time. Mean-
while, any deviation of the actual output
from the highest attainable output is explained
not only by disturbance νit but also by ineffi-
ciency uit. Finally, total factor productivity is
the sum of τT and −uit, where τT accounts
for technical level and −uit accounts for effi-
ciency level. As a result, productivity growth
can be broken down into technical progress
and efficiency change in the stochastic frontier
model, which cannot be achieved in the con-
ventional production function.
Considering the varying coefficient model

and stochastic frontier model, this article gen-
erates a varying coefficient stochastic frontier
model to estimate the production process in
the form:

ð10Þ yit = h0 θitð Þ+
Xp
k= 1

hk θitð Þxkit + τT + νit−uit

where βkit = hk θitð Þ is a nonparametric function
to estimate the varying elasticity of the k-th
input so that even nonlinear relations can be
captured. The portfolio of the “threshold” var-
iables, including the growth drivers and other
controlled variables, will be further discussed.
The intercept, h0(θit), is also assumed to be a
nonparametric function of the “threshold”
variables to allow the effects of growth drivers
on output through input-free productivity. T
vectors a group of year dummy variables, and
νit is a normally distributed disturbance. uit
measures the distance between the country’s
actual production and the world’s frontier,
and therefore indicates the loss in efficiency.
A few productivity analyses have employed

the varying coefficient production model.
Ahmad, Leelahanon, and Li (2005) use a
firm’s R&D spending as the “threshold” vari-
able in a varying coefficient model to estimate

the production function of China’s
manufacturing industry. Zhang et al. (2012)
use a varying coefficient production function
to analyze the Chinese high-tech industry,
where R&D and time trend are selected as
the “threshold” variables. Moreover, some
scholars introduce the idea of the varying coef-
ficient model in stochastic frontier analysis.
Sun and Kumbhakar (2013) investigate the
technical efficiency of 3,294 active forest
owners in the Norwegian forest industry using
R&D and time as the “threshold” variables in
a varying coefficient stochastic frontier model.
Gong (2018a) establishes a varying coefficient
stochastic frontier model to evaluate and com-
pare the efficiency of global oilfield service
firms, where revenue shares of the five seg-
ments within the oilfield market are treated
as the “threshold” variables. Gong (2020) uses
ownership and business portfolio as the
“threshold” variables in a varying coefficient
stochastic frontier model to estimate their
impacts on petroleum production.

Some studies use a varying coefficient sto-
chastic frontier model to estimate the produc-
tivity of the agricultural sector. Huang and
Kalirajan (1997) use a varying coefficient sto-
chastic frontier approach to estimate the
potential of grain production in China using
household survey data from the period of
1993 to 1995. Gong (2018b) investigates pro-
vincial agriculture production in China from
1978 to 2015, where the input elasticities are
affected by time and the agricultural structure
of farming, forestry, animal husbandry, and
fishery. However, most of these studies only
consider the impact of one or two growth
sources on the production function/frontier.
Moreover, no research has linked the varying
coefficient production function/frontier to the
growth accounting analysis.

In terms of the “threshold” variables used in
this article, the first and foremost growth
driver is R&D investment, which determines
the technology progress. We have illustrated
how R&D can affect output through its effect
on various inputs in the agricultural sector.
Moreover, the growth in input-free productiv-
ity estimated by equation (10) is the residual
after changes in input qualities are ruled out.
R&D spending may also affect TFP though
input-unrelated channels, such as the invest-
ment in e-commerce to better link producers
and consumers.

The degree of openness can be the second
growth driver that acts as a “threshold” vari-
able. The openness of a country, measured
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by its trade-to-GDP ratio, indicates the diffi-
culty of resource and commodities exchange
across countries. The free exchange of inputs
may avoid resource misallocation, which
achieves higher marginal products and there-
fore improves input elasticities. The free
exchange of outputs, on the other hand, can
help boost input-free productivity growth, as
comparative advantages of the country can
play a positive role in economic growth even
with constraints in input endowment. In sum-
mary, the degree of openness may affect eco-
nomic growth through its effect on both the
input-embedded productivity (input elastici-
ties) and input-free productivity.

The third economic driver is the structural
transformation. Even without technological
progress, a country’s output can still benefit
frommovingmore resources from less produc-
tive to more productive segments. In the agri-
cultural sector, structural transformation
refers to the reallocation of economic activity
between the crops segment and the livestock
segment. This article uses the share of the live-
stock segment to account for the structural
transformation, which can be employed as
another “threshold” variable.

Besides these three growth drivers, this arti-
cle also includes time trend in the portfolio of
“threshold” variables. The varying coefficient
model is first utilized to model time-variant
coefficient functions for censored data in sur-
vival analysis where time trend is the only
“threshold” variable. Time trend can help con-
trol time-fixed effects or the changes in the
macro environment, such as business cycles,
technological revolutions, reforms, and wars.
In the agricultural sector, the trend that substi-
tutes power and machinery for workforce and
substitutes fertilizer and other chemicals for
land may still occur over time, even if the
growth drivers are maintained at the same
level. Adding the time trend in the portfolio
of “threshold” variables can capture this
trend. To summarize, the “threshold” vari-
ables include R&D, openness (trade), struc-
tural transformation, and time trend.
Mathematically, θit = (r & dit, tradeit,
structureit, t) where r & dit is the R&D-to-
output ratio, tradeit is the trade-to-GDP ratio,
structureit is the output share of livestock in
total agricultural products, and t is the year
trend.

The varying coefficient production function
can control the potential effects of the “thresh-
old” variables if these effects indeed exist. This
article uses the penalized B-spline approach to

estimate the varying coefficient stochastic
frontier production function in equation (10)
for two reasons. First, spline-based methods
are preferred over kernel-based methods, as
the five “threshold” variables lead to the
“curse of dimensionality” issue if the kernel-
based methods are adopted. Second, Lu,
Yang, and Li (2008) prove that penalized B-
spline estimators of a varying coefficient
model can achieve strong consistency and
asymptotic normality, which makes it a plausi-
ble method to be utilized. This article adopts
the estimation strategy in Gong (2018b) to
solve the varying coefficient stochastic frontier
function in equation (10). More specifically, a
two-step approach proposed by Fan, Li, and
Weersink (1996) that solves semiparametric
and nonparametric stochastic frontier models
is employed: in the first step, the inefficiency
term −uit is ignored and the penalized B-spline
method is used to derive residual in equa-
tion (10); in the second step, the inefficiency
term −uit is isolated from the residual using
the popular “Error Components Frontier”
method (Battese and Coelli 1992).
In the new growth accounting model, the

varying coefficient method reports the contri-
bution of input quantities change, input-
embedded productivity growth, input-free
productivity growth, and the change in resid-
uals. It is worth noting that the last part, the
change in residuals, is introduced because the
production function in equation (10) is a sto-
chastic model with disturbance νit, rather than
a deterministic model, as in equation (1). It is
important to include this disturbance to cap-
ture noise, as agricultural production is signifi-
cantly affected by some unobserved and
unmeasurable variables, such as weather and
pests. Moreover, it is necessary to include the
disturbance term because FAO agricultural
data, the main data sources for world agricul-
tural studies, may be flawed, especially for
small and poor countries without enough
capacity for statistical collection (Headey,
Alauddin, and Rao 2010). Hence, the output
growth can be decomposed to

ð11Þ Δ yit =
Xp
k= 1

βkitx
k
it−β

k
it−1x

k
it−1

� �
+ΔIFPit +Δνit

where IFPit = h0(θit) + τT − uit measures the
input-free productivity for country i at time
t and can be derived from equation (10) using
the estimation strategy in Gong (2018b). Fur-
ther decomposing the input-related part,

Gong New Growth Accounting 649



βkitx
k
it−β

k
it−1x

k
it−1, and dividing both sides by

Δyit, we get the new growth accounting:

where the four parts on the right-hand side of
equation (12) are the contributions of changes
in input quantities, input-embedded produc-
tivity, input-free productivity, and residuals,
respectively. For comparison, the standard
growth accounting model has the form:

ð13Þ 1 =
Xp
k=1

βkΔxkit
Δ yit

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
input quantity

+
ΔTFPit

Δ yit|fflfflfflffl{zfflfflfflffl}
Total Factor Productivity

+
Δνit
Δ yit|ffl{zffl}
residual

where βk is the conventional coefficient of the
k-th input that is fixed across countries
over time.
The growth drivers may affect the level of

output through the first three parts on the
right-hand side of equation (12), because they
may affect βkit and IFPit, as shown in equa-
tion (10). That is, these sources affect input
elasticity and input-free productivity and then
contribute to economic growth. It is worth not-
ing that the first and second part each include
p channels through which each source can
affect the economic outcome, one for each
input. This article further identifies the signs
and magnitudes of these effects, which iden-
tifies each and every possible pathway for each
growth driver to boost economic develop-
ment. Determination regressions in equa-
tions (14) and (15) are established to fulfill
this goal, where the impacts of the growth
drivers on input-free productivity growth and
input elasticities are estimated, respectively.

ð14Þ ΔIFPit = α+ λ1r&dit + λ2tradeit
+ λ3structureit + τT + δI + ε

ð15Þ βkit = αk + λk1r&dit + λk2 tradeit + λk3structureit

+ τT + δI + εk,8k=1,…,p

where ΔIFPit accounts for the growth rate of
input-free productivity, and βkit is the coeffi-

cient for the k-th input tomeasure its elasticity.
Both are for country i at time t and are derived
from equation (10). T and I vectors a group of
year dummy variables and country dummy
variables, respectively. The estimation results
of the parameters λ can identify the effects of
the growth drivers. Plugging the estimated
parameters in equations (14) and (15) into
equation (12), this article can quantify the
marginal effects on economic growth through
various channels for each source, which
helps us find the most efficient pathways to
boost the economy using various economic
drivers.

Data

This article uses a balanced panel of 107 coun-
tries from 1962 to 2014 as an application of
new growth accounting in the world agricul-
tural sector. Country-level agricultural input
and output data are available from the Eco-
nomic Research Service of the United States
Department of Agriculture (USDA-ERS).
This article adopts six kinds of agricultural
inputs, including agricultural land (landit, in
million hectares of rain-fed cropland equiva-
lents), agricultural labor (laborit, in million
economically active adults), total stock of farm
machinery (machineryit, in million 40-CV trac-
tor equivalents), fertilizer consumption (fertili-
zerit, in million metric tons of N, P2O5, K2O),
livestock capital on farms (livestockit, in thou-
sand cattle equivalents), and total animal feed
(feedit, in million metric tons of crops and crop
processing residues in dry-matter equiva-
lents). In terms of output, gross agricultural
output (Yit, in billion international dollars at
2005’s constant price) measures the sum of

ð12Þ 1 =
Xp
k= 1

Δxkit β
k
it + βkit−1

� �
2Δ yit

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

input quantity

+
Xp
k= 1

Δβkit xkit + xkit−1
� �
2Δ yit

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
input−embedded productivity

+
ΔIFPit

Δ yit|fflfflffl{zfflfflffl}
input− free productivity|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Total Factor Productivity

+
Δνit
Δ yit|ffl{zffl}
residual
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the value of production of 189 crop and live-
stock commodities.

Data on three economic drivers are also col-
lected. This article collects annual R&D invest-
ment data from several sources,5 including the
Agricultural Science and Technology Indicator
(ASTI)6; the Gross Domestic Expenditure on
Research and Development (GERD) by the
OECD7; Pardey andRoseboom (1989); Alston,
Pardey, and Smith (1999); and Pardey et al.
(2016). However, it is the R&D investment
stocks, rather than the flows, that promote eco-
nomic growth. This is because current R&D
investments, for example in fertilizer, not only
increase the current output but also benefit
future production as well. Analogously, current
agricultural growth depends not only on current
investments but also on previous investments.
Therefore, this article adopts the unified perpet-
ual inventory method (PIM) to convert invest-
ment flows to stocks, which is widely used in
productivity analysis (e.g., Berlemann andWes-
selhöft 2014; Gong 2017; Gong 2018c). In terms
of the depreciation rate, Esposti and Pierani
(2003) review the depreciation rates for agricul-
tural R&Dused in the literature and then adopt
10%, 20%, and 25% in three scenario analyses.
This article uses a 20%depreciation rate in PIM
to estimate R&D stocks. Finally, this article cal-
culates R&D-to-output ratio (r & dit) to mea-
sure the degree of R&D when the country-
level agricultural scale is considered. In terms
of the degree of openness, the total volume of
international trade of agricultural products can
be collected from the NBER-UN database for
the period of 1962 to 1994 and from the
CEPII-BACI database for the period of 1995
to 2014.8 The degree of openness, measured
by the trade-to-output ratio, can be calculated
accordingly. Third, the output share of livestock

in total agricultural products (structureit) is col-
lected and calculated from the FAO database,
which accounts for the structural transformation
of the agricultural sector between the crops seg-
ment and the livestock segment.
Table 1 reports summary statistics of these

aforementioned variables. These 107 coun-
tries, on average, use 8 million agricultural
laborers, 15 million hectares of agricultural
land, 0.2 million tractor equivalents of farm
machinery, 0.9 million metric tons of fertilizer,
17.3 thousand cattle equivalents of livestock
capital, and 7.7 million metric tons of feed to
produce agricultural outputs that are worth
11.9 billion international dollars at 2005’s con-
stant price. In terms of the growth drivers, the
average R&D-to-output ratio is 11% and
the average trade-to-output ratio is 104% in
the agricultural sector. Finally, 39% of the
agricultural outputs are livestock-related
products, and 61% are crop-related products.

Estimation Results

This article applies the new growth accounting
method on the world agricultural sector to iden-
tify and quantify the channels through which the
economic drivers promote agricultural growth.
The control function test indicates that all six
inputs are endogenous and therefore corrected
by the IV method suggested in Amsler,
Prokhorov and Schmidt (2016), where lagged
values of inputs are treated as instruments. This
article then models the varying coefficient pro-
duction frontiers, estimates the effects of eco-
nomic drivers on input elasticities and
productivity growth, and predicts the contribu-
tions of various sources to world agricultural
growth using the newgrowth accountingmethod.

World Agricultural Production Frontier

The varying frontier model in equation (10)
allows time- and country-variant elasticities
for each of the six inputs. Figure 2 illustrates
the average elasticities for the six inputs over
time. The dotted lines provide the 95% confi-
dence intervals of elasticity estimates using
Efron’s nonparametric bias-corrected and
accelerated (BCa) bootstrap method with
10,000 replications (Briggs, Mooney, and
Wonderling 1999).
The upper left graph demonstrates that

labor elasticity was diminishing, showing less

5 The heterogeneity in R&D can be better captured and its
impact on productivity through various channels can be more pre-
cisely estimated if sector-specific R&D data (e.g., R&D spending
on fertilizer, machinery, etc.) are available.

6 ASTI is an open-access data and analysis on agricultural
research investment and capacity in low- andmiddle-income coun-
tries. https://www.asti.cgiar.org/data.

7 http://stats.oecd.org/Index.aspx?DataSetCode=GERD_
OBJECTIVE_NABS2007#.

8 The NBER-UN database is available on the NBER website
(Feenstra et al. 2005), and CEPII-BACI is the world trade data-
base (BACI) developed by the French research center in interna-
tional economics (CEPII; Gaulier and Zignago 2010). This article
generates the international trade data of agricultural products
according to the definition of agricultural products in the Agree-
ment on Agriculture of the World Trade Organization (WTO).
Both NBER-UN and CEPII-BACI are the main sources of inter-
national trade for different periods and have been used together
in recent studies (e.g., Boschma and Capone 2015; Johnson and
Noguera 2017).
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of a contribution of labor to agricultural out-
put. The upper right graph describes that land
elasticity was also falling, but the degree of
decrease is less than that in labor elasticity
and is slower in recent years. The middle left

graph shows flat machinery elasticity, whereas
the middle right graph demonstrates increas-
ing fertilizer elasticity during the sample
period. The lower left and right graphs show
that livestock capital elasticity and feed

Table 1. Summary Statistics

Variable Notation Unit Mean St. dev. Min Max

Output
Agricultural output Y Billion international $ 11.9 37.7 0.0 591

Input
Agricultural land land Million hectares 15.0 43.2 0.0 316
Agricultural labor labor Million active adults 8.0 35.7 0.0 391
Farm machinery machine Million tractor equivalents 0.2 0.7 0.0 11.7
Fertilizer consumption fertilizer Million metric tons 0.9 3.6 0.0 51.4
Livestock capital livestock Thousand cattle equivalents 17.3 46.7 0.0 415
Animal feed feed Million metric tons 7.7 25.2 0.0 371

Growth drivers
R&D-to-output ratio r & d % 11 9 0 36
Degree of openness trade % 104 123 0 477
Structural transformation structure % 39 23 0 99

Notes: The statistics in this table is based on a balanced panel of 107 countries from 1962–2014 (sample size = 5,671). R&D-to-output ratio (%) is defined as the
ratio ofR&D stock to agricultural output, whichmeasures agricultural R&D intensity of a country. Degree of openness (%) is defined as the total trade volume of
agricultural products to agricultural output. Structural transformation (%) is defined as the output share of livestock in total agricultural products.

Figure 2. Change in the elasticities of the six inputs over time

Notes:This figure reports the change in output elasticity with respect to six inputs over time. The solid lines are the average level of the 107 countries, whereas the
dotted lines give the 95% confidence intervals estimated by Efron’s BCa bootstrap method with 10,000 replications.
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elasticity are both increasing, indicating that
livestock-related inputs are more crucial in
agricultural production over time. To summa-
rize, it is clear that labor is being replaced by
capital (machinery and livestock capital) and
that land is being replaced by fertilizer, which
is consistent with the induced innovation the-
ory. Moreover, livestock-related production
has become more productive, because the
two major inputs, livestock capital and feed,
witnessed increasing elasticity over time.

Figure 3 describes the changes in the sum of
the six input elasticities over time. Similar tofig-
ure 1, this graph provides the 95% confidence
intervals of the estimates. The total elasticity
witnessed a significant increase, improving
from 0.83 in 1962 to 0.92 in 2014. Although
the results show that agricultural production
follows decreasing returns to scale, the increas-
ing trends are consistent with the endogenous
growth theory in Romer (1986) and Lucas
(1988). Moreover, the increasing returns imply

that the same amount of inputs can generate
more outputs over time, which is consistent
with the fact that input qualities are improving.

World Agricultural Input-Free Productivity
Growth

The varying coefficient production frontier
captures the change in input–output relation
over time and decomposes the classic TFP
growth into input-embedded productivity
growths and input-free productivity growth.
The input-embedded productivity growths
can be reflected by changes in input elastici-
ties, whereas the input-free productivity
growth can be reflected by changes in the
remaining part of TFP. As a result, this article
can identify and quantify how growth drivers
promote economic growth through different
channels (various input-embedded productiv-
ity growths and input-free productivity

Figure 3. Change in scale economics of world agriculture over time

Notes: This figure reports the change of the sum of output elasticity with respect to six inputs over time, which reflects the change in scale economics of world
agricultural sector. The solid lines are the average level of the 107 countries, whereas the dotted lines give the 95% confidence intervals estimated by Efron’s BCa
bootstrap method with 10,000 replications.

Figure 4. Annual growth rate of input-free productivity over time
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growth) rather than the effect of economic
drivers on the “all-in-one” TFP. Figure 4 pre-
sents the changes in input-free productivity
over time, which shows that input-free produc-
tivity had a growth rate between −2% and 2%
in most years and experienced less of a nega-
tive growth rate in recent years.

The Effects of Growth Drivers

The most important question this article seeks
to answer regards how growth drivers pro-
mote economic growth through different
channels. Table 2 reports the effects of the
three growth drivers (R&D, trade and struc-
tural transformation) on various input-
embedded productivity growths and on
input-free productivity growth in the world
agricultural sector. In columns (1) to (6) of
table 2, each of the six input elasticities is the
dependent variable to estimate the effect of
growth drivers on the corresponding input-
embedded productivity, respectively. Column
(7) predicts the effect of growth drivers on
the input-free productivity growth rate.
All three growth drivers speed up the pro-

cess that replaces labor by capital, as they all
have significantly negative effects on labor
elasticity but positive effects on machinery
elasticity and livestock capital elasticity. More-
over, R&D and structural transformation also
accelerated the process that replaces land with

fertilizer, as they both have significant nega-
tive impacts on land elasticity but a positive
impact on fertilizer elasticity. International
trade, on the other hand, decelerated this pro-
cess, because it has a positive impact on land
elasticity but a negative impact on fertilizer
elasticity. However, the effect of trade on this
replacement is much smaller than those of
the other two growth drivers. As a result, the
significant replacement of land with fertilizer
was witnessed during the sample period. In
terms of feed-embedded productivity, the
impacts of R&D and structural transformation
are both positive, whereas the impact of inter-
national trade is negative. Finally, all three
growth drivers have significantly positive influ-
ences on input-free productivity.

New Growth Accounting for World
Agriculture

Table 2 identifies the channels through which
growth drivers promoted world agricultural
growth. Moreover, the impacts of per unit
change in these growth drivers are estimated.
Table 3 further uses the new growth account-
ing method to estimate the contribution of
growth drivers on agricultural growth through
different channels. As a comparison, this arti-
cle also reports the results using the standard
growth accounting method.

Table 2. Estimated Effects of Growth Drivers on Different Parts of Agricultural TFP

Labor Land Machinery Fertilizer Livestock Feed
IFP

growth
β1it β2it β3it β4it β5it β6it ΔIFPit
(1) (2) (3) (4) (5) (6) (7)

R&D −0.936*** −0.147*** 0.323*** 0.607*** 0.681*** 0.254*** 0.0022***
(0.026) (0.019) (0.057) (0.048) (0.016) (0.068) (0.0004)

Trade −0.096*** 0.018*** 0.065*** −0.043*** 0.085*** −0.031*** 0.0004***
(0.002) (0.002) (0.005) (0.004) (0.001) (0.006) (0.0000)

Structure −0.265*** −0.141*** 0.035 0.611*** 0.123*** 0.180*** 0.0008***
(0.018) (0.013) (0.040) (0.034) (0.011) (0.047) (0.0003)

Year
effects

Yes Yes Yes Yes Yes Yes Yes

Country
effects

Yes Yes Yes Yes Yes Yes Yes

Intercept −1.483*** −1.668*** −3.041*** −2.797*** −1.586*** −2.406*** 0.526***
(0.017) (0.012) (0.037) (0.032) (0.010) (0.044) (0.0003)

Sample
size

5,671 5,671 5,671 5,671 5,671 5,671 5,671

R2 0.82 0.66 0.55 0.67 0.87 0.74 0.82

Note:Asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Standard errors are in parentheses. In columns (1) to
(6), each of the six input elasticities is treated as the dependent variable to predict the effect of growth drivers on the corresponding input-embedded productivity,
respectively. Column (7) estimates the impact of growth drivers on the input-free productivity growth rate.
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The first column in table 3 presents the
results of standard growth accounting. The
annual agricultural growth, on average, was
2.13% for 1962 to 2014, where the growth in
inputs, total factor productivity, and residual
contributed 1.28%, 0.86%, and −0.01%,
respectively. Among the six inputs, fertilizer,
feed, and livestock capital have the greatest
contribution (0.40%, 0.32%, and 0.28%), fol-
lowed by land and machinery (0.15% and
0.10%), whereas the contribution of labor is
negligible (0.02%). The second column in
table 3 reports the results of new growth
accounting, which contributes 1.53% output
growth to input growth, 0.76% output growth
to productivity growth, and the remaining
−0.16% output growth to disturbance. The
results of the standard and new growth
accounting approaches are fairly robust, and
both show that input growth contributed more
than productivity growth to world agricultural
growth in the past five decades.

The new growth accounting method, how-
ever, can further decompose productivity
growth to various input-embedded productiv-
ity growths and the input-free productivity

growth, which is unavailable in standard
growth accounting. The growth in productivity
embedded in fertilizer, livestock capital, and
feed is positive for all (0.85%, 0.44% and
0.34%), which can fully compensate the
decrease in labor-embedded and land-
embedded productivities. The growth in
machinery-embedded productivity is negligi-
ble, because the machinery elasticity is flat, as
shown in figure 1. Finally, the remaining
input-free productivity contributes to a
0.49% annual increase in world agricultural
output.
Because the conventional production func-

tion has fixed input elasticities and an “all-in-
one” TFP, standard growth accounting can
only estimate the overall effect of growth
drivers on TFP growth, which is the only chan-
nel through which growth drivers affect output
growth. In new growth accounting, however,
we can investigate different channels by which
growth drivers affect agricultural growth. Col-
umns (3) to (5) of table 3 report the contribu-
tion of R&D, trade, and structural
transformation to agricultural growth through
various channels, respectively. It is clear that

Table 3. Standard and New Accounting for World Agricultural Output Growth

Sources of annual growth

Standard method New method

Total Total R&D Trade Structure

(1) (2) (3) (4) (5)

A. Input quantity 1.28% 1.53% ~0% ~0% ~0%
1. Labor 0.02% 0.04% ~0% ~0% ~0%
2. Land 0.15% 0.11% ~0% ~0% ~0%
3. Machinery 0.10% 0.19% ~0% ~0% ~0%
4. Fertilizer 0.40% 0.48% ~0% ~0% ~0%
5. Livestock capital 0.28% 0.33% ~0% ~0% ~0%
6. Feed 0.32% 0.38% ~0% ~0% ~0%

B. Total factor productivity 0.86% 0.76% 0.31% 0.32% 0.05%
1) Input-embed productivity – 0.27% 0.31% 0.32% 0.05%

1. Labor – −0.60% −0.24% −2.29% −0.16%
2. Land – −0.74% −0.07% 0.67% −0.11%
3. Machinery – −0.02% 0.20% 2.50% 0.02%
4. Fertilizer – 0.85% 0.23% −1.13% 0.22%
5. Livestock capital – 0.44% 0.12% 1.15% 0.03%
6. Feed – 0.34% 0.07% −0.57% 0.05%

2) Input-free productivity – 0.49% ~0% ~0% ~0%
C. Residual −0.01% −0.16% – – –

Output growth 2.13% 2.13% 0.32% 0.33% 0.06%

Notes: The first and second column provide the results of standard and new accounting for world agricultural output growth based on equations (13) and (12),
respectively. The annual average growth rate (2.13% during 1962–2014) can be decomposed into three parts including contribution from input quantity, total
factor productivity, and residual. The contribution from input quantity can be further decomposed into six parts, one for each input. Moreover, as the advantage
of the new growth accounting, total factor productivity can be further decomposed into input-embed productivity and input-free productivity (see equation (13)).
Columns (3) to (5) report the contribution of R&D, trade, and structural transformation to agricultural growth through various channels, which is derived by
plugging the estimations of equations (14) and (15) as shown in table 2 into equation (12). It is worth noting that the aggregates of columns (3) to (5) do not equal
to the total value in column (2) because there are other factors that affect agricultural growth.
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the majority of the contributions are through
the six input-embedded productivities.
R&D stocks increased world agricultural

output by 0.23%, 0.20%, 0.12%, and 0.07%
per year through improvements in fertilizer,
machinery, livestock capital, and feed, respec-
tively. The advanced technology brought
about by R&D investment also reduced our
dependence on traditional agricultural inputs,
such as labor and land, which further benefited
industrialization and urbanization. R&D
mainly improved through fertilizer and
machinery to replace land and labor. On the
one hand, for developed and leading coun-
tries, traditional inputs such as land and labor
are expensive and scarce, which attracts
research and innovation in fertilizer and
machinery, as illustrated in the induced inno-
vation theory. On the other hand, for less
developed and lagging countries, the appro-
priate technology hypothesis in Basu andWeil
(1998) argues that there is a limit to what coun-
tries can produce with a certain mix of inputs
(“The ox-cart can be improved this much.”).
In order to enjoy spillovers and achieve con-
vergence, these countries must change their
input portfolio and accumulate more capital
and intermediate inputs, which will motivate
them to spend more R&D funding in fertilizer
and machinery industries. Overall, agricul-
tural R&D caused 0.32% of annual growth in
agricultural output.
The effects of structural transformation are

analogous to those ofR&D.The transformation
of amore livestock-related agriculture relied less
on labor and land. Overall, structural transfor-
mation increased the world’s agricultural output
by 0.06% per year, which was mainly through
productivity growth embedded in machinery,
fertilizer, livestock capital, and feed. In terms
of international trade, a 0.33% annual growth

in world agricultural sector was due to a higher
degree of openness of countries. Different from
the other two growth drivers, international trade
impeded the process that replaces land with fer-
tilizer. Without international trade, self-
sufficient urbanized countries must rely more
on fertilizer, given the fixity of agricultural land.
With international trade, urbanized countries
can import agricultural products from
agricultural-based countries, where agriculture
relies more on land than fertilizer. Moreover,
technology diffusion occurs more freely in the
context of trade liberalization, which, for exam-
ple, helps to spread better breeds of livestock
(e.g., Aberdeen-Angus cattle and Holstein-
Frisian dairy cow) and thus increases the quality
of livestock capital. To summarize, R&D and
trade made significant contributions, whereas
structural transformation made a smaller contri-
bution to agricultural growth.

Table 4 presents the results of new growth
accounting for each of the last five decades.
In the 1960s and 1970s, almost all the growth
came from input growth, which provides evi-
dence of extensive growth during that period.
In the 1980s and 1990s, however, productivity
growth accounted for about 40% of output
growth, indicating the significant technological
progress and the transformation of growth
patterns in the world agricultural sector. In
the 2000s, productivity growth contributed
more to agricultural growth than input growth,
which implies that modern agriculture has
achieved intensive growth. To summarize,
world agricultural growth relied more on pro-
ductivity growth than on input growth
over time.

Table 5 presents the results of new growth
accounting for different country groups to show
the difference between leading and lagging
countries. This article uses three classifications

Table 4. New Accounting for Annual Growth Rates by Period

Period
Output growth Input growth Productivity growth R&D Trade Structure

(1) (2) (3) (4) (5) (6)

Full sample 2.13% 1.53% 0.76% 0.32% 0.33% 0.06%
1960s 2.68% 2.71% −0.19% 0.69% 0.08% 0.03%
1970s 1.91% 1.92% −0.02% 0.31% 0.52% 0.23%
1980s 2.06% 1.24% 0.77% 0.36% 0.32% 0.06%
1990s 1.98% 1.01% 0.89% −0.09% −0.05% 0.04%
2000s 2.14% 1.17% 1.38% 0.29% 0.68% 0.44%

Notes: The first column reports the annual growth rate of agricultural outputs, which can be decomposed into three parts, including contribution from input
quantity (reported in the second column), total factor productivity (reported in the third column), and residual. Columns (4) to (6) report the contribution of
R&D, trade, and structural transformation to agricultural growth rate, which is derived by plugging the estimations of equations (14) and (15) as shown in table 2
into equation (12). The first row reports the accounting for the full period from 1962 to 2014, and therefore all the numbers can also be found in table 3. The
second row to the sixth row report the accounting for 1962–1969, 1970–1979, 1980–1989, 1990–1999, and 2000–2009, respectively.
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to define leading and lagging groups. First, the
new growth accounting method is utilized for
developed countries and less developed coun-
tries. Second, this article analyzes agricultural
growth for low-income, lower middle-income,
upper middle-income, and high-income coun-
tries. Third, another classification of countries
that considers the agricultural development
level is provided in the World Development
Report 2008: Agriculture for Development by
the World Bank (Mondiale 2008), which points
out that agriculture operates in three different
types of countries: agriculture-based, transform-
ing and urbanized countries. Comparing the
results of developed countries and less devel-
oped countries, leading countries relied more
on productivity growth whereas lagging coun-
tries relied more on input growth. The same
conclusion can be made under the other two
classifications, as high-income countries and
urbanized countries achieved intensive growth,
whereas low-income countries and agriculture-
based countries experienced excessive growth.

In terms of overall agricultural growth, lead-
ing countries, on average, had a lower growth
rate than lagging countries, and their growth
relied more on R&D and international trade
over the sample period. Basu and Weil
(1998) point out that the input mix reflects dif-
ferent technologies (different production
functions), so there is a limit to what countries
can produce with a certain mix of inputs. Tak-
ing agricultural production as an example, lag-
ging countries using mostly labor and land, but

little capital and intermediate inputs, must go
through a period of increasing inputs
(e.g., fertilizer andmachinery), simply because
there is a limit to TFP growth without changes
in a given input mix. The results of this article
provide evidence of the appropriate technol-
ogy hypothesis in Basu and Weil (1998), by
showing that earlier growth relies heavily on
input accumulation in lagging countries, which
can be interpreted as lagging countries “mov-
ing” to the production function of the leading
countries to benefit from accelerated TFP
growth under more productive inputs.

Robustness of the Estimations

First, this article introduces two more models
to check the robustness of the current varying
coefficient stochastic frontier model in equa-
tion (10). On the one hand, this article assumes
the Transcendental Logarithmic (T-L) specifi-
cation, rather than the Cobb–Douglas (C-D)
specification, to check the robustness under
various specifications. On the other hand, the
current varying coefficient stochastic frontier
approach is a static model, where inputs affect
output in the same period. This article intro-
duces a dynamic stochastic frontier model pro-
posed by Zhang et al. (2015) as the second
robustness check, where one-year lagged out-
puts and inputs are included as independent
variables in the dynamic model. Appendix A
in the online supplementary Appendix S1

Table 5. New Accounting for Annual Growth Rates by Country Group

Country group

Output
growth

Input
growth

Productivity
growth R&D Trade Structure

(1) (2) (3) (4) (5) (6)

Full sample 2.13% 1.53% 0.76% 0.32% 0.33% 0.06%
development groups

A.1 Less developed 2.46% 1.96% 0.50% 0.14% 0.02% 0.08%
A.2 Developed 0.92% −0.10% 1.72% 0.99% 1.44% −0.03%

income groups
B.1 Low-income 2.37% 2.43% 0.03% 0.16% −0.25% 0.02%
B.2 Lower middle-income 2.85% 2.19% 0.36% 0.11% −0.13% −0.03%
B.3 Upper middle-income 2.46% 1.71% 0.71% 0.20% 0.13% 0.06%
B.4 High-income 1.16% 0.26% 1.63% 0.67% 1.23% −0.03%

agricultural groups
C.1 Agriculture-based 2.68% 2.60% 0.20% 0.17% −0.22% 0.06%
C.2 Transforming 2.41% 1.76% 0.75% 0.16% 0.24% −0.04%
C.3 Urbanized 1.56% 0.56% 1.23% 0.51% 0.82% 0.11%

Notes: The first column reports the annual growth rate of agricultural outputs, which can be decomposed into three parts, including contribution from input
quantity (reported in the second column), total factor productivity (reported in the third column), and residual. Columns (4) to (6) report the contribution of
R&D, trade, and structural transformation to agricultural growth rate, which is derived by plugging the estimations of equations (14) and (15) as shown in table 2
into equation (12). The first row reports the accounting for all the countries from 1962 to 2014 and therefore all the numbers can also be found in table 3. The
remaining rows report the accounting for different country groups based on development levels, income levels, and agricultural development levels, respectively.
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provides the results and confirms the robust-
ness of the baseline estimators.
Second, it is worth noting that the stochas-

tic frontier model, rather than the conven-
tional production model, is adopted as the
main model, because the former approach
can break down productivity growth into
technical progress and efficiency change,
which is an attempt to decompose productiv-
ity. Using the stochastic frontier model as
the benchmark can better highlight the con-
tribution of the varying coefficient techniques
adopted in this article, which provides
another attempt to decompose productivity.
This article also uses a varying coefficient
production function model (removing −uit
from equation (10)) as a robustness check to
see if the new decomposition approach is gen-
eralized in regular production function
models. As mentioned, this article uses a
two-step approach proposed by Fan, Li, and
Weersink (1996) to solve the varying coeffi-
cient frontier model in equation (10), where
the inefficiency term −uit is ignored in the first
step. Therefore, this first step is indeed a vary-
ing coefficient production function. As a
result, all the input elasticities βkit are consis-
tent using the frontier model and the conven-
tional production function model. The only
difference between the frontier model and
the conventional production function is the
estimation of the input-free productivity,
because the second step in Fan, Li, and
Weersink (1996) separates the inefficiency
from the residual and adds it back to produc-
tivity in the main model. Appendix A in the
online supplementary Appendix S1 also com-
pares the input-free productivity derived from
the main model with the input-free productiv-
ity derived from the varying coefficient pro-
duction function model, which again confirms
the robustness of the estimators.
Third, there are other variables that may

affect agricultural productivity and bring
about biased estimators. On the one hand,
the government’s other expenditures on agri-
cultural support (such as irrigation infrastruc-
ture and subsidies) may have an impact on
agricultural production and may be correlated
with R&D. On the other hand, the develop-
ment of non-agricultural sectors may also
affect agricultural growth. Appendices B and
C in the online supplementary Appendix S1
add the share of irrigated land and the share
of Agricultural GDP over total GDP into
equations (14) and (15), respectively. The esti-
mated effects of the three economic drivers on

different parts of agricultural productivity
(input-embedded productivity and input-free
productivity) in the main model are quite
robust.

Finally, this article also considers the poten-
tial endogeneity problem of the growth drivers
in equations (14) and (15). On the one hand,
lagged values of the three growth drivers are
used to replace their current values in the
regressions to deal with the possible causality
problem. On the other hand, this article also
derives GMM estimators in which the data
from previous years are used to instrument
those in the current period as a second robust-
ness check with endogeneity concern. Appen-
dix D in the online supplementary Appendix
S1 compares the estimated impacts of the
three growth drivers (R&D, trade, and struc-
tural transformation) in the main model, the
regression with lagged regressors, and the
GMM model. The results show that the base-
line estimators are robust, which can be used
to further decompose agricultural growth
using the growth accounting analysis.

Conclusion

This article integrates the ideas of the endoge-
nous growth theory and the induced innova-
tion theory into a varying coefficient
stochastic frontier model, which allows for a
quality change of inputs that are ignored in
existing studies. The “all-in-one” TFP growth
in standard growth accounting is then decom-
posed into growth in various input-embedded
productivities and input-free productivity in
our new growth accounting framework. This
newly introduced growth accounting method
outperforms standard growth accounting
because it is able to identify different channels
through which the growth drivers affect eco-
nomic growth, where possible channels
include input quantity, input quality, and
input-free productivity.

New growth accounting is adopted to study
world agricultural growth using a balanced
panel of 107 countries from 1962 to 2014.
Results show that, on the one hand, labor is
being replaced by capital and land is being
replaced by fertilizer, which is consistent with
the induced innovation theory. On the other
hand, there is an increasing trend of returns
to scale, which is consistent with the endoge-
nous growth theory. R&D investment and
international trade are the major driving
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forces of economic growth, because each of
them contributed to over 0.3% of annual
growth in the 2.13% total growth rate. More-
over, the most effective ways for R&D to
boost agricultural growth are through fertil-
izer and machinery improvement, whereas
the most effective ways for international trade
to boost agricultural growth are through land
and livestock capital. Finally, productivity
growth, mainly driven by R&D and trade,
plays a more important role in agricultural
growth in recent years and in leading coun-
tries, whereas input expansion contributes
more in earlier years and in lagging countries.

Supplementary Material

Supplementary material are available at
American Journal of Agricultural Economics
online.
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