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A B S T R A C T

This article aims to identify the mechanism of how climate change affects agriculture through various channels
and the mechanism of longer-run adaptation. Using a county-panel dataset spanning the past 35 years, we
evaluate the impact of global warming on agricultural total factor productivity (TFP) as well as the impacts on
agricultural inputs and outputs in China. Results show that, in the short run, extreme heat has negative effects on
China’s agricultural TFP and input utilization, which results in a more negative effect on agricultural output
measured by yield. However, longer-run adaptation has offset 37.9% of the short-run effects of extreme heat
exposure on TFP, while climate adaptation mitigates agricultural output loss to a greater extent due to more
flexible adjustment in labor, fertilizer, and machines in the long run. Despite the detected climate adaptation,
projections of impacts under future climate change scenarios still imply a substantial loss in China’s agriculture.
1. Introduction

Mitigation and adaptation are two important tools for reducing the
risks of climate change. In terms of mitigation, many international
climate negotiations and agreements have been made to reduce and curb
global greenhouse gas (GHG) emissions.1 Accordingly, many countries
have enacted mitigation policies to improve energy efficiency (e.g., en-
ergy conservation laws in major emitters) or to encourage the greater use
of renewable energy (e.g., carbon tax and renewable portfolio standards),
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since emission intensity reduction is the major pathway for mitigation. In
terms of adaptation, however, strategic principles, rather than opera-
tional policies, have been established to reduce vulnerability to climate
change, given that the mechanism of potential adaptation to climate
change is sector-specific and not clearly identified. Agriculture, in
particular, is one of the most vulnerable sectors to rising temperatures
and is directly affected by climate change. Therefore, more clearly un-
derstanding the mechanisms of how climate change affects agriculture
and the extent of longer-run adaptation offsets could help to design better
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Protocol are established as the framework of international pacts on dealing with
yoto Protocol. Among them, milestone progress includes Kyoto Protocol in 1997,
CCC contains an important principle for international efforts to mitigate climate
e) between developed counties and developing countries (Liu and Lo, 2020). See
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2 direct subsidies, subsidies for improved varieties and subsidies for the pur-
chase of agricultural machinery.
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agricultural and climate policies.
Earlier studies in this area typically exploit cross-sectional variation

(i.e., using only one observation per spatial unit) in average temperature
and precipitation to examine their relationship with agricultural out-
comes across locations. The cross-sectional specification has typically
used cross-sectional variation to compare outcomes across different cli-
matic areas (e.g., Mendelsohn et al., 1994; Liu et al., 2004; Schlenker
et al., 2006; Wang et al., 2009). As the cross-sectional approach is prone
to endogeneity issues such as omitted variable bias, newer studies typi-
cally use panel-regression approach (i.e., multiple observations for one
spatial unit) to examine outcomes for a given area under different cli-
matic conditions (e.g., Deschênes and Greenstone, 2007; Schlenker and
Roberts, 2009; Deschênes and Greenstone, 2011; Dell et al., 2012; Chen
et al., 2016; Zhang et al., 2017) and many have found significant effect of
global warming on agriculture.

Burke and Emerick (2016) develop a long differences approach and
use the difference between panel estimates and long differences esti-
mates to quantify agricultural adaptation. In terms of the economic
outcomes of agricultural adaptation, existing research has focused on the
perspectives of either land value (Mendelsohn et al., 1994) or crop yields
(Schlenker and Roberts, 2009). In recent years, many studies (e.g.,
Wheeler and Von Braun, 2013; Pittelkow et al., 2015; Burke and Emerick,
2016) have aimed to evaluate the effect of climate change on agricultural
productivity, where productivity refers to yield (i.e., land productivity).
However, land productivity is not the only measure of agricultural pro-
ductivity. Ruttan (2002) summarizes that comparative research on
agricultural productivity has directed at the measurement of single/-
partial factor productivity (such as labor productivity or land produc-
tivity) in the past and on total factor productivity (TFP) in recent years.
Single factor productivity, such as land productivity, only considers one
input and is easy to calculate when agricultural output and land area are
available. Total factor productivity, on the other hand, takes all inputs
into consideration and therefore better measures technological progress
and technical efficiency in the agriculture sector (Gong, 2020a).

In recent years, agricultural input portfolios in different places have
become more diversified, which enlarges the gap between land produc-
tivity and TFP. Therefore, it is necessary to study the effect of climate
change on TFP in addition to its impact on yield, which is relatively
understudied in literature. Moreover, studying the response of TFP on
climate change helps to identify the mechanism of how climate change
eventually affects yield. With a few exceptions (e.g., Arag�on et al., 2020),
most existing researches (Schlenker and Roberts, 2009; Burke and
Emerick, 2016) estimate the overall impact of climate change on yield
rather than broken down change in yield into change in TFP and changes
in other inputs based on productivity analysis. Understanding how
climate change affects yield though its impact on TFP and input utiliza-
tion helps to better analyze adaptation behaviors in the past and shed
light on future adaptation in agricultural production.

With a few exceptions (Welch et al., 2010; Lobell et al., 2011; Chen
et al., 2016; Zhang et al., 2017), most economic analyses examining the
effects of climate change on agriculture have focused more on developed
countries (see a detailed review in Dell et al. (2014)). However, the
development of agriculture may be more important in developing
countries since it is a vital and unique instrument for achieving poverty
reduction and sustainable development (Thirtle et al., 2003; Mondiale,
2008; Zhang et al., 2020). Considering that three-quarters of poor pop-
ulations make a living from agriculture, it is not only important but
necessary to investigate the response of agriculture on climate change in
developing countries. Moreover, such an impact is likely to be negative in
most areas, and is harder to adapt to or prevent in developing countries
due to a lack of funding and technology. Therefore, the impacts of climate
change on agricultural production in developing countries are worth
studying, which will help to better move climate and industrial policies
forward.

This article aims to evaluate the responses and adaptations of agri-
cultural TFPs to climate change in China, which is the largest global
2

emitters and largest developing country boasting the largest agricultural
economy and population. China’s mitigation policy aims at reducing
GHG emissions intensity, through industrial structure adjustment, energy
consumption structure optimization, energy efficiency improvement,
carbon sequestration capacity enhancement, and pilot carbon trading,
among others. By 2017, carbon intensity in China had dropped by about
46% compared with 2005. In terms of adaptation policies, apart from
China’s National Climate Change Programme, we have been unable to find
policies at the national level specifically targeting agricultural adaptation
to climate change. However, some other policies, such as the “One
Exemption and Three Subsidies” policy,2 are not only designed to ensure
food security and increase farmers’ income, but also improve agricultural
adaptation to climate change. This is because they not only encourage
innovation and adoption of heat-resistant and drought-resistant species
that can reduce productivity loss, but also motivate more investments in
agriculture. Understanding how these policies mitigate agricultural los-
ses in the context of global warming through two channels including
productivity and input utilization, is of great significance for developing
more effective adaptation policies. Hence, this article also aims to iden-
tify the mechanism by which climate change affects yield through its
impact on TFP and input utilization, as well as the mechanism of adap-
tation behaviors of Chinese farmers. The data used for this study comes
from two sources. On the one hand, a county-year panel data for 2495
counties consisting of specific agricultural inputs and outputs over the
period of 1981–2015 is used to construct four agricultural TFP measures
under various specifications to rule out the effect of labor, fertilizer and
machinery on yield. On the other hand, comprehensive daily weather
records from 820 weather stations are merged to these 2495 counties
using the inverse distance weighting method (IDW), which makes it
possible to further investigate how inputs and TFPs are affected by
climate change.

We combine the strength of existing literature to investigate the
nonlinear relationship between agricultural TFPs and variation in tem-
perature and other weather variables. This article follows two repre-
sentative approaches introduced by Schlenker and Roberts (2009) in
panel regressions: 1) a simple piecewise linear function of temperature
and construct the variables of growing degree days (GDDs) below and
above a selected threshold and 2) more specific temperature bins that
calculate the accumulation of heat for each 3–6 �C temperature interval.
The simultaneous variations in additional weather variables, such as
rainfall, sunshine duration, humidity, and wind force are also taken into
account (Zhang et al., 2017). Panel estimates suggest that piecewise
linear function yields results similar to those estimated using more
complicated functional forms. An increase in exposure to temperatures
above 33 �C results in sharp declines in agricultural TFPs. We use the
same methods to evaluate the impact of climate change on yield
(measured by unit land output value) and find it to be more negative than
the impact on agricultural TFP, as we expected, since extreme hot
weather may also lower input utilization in the short run. Applying the
same approach, we find evidence that labor and fertilizer usage is indeed
significantly reduced with an increase in exposure to high temperature.

To investigate whether longer-term adjustment to climate change has
significantly exceeded shorter-run adjustment, we follow Burke and
Emerick (2016) to compare the panel estimates with the long differences
estimates. Long-run adaptations appear to have mitigated 37.9% (95%
confidence interval [CI], 5.3%–54.8%) of the short-run impacts of
extreme heat exposure on China’s agricultural TFPs. In terms of yield,
46.8% (95% CI, 30.2%–58.0%) of the short-run effect is offset in the long
run, which is larger than the offset in TFP, implying the existence of
adaptation in input usage. Comparing the panel estimates with the long
differences estimates of inputs, we find that adaptation indeed occurred
in all three inputs. The negative impact of climate change in labor and
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fertilizer is smaller, and a positive effect on machinery is found in the
long run, indicating that farmers use more machines to replace labor
when the weather gets hotter. This finding provides new evidence for the
induced innovation theory proposed by Hayami and Ruttan (1971).

Our findings remained remarkably robust when alternative methods
to merge climate and agriculture data, alternative temperature bins,
alternative productivity measures, and alternative estimation strategies
are adopted. Using the estimated coefficients, together with different
future climate change scenarios, we further projected the effect of future
warming on China’s agriculture. China’s agricultural TFP is projected to
decline by 2–6% by 2050 and by 4–12% by 2070 under the global climate
models HadGEM2-ES and NorESM1-M. The decline in agricultural yield
is projected to be nearly twice as large as the reduction in agricultural
TFP in the future. Although climate adaptation is occurring, future global
warming is still expected to make a significant negative effect on China’s
agricultural production. This effect is likely to increase in the long term,
relative to the midterm. This means that the earlier the mitigation actions
are taken, the better the policy effects will be.

This article contributes to the existing literature in three major as-
pects. First, both yield and total factor productivity are adopted to esti-
mate the impact of climate change on agriculture, where the latter is a
better measure of agriculture productivity, but understudied in climate
change literature. Second, to our best knowledge, this is the first article
that identifies not only the mechanism by which climate change affects
yield through its impact on TFP and input utilization, but also the
mechanism of the adaptation behaviors. Third, we provide some of the
earliest empirical evidence of nonlinear temperature effects and signifi-
cant adaptation behaviors on agriculture in China based on a long study
period of 35 years and a specific spatial pattern at the county level.

The remainder of this article is organized as follows. Section 2 in-
vestigates the mechanism and proposes hypotheses. Section 3 introduces
the econometric model and Section 4 describes the data. Empirical results
are presented and analyzed in Section 5. Section 6 builds a projection of
future impacts and Section 7 concludes the article.

2. Mechanism

This section introduces the mechanism of agricultural response and
adaptation to climate change. For illustration purposes, consider a Cobb-
Douglas production function of agriculture in the form:

y¼ f ðX; βÞþ tfp¼Xβþ tfp (1)

where y represents yield (i.e., agricultural output per hectare) in loga-
rithm; f ðX; βÞ measures the input-output relationship of the agricultural
production process; X ¼ cðl; f ;mÞ vectors agricultural inputs per hectare,
including labor (l), fertilizer (f ) and machinery (m), all in logarithm; β ¼
cðβ1; β2; β3Þ vectors the coefficients of inputs; and tfp accounts for agri-
cultural total factor productivity in logarithm.

Many scholars (e.g., Mendelsohn et al., 1994; Schlenker et al., 2006;
Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009;
Deschênes and Greenstone, 2011; Burke and Emerick, 2016) have stud-
ied the overall impact of climate change on land productivity. This article
argues that total factor productivity is a better measure of productivity
since it considers all the inputs in addition to land. Eq. (1) helps establish
the relationship between the total factor productivity that we focus on in
this article and the land productivity (yield) widely adopted in literature.
According to the production function in Eq. (1), climate change may
affect yield through two channels: its impact on the utilization of various
inputs (i.e., X) and its impact on total factor productivity (i.e., tfp).

Let’s assume that farmers choose an optimal input portfolio and
3 For example, Gong et al. (2020) point out climate change has accelerated the
evolution and spread of pathogens, which can reduced agricultural TFP during
the epidemic period.

3

suitable technology at year t based on previous weather conditions. On
the one hand, extreme heat may lead to lower agricultural outputs, even
if input utilization remains unchanged, since hot weather can affect
normal growth of the crops and lower production efficiency from other
pathways.3 This can result in a negative response of TFP on climate
change (Δtfpsr < 0), which leads to the first hypothesis:

Hypothesis 1. Climate change has a negative impact on TFP in the short
run.

On the other hand, when suffering from extreme heat, farmers may
reduce outdoor farming activities and therefore lead to lower labor in-
puts (Δlsr < 0), which may consequently reduce the application of fer-
tilizer (Δf sr < 0) in the short run. Meanwhile, farmers may have a limited
ability to change capital stock, for example, to buy new machines to
replace labor force in the short run (Δmsr � 0). As a result, the input
portfolio is no longer optimal and leads to a negative impact on agri-
cultural yield due to climate change (β1Δlsr þ β2Δf sr þ β3Δmsr < 0).
Accordingly, this article proposes a second hypothesis:

Hypothesis 2. Climate change has negative impacts on labor and fertilizer
utilization but no significant impact on capital stock (machinery) in the short
run.

Moreover, considering the first two hypotheses and the production
function in Eq. (1), the impact of climate change on yield is more nega-
tive than its impact on TFP, as Δysr ¼ β1Δlsr þ β2Δf sr þ β3Δmsr þ
Δtfpsr < Δtfpsr < 0, which leads to the third hypothesis:

Hypothesis 3. Climate change has a more negative impact on yield than on
TFP in the short run.

Besides its response to climate change, this article also aims to
analyze the adaptation of agriculture to climate change in the long run.
Once again, the mechanism of agricultural adaptation can be illustrated
using the production function. On the one hand, in the context of global
warming, farmers may adopt heat-resistant types of crops, and research
institutes may invent new varieties that can better adapt to hot weather,
which could reduce the negative impact of climate change on agricultural
TFP (Δtfpsr < Δtfplr < 0). Accordingly, this article proposes the fourth
hypothesis:

Hypothesis 4. Climate change has a less negative impact on TFP in the long
run than in the short run, which implies adaptation in TFP.

On the other hand, farmers may find more ways to fight against hot
weather when it occurs more frequently in the long run, such as new
medicines to prevent heatstroke and working more at dawn and dusk,
rather than in the heat of the day. These adaptations can reduce the
negative impact of climate change on labor supply (Δlsr < Δllr < 0) and
thus reduce the negative impact on fertilization application
(Δf sr < Δf lr < 0). Moreover, farmers may invest more in machinery to
overcome labor shortage in the long run (Δmlr > Δmsr � 0). As a result,
the fifth hypothesis is:

Hypothesis 5. Climate change has fewer negative impacts on labor and
fertilizer utilization and a positive impact on capital stock (machinery) in the
long run, which implies adaptation in all three inputs.

Considering both the fourth and fifth hypotheses, and the production
function in Eq. (1), this article derives Δylr � Δysr ¼ β1ðΔllr � ΔlsrÞþ
β2ðΔf lr � Δf srÞþ β3ðΔmlr � ΔmsrÞþ ðΔtfplr � ΔtfpsrÞ > 0, which implies
less of a negative impact of climate change on yield in the long run than
in the short run, as is stated in the sixth hypothesis:

Hypothesis 6. Climate change has a less negative impact on yield in the
long run than in the short run, which implies adaptation in yield.

Finally, the adaptation in yield is greater than the adaptation in TFP
(Δylr � Δysr > Δtfplr � Δtfpsr), since farmers can also adjust their input
portfolio to adapt to climate change. Therefore, this article proposes a



S. Chen, B. Gong Journal of Development Economics 148 (2021) 102557
seventh hypothesis:

Hypothesis 7. The adaptation in yield is greater than the adaptation in
TFP.

Aside from these seven hypotheses, whether the response to climate
change on yield is greater or lesser than the response on TFP in the long
run is unknown (Δylr � Δtfplr ¼ β1Δllr þ β2Δf lr þ β3Δmlr , where Δllr and
Δf lr are negative, and Δmlr is positive). If the adaptations in all three
inputs are quite small, Δllr and Δf lr will be more negative and Δmlr will be
less positive, meaning that climate change will have a more negative
impact on yield than on TFP in the long run, similar to the situation in the
short run. However, if the adaptations in all three inputs are quite large,
climate change will have a less negative impact on yield than on TFP in
the long run.

To summarize, this article predicts that, in the short run, climate
change 1) has negative impacts on labor and fertilizer utilization, but no
significant impact on capital stock (machinery), and 2) has a negative
impact on TFP and a more negative impact on yield. In the long run, we
expect adaptations to exist in all three inputs, and the adaptation in yield
is greater than the adaptation in TFP. Fig. 1 summarizes the mechanism
and hypotheses constructed in this section.

3. Model

This section first introduces a stochastic frontier analysis that models
the agricultural production process and estimates agricultural TFPs. We
then employ the panel approach introduced by Schlenker and Roberts
(2009) to estimate the short-run impacts of global warming on agricul-
ture (including input utilization, TFP, and yield), as well as the long
differences approach developed by Burke and Emerick (2016) to estimate
the long-run impacts. Finally, the difference between the panel estimates
and the long differences estimates can derive climate adaptations during
our study period.
3.1. Agricultural TFP estimates

The stochastic frontier model, proposed by Aigner et al. (1977) and
Meeusen and Van den Broeck (1977), is a popular approach to estimate
TFP (e.g., Campbell and Hand, 1998; Sherlund et al., 2002; Bos et al.,
2010; Jin et al., 2010; Kilby, 2015; Gong, 2018b). Consider a
Cobb-Douglas (C-D) stochastic frontier model in the form:

yit ¼ αþ β1lit þ β2fit þ β3mit þ λt � uit þ vit (2a)

where yit represents yield in county i at time t, while lit , fit , and mit

separately account for labor, machinery, and fertilizer input per hectare,
all in logarithm. Total factor productivity can be derived by tfpit ¼
expðα þ λt � uitÞ, where α is the intercept, λt measures year fixed effects,
and uit accounts for technical inefficiency. This article follows Battese
Fig. 1. Mechanism and hypotheses constructed in this paper. Notes: This figure dem

4

and Coelli (1992) and Gong and Sickles (2020) to employ the most
widely used “Error Components Frontier” that models the inefficiency
uit ¼ expð � ηðt � TÞÞui, where ui is an i.i.d. non-negative truncation of
the N(λ, σ2) distribution. vit is a normally distributed disturbance.

This article employs several approaches to check the robustness of the
production function and TFP estimates. First, this article uses the method
in Sheng et al. (2019a) to relax the constant returns to scale assumption
of the production function. Second, this article follows Gong (2020b) to
use a conventional production function to derive TFPs and compare the
results with the ones estimated by the stochastic frontier model. Third,
this article also adopts a Transcendental Logarithmic (T-L) specification
(Christensen et al., 1973; Wang et al., 2016; Gong, 2018a) rather than the
Cobb-Douglas specification. A Transcendental Logarithmic stochastic
frontier model has the following form:

yit ¼αþ β1lit þ β2fit þ β3mit þ β4l
2
it þ β5f

2
it þ β6m

2
it þ β7lit fit þ β8litmit

þ β9fitmit þ λt � uit þ vit (2b)

3.2. Panel estimates

The panel approach typically uses panel data to investigate the agri-
cultural outcome response to short-run variation in weather. Past liter-
ature (e.g. Schlenker and Roberts, 2009; Chen et al. (2016)) uses the
concept of growing degree days (GDD hereafter) to capture the nonlinear
relationship between agricultural outcomes and variation in tempera-
ture. GDD measures the amount of time exposure to temperatures be-
tween a given lower and upper bound. Standard practice calculates the
percentage of each day that a country’s temperature is between the given
bounds, and then sums over daily exposures to arrive at an annual GDD.
For each day, the within-day distribution of temperatures is constructed
using daily maximum and minimum temperatures and fitted by a sine
curve (Baskerville and Emin (1969); Allen (1976); hereafter the sine
curve approach).

The predetermined definition of temperature bounds for GDD gen-
erates two panel estimates—the temperature bins approach and the
piecewise linear approach—as illustrated by the following two equations:

zit ¼
X
m

βmTbinmit þWitγ þ ci þ λt þ εit ; (3)

zit ¼ βFE1 GDDlo :l1
it þ βFE2 GDDl1 :l∞

it þWitγ þ ci þ λt þ εit : (4)

Equation (3) demonstrates the temperature bins approach, zit refers to
variables of interest, which can be agricultural TFP, yield, or input uti-
lization. Tbinmit denotes the heat accumulation in county i and year twhen
temperature is in themth temperature bound during the whole year using
the sine curve approach. In the baseline, this article constructs temper-
ature factors using temperature bounds for each 3 �C interval. Specif-
ically, we divided daily temperatures, calculated in �C, into fourteen
onstrates the mechanisms and hypotheses 1–7 in this article; see text in details.
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temperature bins, each of which was 3 �C wide. We defined Tbin1it ¼ heat
accumulation when temperature was in the range of [0 �C, 3 �C), Tbin2it ¼
heat accumulation when temperature was in the range of [3 �C, 6 �C), and
so on. Finally, Tbin13it equals heat accumulation when the temperature
was over 36 �C. As robustness checks, we also construct Tbinmit by each 4
�C, 5 �C, and 6 �C temperature interval, respectively.

To isolate the impacts of temperature on agricultural outcomes, linear
and quadratic terms of the daily averages of rainfall, sunshine duration,
relative humidity, and wind force are controlled as covariates and rep-
resented by Wit (Zhang et al., 2017). County fixed effects (ci) were
included to account for unobserved time-invariant characteristics that
was specific to county i, such as soil quality and geographic features. Year
fixed effects (λt) were also included to control for any factors that affect
all counties similarly in a given year. βm are the coefficients of interest.
The main purpose in Eq. (3) is to test whether βm ¼ 0, namely to test the
null hypothesis that the mth temperature bin has no impact on agricul-
tural outcomes.

The piecewise linear approach demonstrated in Equation (4) can be
considered a special case of the temperature bin approach in Equation
(3), when daily temperatures are only divided into two intervals, below
and above the temperature threshold l1. The heat accumulation in county
i and year t when temperature is in either [l0�C, l1�C) or above l1 during
the whole year are again calculated using the sine curve approach,
denoted byGDDlo :l1

it andGDDl1 :l∞
it . Following Schlenker and Roberts, 2009,

we loop all possible temperature thresholds and choose the best-fitting
one for specific agricultural outcomes. In such specification, the
nonlinear effect of temperature on agricultural is reflected by the
distinction between β1 and β2.
4 http://zzys.agri.gov.cn/nongqingxm.aspx.
3.3. Long differences approach

The long differences approach is typically employed to estimate how
agricultural outcomes respond to long-run changes in climate. The long-
run change is constructed by the difference between two different points
in time for a given region. Using agricultural yield as an example of the
variable of interest (z), consider two periods, denoted “a” and “b”, where
the long run difference is calculated by Δzi ¼ zia � zib. To avoid inac-
curate calculation using a single year, existing literature suggests the use
of averages by multi-year periods. If each period spans “n” years, the

average agricultural yield “z” in period “a” is given by zia ¼
�P
t2a

zit
��

n,

while the average agricultural yield “z” in period “b” is given by zib ¼
�P
t2b

zit
��

n. After performing the same transformation for all variables in

Equation (4), the time-invariant factors drop out, and the resulting long-
run difference equation is:

Δzi ¼ βLD1 ΔGDDlo :l1
i þ βLD2 ΔGDDl1 :l∞

i þΔWiγ þ Δεit (5)

In long differences estimation, we follow Burke and Emerick (2016)
to use the piecewise linear approach for three reasons. First, past litera-
ture on both the U.S. and Chinese agricultural response to climate change
suggests that a simple piecewise linear function yields results similar to
the ones estimated by the temperature bins approach, where the latter
approach has much more complicated function forms (Schlenker and
Roberts, 2009; Chen et al., 2016; Zhang et al., 2017). Second, as
demonstrated in Equation (5), the long differences estimation is based on
cross-sectional data with a much smaller sample size (compared with
panel data), which may not have enough degrees of freedom when the
temperature bins approach is adopted. Third, the temperature bins
approach delivers estimations of much more coefficients, which makes
the evaluation of adaptation more complicated.

To eliminate any concerns of time-varying unobservable factors that
possibly correlate with both climate and agricultural outcomes in Equa-
tion (5), Burke and Emerick (2016) establish a two-period panel of long
5

differences, which divides the dataset into two subsamples, one for the
first half of the period and the other for the second half of the period. For
each subsample, this approach adopts the long differences method in
Equation (5). In this way, we eventually obtain a separate two-period
Equation (5). We then append and estimate the following two-period
long differences panel model:

Δzit ¼ βLD1 ΔGDDlo :l1
it þ βLD2 ΔGDDl1 :l∞

it þΔWitγþ ci þ λt þ Δεit (6)

where t refers to the first and second period. Although this two-period
panel approach of long differences eliminates the concern of time-
varying unobservable factors, it requires panel data with a longer
period. With this concern, Burke and Emerick (2016) treat long differ-
ences method as the benchmark approach and panel long differences as a
robustness check when analyzing 40 years of U.S. agricultural data. Since
our Chinese agricultural panel data covers 35 years, this article also
adopts long differences as the benchmark approach and uses panel long
differences to confirm its robustness.

3.4. Long-run adaptation and offset

The basic idea to quantify past climate adaptation is to compare the
short-run impacts delivered from the panel estimates with the long-run
impacts delivered from the long differences estimates. Climate adapta-
tion is observed if the short-run effect is offset in the long run. Since we
illustrate that a piecewise linear approach is preferred in long differences
estimate to predict the long-run impact, this article also treats the
piecewise linear approach in Eq. (4) as the main model to evaluate the
short-run effect of climate change on agricultural TFP, yield, and input
utilization. On the other hand, the temperature bins approaches with
various temperature intervals are estimated as robustness checks of
short-run impacts.

Given the long differences estimates and panel estimates above,
Burke and Emerick (2016) suggest that the value 1� βLD2 =βFE2 can be
interpreted as the overall negative short-run effect that is compensated in
the long run, which is our estimation of adaptation to extreme heat. In
addition to the point estimate given by 1� βLD2 =βFE2 , the distribution of
bootstrapped adaptation estimates make it possible to test, for each time
period, the null hypothesis of “zero adaptation” to extreme heat, i.e., 1�
βLD2 =βFE2 ¼ 0.

4. Data and descriptive statistics

4.1. Agriculture

An unbalanced county-level panel for 2495 counties from 1981 to
2015 in mainland China with a total of 71,047 observations is collected
from the County-level Agricultural Database by the Ministry of Agricul-
ture and Rural Affairs of China.4 This dataset includes agricultural
output, land, labor, fertilizer, and machinery in each county on a yearly
basis. Since we aim to identify how climate change affects yield through
various channels, this article follows the literature (e.g., Wang et al.
(2016)) in inputs and outputs selection for agriculture in China. The
output variable is the agricultural yield, which is the deflated gross value
of agricultural output per hectare. There are three major types of inputs:
labor (agriculture labor force per hectare), fertilizer (the gross weight of
nitrogen, phosphate, potash, and complex fertilizers per hectare), and
machinery (kilowatts of total power per hectare). When the assumption
of constant returns to scale is relaxed, this article follows Sheng et al.
(2019a) to add land into the production function.

http://zzys.agri.gov.cn/nongqingxm.aspx
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4.2. Weather

This article collects the weather data from the China Meteorological
Data Service Center (CMDC) affiliated with the National Meteorological
Information Center of China.5 The CMDC records weather information
for 820 weather stations in China on a daily basis,6 including minimum,
maximum, and average temperatures, precipitation, relative humidity,
wind speed, as well as sunshine duration. This article matches the
weather data for those 2495 counties included in our agricultural dataset
using the inverse-distance weighting (IDW) method, which is widely
used in existing studies to impute either weather or pollution data (Currie
and Neidell, 2005; Deschênes and Greenstone, 2007; Schlenker and
Walker, 2015). For each of the 2495 counties, this method calculates the
weighted average of all weather stations within a certain radius of the
centroid of that county, where inverse distance square is the weight. This
article chooses 100 km (km) as the threshold radius and the results are
robust to different radii.
8 Also see two summary linkage: http://ipm.ucanr.edu/WEATHER/ddeval.h
4.3. Summary statistics

Table 1 summarizes county-level agriculture and weather variables in
China during the period of 1981–2015. In one hectare of arable land, on
average, China uses 4.36 workforce, 0.49 tons of fertilizer, and 7.23 kW
of machine power to generate agricultural products worth 11.26 thou-
sand RMB at a 1980’s constant price. In terms of weather conditions, on
average, the minimum and maximum temperature of a day is 7.3 and
17.8 �C, daily precipitation is 2.4 mm, solar duration is 5.9 h per day,
humidity is 66.7%, and wind force is 2.2 m per second.

Moreover, as shown in Fig. 2, two distinct characteristics of climate
change in China over the past three decades are rising temperature and
decreasing sunshine duration. On the one hand, temperatures in China
are rising much faster than the global average,7 as shown in Panel (A) of
Fig. 2, where China’s average temperature has increased more than 1.1
�C during the period 1981–2015. On the other hand, as shown in Panel
(C) of Fig. 2, the difference in average temperatures in northern and
southern China is vast. Therefore, we find both significant time-series
and cross-sectional variation in temperature, which makes China a
good country for studying the impact of climate change.

5. Empirical results

5.1. TFP results

This article first uses the unbalanced county-level panel for 2495
counties to estimate the agricultural production function and derive TFP
for the period of 1981–2015 in mainland China. Table 2 reports the
estimation results of the agricultural production function. The first col-
umn presents the results of the Cobb-Douglas stochastic frontier model
with constant returns to scale (CD-SFA-w/CRS, hereafter), which is the
baseline model. The second to the fourth column reports the results of
three other models to check the robustness of the baseline model,
including the Translog stochastic frontier model with constant returns to
scale (TL-SFA-w/CRS, hereafter), the Cobb-Douglas stochastic frontier
model without constant returns to scale (CD-SFA-w/oCRS, hereafter),
and TFP based on the Cobb-Douglas conventional production function
with constant returns to scale (CD-CPF-w/CRS, hereafter).

The four production models derive different TFP estimates. Our
baseline TFP derived from the CD-SFA-w/CRS model shows that agri-
cultural productivity achieved a remarkable increase in the early 1980s
followed by a significant decline at the end of the 1980s. TFP then
5 The data can be obtained at http://data.cma.cn/.
6 See the location of these 820 weather stations in Figure A1 in appendix.
7 Global average temperature has increased by 0.85 �C during the past 130

years (IPCC AR5).
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achieved dramatic improvement in the 1990s but has gradually lost
momentum since the beginning of the 21st century. This trend is
consistent with findings in the literature (e.g., Lin, 1992; Pratt et al.,
2008; Dekle; Vandenbroucke, 2010; Wang et al., 2013; Sheng et al.,
2019b). Moreover, the other three TFP measures all confirm the
robustness of the TFP trend over time.

Finally, Fig. 3 compares changes in temperature and changes in
agricultural TFP over the period of 1981–2015. The northwest regions of
China experiencing a faster temperature rise are also the areas with lower
agricultural productivity growth, whereas the southeast regions with a
slower temperature rise achieved faster growth in agricultural TFP.
Therefore, climate change may have a negative impact on agricultural
TFP in China.
5.2. Panel results

In order to use the piecewise linear approach in Eq. (4), the lower
temperature bound l0 and the endogenous threshold l1 must be pre-
determined. Agricultural and meteorological literature (e.g., Baskerville
and Emin, 1969; Roltsch et al., 1999; Dai et al., 2014) generally classifies
GDD into three sections: negative accumulated temperature (GDD below
0 �C), invalid accumulated temperature (GDD between 0 and 10 �C), and
active accumulated temperature (GDD above 10 �C), as illustrated in
Figure A2 in the appendix.8 Since GDD above 10 �C is beneficial to the
agricultural sector, we choose 10 �C as the lower temperature bound l0. It
is worth noting that all our subsequent findings still hold whenwe choose
0 �C as an alternative lower temperature bound. To determine the
threshold l1, we loop all possible thresholds, ranging from 25 to 40 �C
(see Table A1 in the appendix), where 33 �C appears to be the best-fitting
one. We thereby choose 33 �C as our baseline threshold, while 32 �C and
34 �C are used in robustness checks.9 In addition to the definition of l0
and l1, agricultural TFP is determined by any season of the year, instead
of specific growing seasons, so we aggregate daily exposures to construct
GDDs during the whole year.

The results from our piecewise linear approach are reported in
Table 3. In the piecewise linear approach, the nonlinear effect of tem-
perature on agricultural outcomes is captured by two GDD variables, i.e.,
GDD below threshold (GDD between 10 �C and 33 �C) and GDD above
threshold (GDD above 33 �C). In Table 3, Column (1) only includes GDDs,
whereas county fixed effects, year fixed effects, additional weather
controls, and agricultural land weight are gradually added into the
regression in Columns (2)–(5). All estimation results consistently show a
nonlinear relationship between temperature and agricultural TFP.
Exposure to GDD below threshold slightly promotes agricultural TFP, but
GDD above threshold leads to a sharp decrease in agricultural TFP. We
prefer the estimated coefficients of Column (5) because it has the most
complete controls in model specification, in which agricultural TFP is
expected to decrease linearly by 2.6% with an additional one-day cu-
mulative exposure to temperatures above 33 �C during the whole year.

The nonlinear relationship between temperature and agricultural TFP
is further enhanced by the traditional temperature bins approach. In
Fig. 4, we depict the estimates of Equation (3) using an array of GDDs
with every 3 �C temperature bin. Results also show a clearly nonlinear,
inverse U-shaped effect of temperature on agricultural TFP, and the
turning point again occurs around 33 �C. This article also uses alternative
temperature bins (every 4 �C, every 5 �C, and every 6 �C temperature bin,
respectively) in the temperature bins approach and finds that the turning
tml and https://hort.extension.wisc.edu/articles/degree-day-calculation/.
9 For other agricultural outcomes in our further analyses, such as machinery,

fertilizer, labor, and land output, the temperature threshold varies slightly from
32 to 34 �C, and the long difference and panel estimates deliver very similar
temperature thresholds. We summarize the thresholds for all agricultural out-
comes used in this article in Table A2.

http://data.cma.cn/
http://ipm.ucanr.edu/WEATHER/ddeval.html
http://ipm.ucanr.edu/WEATHER/ddeval.html
https://hort.extension.wisc.edu/articles/degree-day-calculation/


Table 1
Summary statistics.

Variable Unit/Definition Mean SD Min Max N

Output
Yield Land output value (10,000 RMB/Ha) 1.126 0.825 0.061 6.465 67,951
Input
Labor # of workforce/Ha 4.361 2.531 0.319 14.253 67,951
Fertilizer Ton/Ha 0.489 0.337 0.017 2.387 67,951
Machinery Kilowatt/Ha 7.229 5.597 0.496 38.391 67,522
Weather variables
Tave Daily average temperature (�C) 11.975 12.026 �44.6 38.9 10,488,766
Tmax Daily maximum temperature (�C) 17.823 11.818 �39.1 54.3 10,488,837
Tmin Daily minimum temperature (�C) 7.328 12.646 �50.6 33.1 10,488,922
Precipitation Daily average (mm) 2.359 9.027 0 3205 10,486,566
Solar duration Daily total (hours) 5.918 4.098 0 16.4 10,462,522
Humidity Daily average (%) 66.671 19.107 0 100 10,488,501
Wind force Daily average (m/s) 2.213 1.628 0 40 10,477,816

Notes: Summary statistics for agricultural output and inputs are based on 2495 unbalanced county panel over the period 1981–2015, while weather variables are based
on 820 weather stations with daily records. Summary statistics for exposure days by temperature intervals see Figure A2 in appendix. Yield is in 10,000 RMB at 1980’s
constant price.

Fig. 2. Climate change and variation in China (1981–2015). Notes: This figure presents the time trend of average temperature (Panel A) and sunshine duration (Panel
B) for China, as well as the cross-county average temperature (Panel C) during the sample period (1981–2015).
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Table 2
Estimation results of the production function.

Dependent
variable

Agricultural yield

(1) (2) (3) (4)

CD-SFA-w/
CRS

TL-SFA-w/
CRS

CD-SFA-w/
oCRS

CD-CPF-w/
CRS

Labor 0.3079***
(0.0147)

0.2433***
(0.0318)

0.1881***
(0.0081)

0.2651***
(0.0047)

Fertilizer 0.1810***
(0.0147)

0.2690***
(0.0171)

0.1512***
(0.0068)

0.1769***
(0.0036)

Machine 0.2713***
(0.0152)

0.1477***
(0.0214)

0.1355***
(0.0077)

0.2007***
(0.0037)

Labor � Labor –

–

0.0625
(0.0546)

–

–

–

–

Labor �
Fertilizer

–

–

�0.0053
(0.0872)

–

–

–

–

Labor �
Machine

–

–

�0.0336
(0.0428)

–

–

–

–

Fertilizer �
Fertilizer

–

–

0.0160***
(0.0057)

–

–

–

–

Fertilizer �
Machine

–

–

�0.0340
(0.0598)

–

–

–

–

Machine �
Machine

–

–

0.0425
(0.0513)

–

–

–

–

Land –

–

–

–

�0.4353***
(0.0048)

–

–

Year FE Yes Yes Yes Yes
AIC 5.679 � 104 6.321 � 104 5.772 � 104 –

R-squared – – – 0.8586

Notes: N¼ 67,951. The dependent variable is agricultural yield that measures the
land output value (10,000 RMB/Ha) for all columns (1)–(4). ***p < 0.01, **p <

0.05, *p < 0.1.
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point is robust around 33 �C, as shown in Figure A3. Together with the
estimates from the temperature bins approach, we also illustrate the es-
timates of the piecewise linear approach in Fig. 4, which jointly show
that the two estimates deliver a very similar pattern and threshold.

Table 4 reports the panel estimates using alternative agricultural
Fig. 3. Change in temperature (�C) and Log(TFP) over the period 1981–2015. Note
cultural TFP measured by CD-SFA-w/CRS (Panel B) for China in each county during t
histogram beneath the plot.
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TFPs, together with land output value, namely yield. In addition to our
baseline in Column (1) - TFP based on the CD-SFA-w/CRS model, we
alternatively use TFP based on the TL-SFA-w/CRS model in Column (2),
TFP based on the CD-SFA-w/oCRS model in Columns (3), and TFP based
on the CD-CPF-w/CRS model in Columns (4). Results show that our
baseline findings from panel estimates are stable under different TFP
measurements and support Hypothesis 1.

On the other hand, Column (5) of Table 4 shows that extreme heating
also significantly reduces agricultural yield in the short run. More spe-
cifically, yield is expected to decrease by 4.4% with an additional one-
day cumulative exposure to temperatures above 33 �C during the year.
Therefore, relative to such impacts on agricultural TFP, extreme heating
has a nearly 71% larger negative impact on yield, which confirms Hy-
pothesis 3.
5.3. Long term estimates

The estimation results from our long differences approach are re-
ported in Table 5, which predicts the long-run impact of climate change
on agricultural TFPs and yield. Suggested by Burke and Emerick (2016),
we choose the 5-year difference as our baseline and report the estimation
results in Table 5. During our study period of 1981–2015, the 5-year
difference is given by the difference between the averages of the
earliest 5-year period 1981–1985 (i.e., zi;1981�1985 ¼ ðP1985

t¼1981zitÞ=5) and
the averages of the latest 5-year period 2011–2015 (i.e., zi;2011�2015 ¼
ðP2015

t¼2011zitÞ=5). The long differences approach is then estimated after
calculating the difference between the two-period averages of all vari-
ables in Equation (4) (i.e., both agricultural outcomes and weather var-
iables). Similar to Table 4, we alternatively use three other TFP estimates
in Columns (2) to (4), in addition to the benchmark TFP estimate in
Column (1). Similar to panel estimates, the long differences approach
also reveals an inverse U-shaped nonlinearity as temperature exceeds the
turning point, and the results are robust using various TFP estimates. In
Column (1) in particular, the estimation indicates that exposure to one
extra day of temperature above 33 �C during the whole year decreases
s: This figure presents the changes in average temperature (Panel A) and agri-
he sample period (1981-2015). Variable shading of each map corresponds to the



Table 3
Panel estimates of the impacts of temperature on China’s agricultural TFP.

Dependent variable: Log(Agricultural TFP)

(1) (2) (3) (4) (5)

GDD below threshold 0.0055***
(0.0004)

0.0188***
(0.0006)

0.0042***
(0.0007)

0.0040***
(0.0007)

0.0035***
(0.0008)

GDD above threshold �0.0275**
(0.0130)

�0.0201***
(0.0062)

�0.0128**
(0.0064)

�0.0136**
(0.0069)

�0.0256***
(0.0085)

Precipitation –

–

–

–

–

–

0.0210***
(0.0044)

0.0147***
(0.0053)

Precipitation̂2 –

–

–

–

–

–

�0.0006***
(0.0002)

�0.0005**
(0.0002)

Sunshine duration –

–

–

–

–

–

�0.0032
(0.0247)

0.0225
(0.0348)

Sunshine duration̂2 –

–

–

–

–

–

�0.0017
(0.0022)

�0.0034
(0.0032)

Humidity –

–

–

–

–

–

0.0356***
(0.0083)

0.0347***
(0.0106)

Humiditŷ2 –

–

–

–

–

–

�0.0003***
(0.0001)

�0.0003***
(0.0001)

Wind force –

–

–

–

–

–

0.0033
(0.0263)

0.0327
(0.0366)

Wind forcê2 –

–

–

–

–

–

�0.0047
(0.0050)

�0.0074
(0.0072)

R-squared 0.0331 0.5331 0.6300 0.6314 0.6171
County FE No Yes Yes Yes Yes
Year FE No No Yes Yes Yes
Weight No No No No Yes

Notes:N¼ 67,951. The dependent variable is log agricultural TFP derived from the baseline model (CD-SFA-w/CRS) for all columns (1)–(5). Specifications are estimated
using an annual panel with different fixed effects and weather variables shown at the bottom. Additional weather variables include second-order polynomials in
accumulative precipitation, sunshine duration, average relative humidity, as well as wind speed. Regressions are weighted by 1981–2015 county-average farm area.
Standard errors listed in parentheses are adjusted for spatial correlation and are clustered at county level. ***p < 0.01, **p < 0.05, *p < 0.1.

Fig. 4. Estimates with fine temperature bins and piecewise linear function.
Notes: This graph displays changes in log agricultural TFP measured by CD-SFA-
w/CRS model if a county is exposed for one day to a particular 3 �C temperature
interval (red line) where we sum the fraction of a day temperatures fall within
each interval. The 95% confidence bands, after adjusting for spatial correlation
and clustering at county level, are added by dash line (yellow). The black line
and shaded area reflect the estimates and 95% CIs derived from piecewise linear
approach, in which the log agricultural TFP changes under an additional day of
exposure to a given �C temperature relative to a day spend at 0 �C. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)
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China’s agricultural TFP by nearly 1.6% percent in the long run. Column
(5) of Table 5 reports the long-run impact of extreme heating on agri-
cultural yield, which implies that a 2.3% reduction in yield is expected in
the long run, with an additional one-day cumulative exposure to tem-
peratures above 33 �C during the year.

Since our study period spans 35 years, we are also able to construct
9

10-year and 15-year difference estimations as robustness checks. These
results reported in Columns (2) and (3) of Table A3 in the appendix
suggest that the estimates from the long differences approach are stable
under different period-average definitions. In addition, a potential
concern about the long differences approach is that the estimation is
based only on cross-sectional variation after data transformation. To
eliminate any concerns of time-varying unobservable factors that
possibly correlate with both climate and agricultural outcomes, we adopt
the two-period long differences panel model in Eq. (6) and report the
estimation results in Column (4) of Table A3. The main estimated coef-
ficient and significance for GDD above threshold are also highly consis-
tent with our baseline.

5.4. Adaptations

Since the long differences estimates account for farmers’ adaptation
to longer-run changes in climate during our study period, the difference
between short-run responses given by panel estimates and the longer-run
estimates given by long differences estimates reflect recent climate
adaptation in the past three decades. Table 6 reports panel estimates in
Panel A, longer-run estimates in Panel B, and adaptations in Panel C.
Columns (1) and (2) of Table 6 reflect the response of yield and TFP,
respectively. The results in Panel C show that longer-run adaptation has
offset 46.8% and 37.9% of the short-run effects of extreme heat on
China’s agriculture yield and agricultural TFP, respectively.

It is worth noting that we only have weather records for 820 weather
stations in China and hence match the weather data for those 2495
counties using the IDW method, where 100 km is selected as the
threshold radius. In other words, the weather condition of a county is
estimated by taking the weighted average of all weather stations within
100 km radius of the centroid of that county. To check the sensitivity of
our estimations under different threshold radius, this article runs the
regression only for counties in which there is one or more weather sta-
tions. Moreover, we also run regressions using 50 km, 150 km, and 200
km as the threshold radius, respectively. Table A4 in appendix compares
the results of these robustness checks with our baseline model using 100



Table 4
Panel estimates of the impacts of temperature on either China’s agricultural TFPs and land output values.

Dependent variable: Log(Agricultural TFP) Log(Yield)

(1) CD-SFA-w/CRS (2) TL-SFA-w/CRS (3) CD-SFA-w/oCRS (4) CD-CPF-w/CRS (5)

GDD below threshold 0.0035***
(0.0008)

0.0026***
(0.0008)

0.0033***
(0.0008)

0.0026***
(0.0008)

0.0003
(0.0009)

GDD above threshold �0.0256***
(0.0085)

�0.0212**
(0.0088)

�0.0263***
(0.0084)

�0.0294***
(0.0084)

�0.0438***
(0.0095)

R-squared 0.6171 0.6072 0.6280 0.7038 0.8118
County FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Additional weather Yes Yes Yes Yes Yes
Weight Yes Yes Yes Yes Yes

Notes: N ¼ 67,951. The dependent variable is log agricultural TFP for all columns (1)–(4) with different TFP measurements, and log Yield for column (5). Specifications
are estimated using an annual panel with county fixed effects and year fixed effects. Additional weather variables include second-order polynomials in accumulative
precipitation, sunshine duration, average relative humidity, as well as wind speed. Regressions are weighted by 1981–2015 county-average farm area. Standard errors
listed in parentheses are adjusted for spatial correlation and are clustered at county level. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 5
Long difference estimates of the impacts of temperature on either China’s agricultural TFPs and land output values.

Dependent variable: Log(Agricultural TFP) Log(Yield)

(1) CD-SFA-w/CRS (2) TL-SFA-w/CRS (3) CD-SFA-w/oCRS (4) CD-CPF-w/CRS (5)

GDD below threshold 0.0016***
(0.0004)

0.0013***
(0.0004)

0.0015***
(0.0004)

0.0016***
(0.0004)

0.0016***
(0.0004)

GDD above threshold �0.0159***
(0.0043)

�0.0160***
(0.0043)

�0.0163***
(0.0042)

�0.0175***
(0.0042)

�0.0233***
(0.0045)

Additional weather Yes Yes Yes Yes Yes
Weight Yes Yes Yes Yes Yes

Notes:N¼ 1649. The dependent variable is log agricultural TFP for all columns (1)–(4) with different TFP measurements, and log Yield for column (5). Specifications are
estimated using long difference with 5-year lengths of differencing period. Additional weather variables include second-order polynomials in accumulative precipi-
tation, sunshine duration, average relative humidity, as well as wind speed. Regressions are weighted by 1981–2015 county-average farm area. Standard errors listed in
parentheses are adjusted for spatial correlation and are clustered at county level. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 6
Adaption and mechanisms.

Dependent variable: Output Productivity Input

Log(Yield) Log(Agricultural TFP) Log(Labor) Log(Fertilizer) Log(Machinery)

(1) (2) (3) (4) (5)

Panel A: Panel estimates [N ¼ 67,951]
GDD above threshold (β2FE) �0.0438***

(0.0095)
�0.0256***
(0.0085)

�0.0276***
(0.0077)

�0.0491***
(0.0091)

0.0069
(0.0079)

Panel B: Long difference estimates [N ¼ 1649]
GDD above threshold (β2LD) �0.0233***

(0.0045)
�0.0159***
(0.0043)

�0.0115***
(0.0031)

�0.0175***
(0.0039)

0.0084**
(0.0035)

Panel C: Adaptations (%)
(1-β2LD/β2FE) � 100% 46.80*** 37.89*** 58.33*** 64.36*** –

Bootstrap percentiles [5%, 95%] [30.20, 58.04] [5.29, 54.75] [42.03, 69.39] [56.24, 70.03] –

Notes: The dependent variable is log land output value for column (1), log agricultural TFP derived from the baseline model (CD-SFA-w/CRS) for column (2), and log
form of unit land inputs, i.e. labor, fertilizer, and machinery, for columns (3)–(5); see text for details. Panel A are estimated using panel estimation and the specifications
are strictly in line with Table 4, while Panel B are estimated using long difference with 5-year lengths of differencing period and the specifications are strictly in line with
Table 5. Regressions are weighted by 1981–2015 county-average farm area. Standard errors listed in parentheses are adjusted for spatial correlation and are clustered at
county level. GDD below threshold is controlled but not reported. ***p < 0.01, **p < 0.05, *p < 0.1.
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km as the threshold radius, and the results are very robust.
In addition to point estimates, we further quantify the uncertainty of

climate adaptation by bootstrap procedure10. We follow three steps of
bootstrap procedure: 1) we randomly pick 2000 counties from our
dataset with replacement to construct a subsample at a time and
construct 1000 such subsamples; and then 2) deliver both the panel es-
timates and long differences estimates for each subsample; finally, 3) we
recalculate the percentage of 1� βLD2 =βFE2 for each subsample and report
10 The accurate point and bootstrap estimates for climate adaptation are re-
ported in Table A5 and Table A6 in appendix.

10
the distribution of bootstrapped adaptation estimates at 5%, 25%, 50%,
75% and 95%, respectively.

In Fig. 5, we illustrate bootstrapped adaptation estimates for both
agricultural TFP and yield. Using the full sample of 1981–2015, the
median estimates show that 37.9% of the negative short-run impacts on
TFP and 46.9% of the negative short-run impacts on yield are offset in the
longer run during our study period, which is consistent with our point
estimates in Table 6 and are both statistically significant. Moreover,
Fig. 5 also reports adaptation in different periods. The extent of climate
adaptation has gradually amplified in the most recent period. In terms of
agricultural TFP, climate adaptation appears to be around 9.0% (95% CI,
1.3%–13.0%) during 1981–1990 but reaches nearly 36.3% (95% CI,



Fig. 5. Percentage of short-run impacts offset by adaptation. Notes: This figure
shows the percentage of the short-run effects of extreme heat on either agri-
cultural TFP measured by CD-SFA-w/CRS model or yield that are mitigated in
the longer run. Each box plot corresponds to a particular time period as labeled,
and represent 1000 bootstrap estimates of 1-β2LD/β2FE for that time period. The
scatter in each distribution is the median, the grey box represents the inter-
quartile range, and the cap-line represent the fifth to ninety-fifth percentile.
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5.1%–52.7%) during 1991–2000 and further increases to 46.9% (95% CI,
6.6%–68.0%) during the most recent period of 2001–2015. In terms of
yield, climate adaptation offsets 29.9% (95% CI, 19.1%–36.8%) of short-
run impacts during 1981–1990, improving to 31.1% (95% CI, 19.9%–

38.2%) during 1991–2000 and 54.3% (95% CI, 34.8%–66.8%) during
the most recent period of 2001–2015. In line with our theoretical hy-
pothesis, climate adaptation for agricultural output shows a larger offset
than agricultural TFP.

5.5. Mechanisms and alternate explanations

Table 6 not only reports significant adaptation in agricultural yield
and TFP but also shows that the impact of climate change on yield is more
negative than on TFP in both the short and long run. The difference
between the response of yield and TFP is due to the impact of climate
change on input utilization. Columns (3) to (5) of Table 6 report the
impact of climate change on labor, fertilizer and machinery, respectively.
As predicted in Section 2, extreme heat has a significant negative impact
on labor11 and fertilizer, but no significant impact on machinery in the
short run. In the long run, however, labor and fertilizer usage is gradually
recovered, and the usage of machinery is increasingly replacing labor in
hot weather. The estimation result in Table 6 supports all seven hy-
potheses in Fig. 1. To summarize, the impact on yield is the combination
of the impact on input usage and the impact on TFP. In the short run,
extreme heat has a negative impact on labor, fertilizer, and TFP, leading
to a more negative impact on yield in the short run. In the long run, both
the adaptations in input utilization and TFP are witnessed, and therefore
11 In our dataset, we only have the number of agricultural workforce rather
than working hours. Therefore, input adjustment on the labor margin cannot be
fully captured. Existing studies (Crocker and Horst, 1981; Dell et al., 2014; Graff
Zivin; Neidell, 2014; Zhang et al., 2018; Fishman et al., 2019; Kjellstrom et al.,
2019; Acevedo et al., 2020) find that extreme heat will decrease labor intensity,
reduce working hours (especially outdoor activities), and even threaten occu-
pational health. Accordingly, we believe that extreme hot weather is not likely
to increase the average working hours of the farmers. As a result, we estimate
the effect of climate change on labor employment in agriculture, which is likely
to be the lower bound of the impact on labor input. In other words, the actual
impact of climate change on labor input can be more negative, and our
conclusion still holds.

11
lead to a larger adaptation in yield.

6. Projections of impacts under future climate change

Finally, this article employs the estimated coefficients of GDD below
and above threshold in our baseline model to project the impact of future
global warming on agricultural TFP in China. Projections of future
climate factors were collected from WorldClim-Global Climate Data,12

which generates climate predictions according to the constantly updated
global climate models under four representative greenhouse gas (GHG)
concentration pathways (RCPs) for the medium term (2050, average for
2041–2060) as well as the long term (2070, average for 2061–2080):
RCP2.6, RCP4.5, RCP6.0, and RCP8.5. On the one hand, the RCP2.6 (the
most optimistic pathway) and RCP8.5 (the most pessimistic pathway) are
adopted in this article for projection, since these two pathways cover the
whole range of the projected GHG emissions changes in the future. On
the other hand, this article follows Warszawski et al. (2014) to choose
climate data derived from the global climate models HadGEM2-ES and
NorESM1-M, which represent two different projections for future global
temperature changes. Considering different projections for future GHG
emissions and future global temperature, we eventually narrowed the
field to four scenarios for the medium term and four scenarios for the
long term.

This article calculates the projected changes in GDDs across regions,
which are the differences between the GDDs derived from the con-
structed daily Tmin and Tmax data for the 21st century and the average
temperature bins during the sample period (1981–2015). The coefficient
estimates of the GDD below and above threshold allow us to predict
county-specific changes in agricultural TFP and yield to estimate the
effects of future warming on agricultural TFP and yield.

Fig. 6 (A) presents the effects of future warming on agricultural TFP
under different scenarios. In general, we find that future global warming
will significantly lower China’s agricultural TFP, and predictions based
on panel estimates tend to overestimate the reductions. Specifically, in
the left panel of Fig. 6 (A), under the HadGEM2-ES model, average
agricultural TFP in the medium term by 2041–2060 is projected to
reduce by 2.5–3.9% under RCP2.6 and by 3.5–5.7% under RCP8.5.
Under the NorESM1-Mmodel, corresponding declines in TFP are smaller,
by 1.9–3.1% under RCP2.6 and by 2.5–4.1% under RCP8.5. In the right
panel of Fig. 6 (A), the declines in agricultural TFP in the long term are
projected to be considerably greater than those in the medium term.
China’s agricultural TFP is projected to decrease by 4.4–11.8% by
2061–2080 under the HadGEM2-ES model and by 3.9–8.1% under the
NorESM1-Mmodel. In the medium term (2041–2060), on average across
different GHG concentration trajectories under different climate models,
China’s agricultural TFP is projected to decrease by 4.2% based on panel
estimates and by 2.6% based on long differences estimates, which means
that climate adaptation offsets 38.1% of the TFP reductions in the
midterm. However, in the long term (2061–2080), China’s agricultural
TFP is projected to decrease by 7.8% based on panel estimates and by
5.6% based on long differences estimates, where the climate adaptation
offset shrinks to 28.2% of the TFP reductions in the long run.

Similarly, Fig. 6 (B) presents the effects of future warming on agri-
cultural output. All findings from predictions in Fig. 6 (B) are in line with
Fig. 6 (A). The most remarkable difference between panel (A) and panel
(B) is that the projected reductions in agricultural output are nearly twice
as large as the decline in agricultural TFP, as shown by the different scale
of values on the vertical axis, which is also consistent with expectations
because our previous estimates show a more negative climate impact on
yield, relative to TFP, due to the negative impact of climate change on
inputs. Again, the climate adaptation offset on yield reduction will
decrease in the long run.
12 Future climate data are available on line at http://www.worldclim.org/.This
article follows Chen and Chen (2018) to construct future climate projections.

http://www.worldclim.org/


Fig. 6. Projected impacts of future warming on TFP and Yield. Notes: Panels (A) and (B) show predicted percentage changes in China’s agricultural TFP measured by
CD-SFA-w/CRS model and yield under either HadGEM2-ES model or NorESM1-M model, based on long differences (square) or panel estimates (circle) of historical
sensitivities to climate. The scatter in each climate model represents the median and the cap-line represents the fifth to ninety-fifth percentile.

S. Chen, B. Gong Journal of Development Economics 148 (2021) 102557
In summary, although climate adaptation is occurring, future global
warming is still projected to make a sizeable negative impact on China’s
agricultural productivity, since more than half of the short-run effects
still exist. In particular, two points evaluated from the future projections
are worth additional attention. First, compared to the medium term, the
nonlinear relationship between temperature and agricultural outcomes
revealed by our estimates directly lead to a faster reduction in TFP and
yield in the long term. Second, climate adaptation decreases in the long
term, relative to the medium term, which suggests limited adaptations in
the agricultural sector without new policy interventions.

7. Discussion and conclusion

Most existing literature quantifies the impact of climate change on
economic outcomes based on estimates of short-run response, which fails
to consider the adaptation behavior that may mitigate the short-run
response in the longer run. Some recent studies have captured this
long-run adjustment to a changing climate by estimating and comparing
both short-run and long-run responses. However, understanding the
12
mechanism of the response and adaptation is a more important input to
public policy. Take agriculture as an example, identifying the mechanism
of how climate change affects yield through its impact on TFP and input
utilization, as well as the mechanism of how farmers adapt to these im-
pacts, can provide more useful information to fight against climate
change.

Using county-year panel data for 2495 counties over the period of
1981–2015, this article finds that extreme hot weather has a negative
impact on agricultural TFP and a more negative impact on yield in the
short run, since TFP and yield are expected to decrease linearly by 2.6%
and 4.4%, with an additional one-day cumulative exposure to tempera-
tures above 33 �C during the whole year, respectively. The difference
between the impact on TFP and yield is due to the negative effect of
extreme hot weather on labor and fertilizer usage.

Significant adaptation of TFP and all three inputs are found, which
leads to a larger adaptation in yield. Long-run adaptations appear to have
mitigated 37.9% (95% CI, 5.3%–54.8%) of the short-run effects in TFP.
Moreover, Chinese farmers mitigate the reduction in labor and fertilizer
due to extreme hot weather and employ more machines to replace the
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shortage of labor. All these adaptation behaviors in TFP and inputs have
jointly and significantly offset the short-run effects in yield by 46.8%
(95% CI, 30.2%–58.0%). The existence of the long-run offset suggests a
potential overestimation of the negative climate change impacts based on
panel estimates in previous literature (Chen et al., 2016; Zhang et al.,
2017). According to our analysis, future climate adaptations in agricul-
ture are thereby emerging from two pathways: adaptation in agricultural
TFP and adaptations in agricultural input portfolio. Therefore, the gov-
ernment should enact more policies to induce technical change and
improve agricultural productivity. At the same time, policy instruments,
such as subsidy of machinery purchase and agricultural insurance policy,
are essential to motivate agricultural investments.

Although climate adaptation is happening, future global warming is
still likely to make a sizeable negative impact on China’s agricultural
productivity, considering that more than half of the short-run effects still
exist. Moreover, the restated nonlinearity in this article, based on a
longer dataset, is a reminder that the hazards of climate change will
disproportionately exacerbate in the long run, while the adaptation will
decrease in the long run. This means that the earlier the mitigation ac-
tions are taken, the better the policy effects will be. Besides the policies to
13
fight against climate change, the government must make relevant pol-
icies to reduce welfare loss in the context of a seemingly inevitable
agricultural reduction.

There are a few limitations to this article that are worth emphasizing.
First, input adjustment on the labor margin cannot be fully captured due
to the lack of data on working hours, and our estimation is likely to be the
lower bound of the impact of climate change on labor input. That implies
the negative impact of climate change on labor input can be even greater
than we predicted. Second, we do not further decompose the impact
mechanism on agriculture into the impact on cropping pattern changes
and the impact on each farm commodities since we don’t have complete
commodity-county-level data for the sample period. Future research is
warranted to better understand the mechanism at commodity level.

CRediT authorship contribution statement

Shuai Chen: Conceptualization, Methodology, Software, Data cura-
tion, Writing - original draft, Visualization. Binlei Gong: Conceptuali-
zation, Methodology, Software, Data curation, Writing - original draft,
Writing - review & editing.
Appendix A. Figures and Tables

Fig. A1. Location of weather stations in China. Notes: The scatters display the location of 820 weather stations in China. The inverse-distance weighting (IDW) method
is employed to impute weather data for each county. For each county, the IDW algorithm calculates the weighted average of all weather stations within a certain radius
of the centroid of that county, where inverse distance square is the weight..
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Fig. A2. Growing degree days in China (1981–2015). Notes: This figure presents the distribution of time (measured by days) for each 1-celsius temperature interval
during the whole year in China.
Fig. A3. Estimation with alternative temperature bins. Notes: This graph displays changes in log agricultural TFP measured by CD-SFA-w/CRS model if a county is
exposed for one day to a particular 4 �C temperature interval (red line), a particular 5 �C temperature interval (blue line), or a particular 6 �C temperature interval
(blue line), where we sum the fraction of a day temperatures fall within each interval. The 95% confidence bands, after adjusting for spatial correlation and clustering
at county level, are added by dash line. The black line and shaded area depict the estimates and 95% CIs derived from piecewise linear approach, in which log
agricultural TFP changes under an additional day of exposure to a given �C temperature relative to a day spend at 0 �C. .

Table A1
Temperature thresholds

Dependent variable: Log(CD-SFA-w/CRS)
(1)
 (2)
 (3)
 (4)
14
(5)
 (6)
 (7)
 (8)
Threshold (�C)
 25
 26
 27
 28
 29
 30
 31
 32

GDD below threshold
 0.0033***

(0.0009)

0.0032***
(0.0009)
0.0033***
(0.0008)
0.0035***
(0.0008)
0.0035***
(0.0008)
0.0035***
(0.0008)
0.0036***
(0.0008)
0.0036***
(0.0008)
GDD above threshold
 0.0015
(0.0020)
0.0013
(0.0022)
0.0004
(0.0025)
�0.0012
(0.0029)
�0.0029
(0.0034)
�0.0055
(0.0040)
�0.0101**
(0.0049)
�0.0164***
(0.0063)
R-squared
 0.6168
 0.6168
 0.6169
 0.6169
 0.6169
 0.6170
 0.6170
 0.6170
Threshold (�C)
 33
 34
 35
 36
 37
 38
 39
 40

GDD below threshold
 0.0035***

(0.0008)

0.0034***
(0.0008)
0.0033***
(0.0008)
0.0032***
(0.0008)
0.0031***
(0.0008)
0.0030***
(0.0008)
0.0029***
(0.0008)
0.0028***
(0.0008)
GDD above threshold
 �0.0256***
(0.0085)
�0.0392***
(0.0120)
�0.0613***
(0.0182)
�0.0997***
(0.0293)
�0.1606***
(0.0495)
�0.2584***
(0.0878)
�0.4171**
(0.1623)
�0.7614**
(0.3104)
R-squared
 0.6171
 0.6171
 0.6170
 0.6170
 0.6170
 0.6169
 0.6169
 0.6168
Notes: N ¼ 67,951. The dependent variable is log agricultural TFP measured by CD-SFA-w/CRS for all columns (1)–(8). Specifications are estimated using an annual
panel with both county and year fixed effects. Additional weather variables include second-order polynomials in accumulative precipitation, sunshine duration, average
relative humidity, as well as wind speed. Regressions are weighted by 1981–2015 county-average farm area. Standard errors listed in parentheses are adjusted for spatial
correlation and are clustered at county level. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table A2
Summary for temperature thresholds

Variables Log(Agricultural TFP) Output Input
15
CD-SFA-w/CRS
 TL-SFA-w/CRS
 CD-SFA-w/oCRS
 C-D (CPF)
 Yield
 Fertilizer
 Machinery
 Labor
(1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)
Threshold (�C)
 33–34
 32–33
 32–33
 31–32
 32–34
 32–33
 32–34
 33–34
Notes: This table summarizes all possible temperature thresholds for agricultural outcomes involved in this article, using piecewise linear approach.
Table A3
Long difference estimates of the impacts of temperature on China’s agricultural TFP

Dependent variable: Log(Agricultural TFP)
(1) 5-year dif
 (2) 10-year dif
 (3) 15-year dif
 (4) Panel-dif
GDD below threshold
 0.0016***
(0.0004)
0.0017***
(0.0005)
0.0021***
(0.0005)
0.0007***
(0.0002)
GDD above threshold
 �0.0159***
(0.0043)
�0.0142**
(0.0064)
�0.0173**
(0.0083)
�0.0148***
(0.0026)
Additional weather
 Yes
 Yes
 Yes
 Yes

Weight
 Yes
 Yes
 Yes
 Yes

County FE
 No
 No
 No
 Yes

Observations
 1649
 2015
 2096
 3298

1-β2LD/β2FE
 0.3789
 0.4453
 0.3242
 0.4219
Notes: The dependent variable in all regressions is the difference in the log of smoothed agricultural TFP measured by CD-SFA-w/CRS model.
Specifications are estimated with long differences using different lengths of differencing period for columns (1)–(3). The panel of difference in column
(4) is a two period panel with 15-year differences, i.e., 1981–1995 and 2000–2015. Additional weather variables include second-order polynomials in
accumulative precipitation, sunshine duration, average relative humidity, as well as wind speed. Regressions are weighted by 1981–2015 county-
average farm area. Standard errors listed in parentheses are adjusted for spatial correlation and are clustered at county level. ***p < 0.01, **p <

0.05, *p < 0.1.
Table A4
Robustness checks for weather data

Dependent variable: Log(Yield) Log(Agricultural TFP) Log(Labor) Log(Fertilizer) Log(Machinery)
(1)
 (2)
 (3)
 (4)
 (5)
Panel A: IDW radius ¼ 100 km (Baseline)
Panel Esimtimates [N ¼ 67,951]

GDD above threshold (β2FE)
 �0.0438***

(0.0095)

�0.0256***
(0.0085)
�0.0276***
(0.0077)
�0.0491***
(0.0091)
0.0069
(0.0079)
Long-dif Estimates [N ¼ 1649]

GDD above threshold (β2LD)
 �0.0233***

(0.0045)

�0.0159***
(0.0043)
�0.0115***
(0.0031)
�0.0175***
(0.0039)
0.0084**
(0.0035)
Adaptations

(1-β2LD/β2FE) � 100%
 46.80
 37.89
 58.33
 64.36
 –
Panel B: 812 counties with weather stations
Panel Esimtimates [N ¼ 30,598]

GDD above threshold (β2FE)
 �0.0527***

(0.0149)

�0.0286**
(0.0134)
�0.0414***
(0.0120)
�0.0580***
(0.0132)
0.0098
(0.0133)
Long-dif Estimates [N ¼ 739]

GDD above threshold (β2LD)
 �0.0297***

(0.0070)

�0.0243***
(0.0068)
�0.0089**
(0.0045)
�0.0196***
(0.0056)
0.0115**
(0.0054)
Adaptations

(1-β2LD/β2FE) � 100%
 43.64
 15.04
 78.50
 66.21
 –
Panel C: IDW radius ¼ 50 km
Panel Esimtimates [N ¼ 67,046]

GDD above threshold (β2FE)
 �0.0421***

(0.0095)

�0.0243***
(0.0085)
�0.0270***
(0.0077)
�0.0490***
(0.0092)
0.0069
(0.0080)
Long-dif Estimates [N ¼ 1633]

GDD above threshold (β2LD)
 �0.0232***

(0.0045)

�0.0158***
(0.0042)
�0.0114***
(0.0031)
�0.0174***
(0.0039)
0.0083**
(0.0035)
Adaptations

(1-β2LD/β2FE) � 100%
 44.89
 34.98
 57.78
 64.49
 –
Panel D: IDW radius ¼ 150 km
Panel Esimtimates [N ¼ 67,951]

GDD above threshold (β2FE)
 �0.0488***

(0.0103)

�0.0255***
(0.0093)
�0.0393***
(0.0084)
�0.0662***
(0.0094)
0.0083
(0.0087)
Long-dif Estimates [N ¼ 1649]

GDD above threshold (β2LD)
 �0.0299***

(0.0060)

�0.0188***
(0.0057)
�0.0191***
(0.0043)
�0.0237***
(0.0048)
0.0122**
(0.0051)
Adaptations

(1-β2LD/β2FE) � 100%
 38.73
 26.27
 51.40
 64.20
 –
(continued on next column)
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Table A4 (continued )
Dependent variable:
 Log(Yield)
 Log(Agricultural TFP)
16
Log(Labor)
 Log(Fertilizer)
 Log(Machinery)
(1)
 (2)
 (3)
 (4)
 (5)
Panel E: IDW radius ¼ 200 km
Panel Esimtimates [N ¼ 67,951]

GDD above threshold (β2FE)
 �0.0492***

(0.0105)

�0.0277***
(0.0090)
�0.0419***
(0.0085)
�0.0689***
(0.0096)
0.0071
(0.0089)
Long-dif Estimates [N ¼ 1649]

GDD above threshold (β2LD)
 �0.0313***

(0.0064)

�0.0163***
(0.0052)
�0.0203***
(0.0047)
�0.0246***
(0.0051)
0.0125**
(0.0055)
Adaptations

(1-β2LD/β2FE) � 100%
 36.38
 41.16
 51.55
 64.30
 –
Notes: The specification of panel and long difference regressions are strictly in line with Tables 4 and 5 in main text. GDD below threshold is controlled but not reported.
***p < 0.01, **p < 0.05, *p < 0.1.

Table A5
Long difference estimates of the impacts of temperature on either China’s agricultural TFP and land output values

Dependent variable: Log(Agricultural TFP) Log(Yield)
(1) CD-SFA-w/CRS
 (2) TL-SFA-w/CRS
 (3) CD-SFA-w/oCRS
 (4) CD-CPF-w/CRS
 (5)
Panel A: 1981–2015

GDD above threshold
 �0.0159***

(0.0043)

�0.0160***
(0.0043)
�0.0163***
(0.0042)
�0.0144***
(0.0043)
�0.0233***
(0.0045)
1-β2LD/β2FE
 0.3789
 0.2453
 0.3802
 0.2871
 0.4680

Panel B: 1981–1990

GDD above threshold
 �0.0233***

(0.0064)

�0.0131**
(0.0063)
�0.0218***
(0.0062)
�0.0204**
(0.0079)
�0.0307**
(0.0135)
1-β2LD/β2FE
 0.0898
 0.3821
 0.1711
 2.0099
 0.2991

Panel C: 1991–2000

GDD above threshold
 �0.0163***

(0.0042)

�0.0131***
(0.0041)
�0.0168***
(0.0042)
�0.0102**
(0.0042)
�0.0302***
(0.0068)
1-β2LD/β2FE
 0.3633
 0.3821
 0.3612
 0.4950
 0.3105

Panel D: 2001–2015

GDD above threshold
 �0.0136**

(0.0058)

�0.0122**
(0.0059)
�0.0137**
(0.0058)
�0.0143**
(0.0061)
�0.0200***
(0.0044)
1-β2LD/β2FE
 0.4688
 0.4245
 0.4791
 0.2921
 0.5434
Notes: N ¼ 1649. The dependent variables are log agricultural TFP for all columns (1)–(4) with different TFP measurements and log Yield for column (5). Specifications
are estimated using long difference with 5-year lengths of differencing period. For brevity, GDD below threshold and additional weather controls is not reported here.
Additional weather variables include second-order polynomials in accumulative precipitation, sunshine duration, average relative humidity, as well as wind speed.
Regressions are weighted by 1981–2015 county-average farm area. Standard errors listed in parentheses are adjusted for spatial correlation and are clustered at county
level. ***p < 0.01, **p < 0.05, *p < 0.1.
Table A6
Bootstrap estimates of 1-β2LD/β2FE for short-run impacts offset by adaptation

Period Bootstrap percentiles: (1-β2LD/β2FE) � 100%
50%
 25%
 75%
 5%
 95%
(1)
 (2)
 (3)
 (4)
 (5)
 (6)
Panel A: Agricultural TFP (CD-SFA-w/CRS)

1981–2015
 37.76
 30.21
 44.94
 5.29
 54.75

1981–1990
 8.98
 7.18
 10.69
 1.26
 13.02

1991–2000
 36.33
 29.06
 43.23
 5.09
 52.68

2001–2015
 46.88
 37.50
 55.79
 6.56
 67.98

Panel B: Output (Yield)

1981–2015
 47.19
 44.36
 50.96
 30.20
 58.04

1981–1990
 29.91
 28.12
 32.30
 19.14
 36.79

1991–2000
 31.05
 29.19
 33.53
 19.87
 38.19

2001–2015
 54.34
 51.08
 58.69
 34.78
 66.84

Panel C: Inputs

1981–2015 (Labor/Ha)
 59.54
 53.61
 63.56
 42.03
 69.39

1981–2015 (Fertilizer/Ha)
 65.18
 67.51
 62.59
 56.24
 70.03
Notes: This table reports the 1000 bootstrap estimates of (1-β2
LD/β2

FE) � 100% for agricultural TFP (Panel A) and Yield (Panel B) during a particular
time period defined by column (1). The 50%, 25%, 75%, 5%, and 95% percentile of the bootstrap estimates are listed in column (2)–(6), respectively.
***p < 0.01, **p < 0.05, *p < 0.1.
Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jdeveco.2020.102557.
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