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dominance of its most pervasive unit; shown to be equivalent to the inverse of the shape
parameter of the power law fitted to the network outdegrees. New cross-section and
panel extremum estimators of the degree of dominance in networks are proposed, and
their asymptotic properties investigated. The small sample properties of the proposed
estimators are examined by Monte Carlo experiments, and their use is illustrated by an
empirical application to US input–output tables.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, there has been renewed interest in production networks and the role that individual production
units (firms/sectors) can play in propagation of shocks across the economy. This literature builds on the multisectoral
model of real business cycles pioneered by Long and Plosser (1983), and draws from a variety of studies on social and
economic networks, including network games, cascades, and micro foundations of macro volatility. Notable theoretical
contributions in this area include Acemoglu et al. (2012), Horvath (1998, 2000), Gabaix (2011), Acemoglu et al. (2016b),
and Siavash (2018). Empirical evidence for such propagation mechanism is presented in Foerster et al. (2011), Acemoglu
et al. (2016a), and Carvalho et al. (2016). One important issue in this literature relates to conditions under which
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sector-specific shocks are likely to have lasting aggregate (macro) effects. Similar issues arise in financial networks where
it is of interest to ascertain if an individual bank can be considered as ‘‘too big to fail’’. Recent reviews are provided
by Carvalho (2014) and Acemoglu et al. (2016c).

In this paper we consider a production network with unobserved common technological factors, and derive an
associated price network which is dual to the production network, which we use to derive an exact characterization
of the effect of sector-specific shocks on aggregate output. We show that sector-specific shocks have aggregate effects if
there are “dominant” sectors in the sense that their outdegrees are not bounded in the number of production units, N ,
in the economy. The outdegree of a sector is defined as the share of that sector’s output used as intermediate inputs by
all other sectors in the economy. The degree of dominance (or pervasiveness) of a sector is measured by the exponent
δ that controls the rate at which the outdegree of the sector in question rises with N . This measure turns out to be the
same as the exponent of cross-sectional dependence introduced in Bailey et al. (2016), for the analysis of cross-section
dependence in panel data models with large cross-section and time dimensions.

Our approach differs from Acemoglu et al. (2012) in three important respects. First, we provide a more general setting
that allows for unobserved common factors and derive a spatial model in sectoral prices that can be taken directly to
the data. We establish a one-to-one relationship between the pervasiveness of price shocks and aggregate output shocks.
Second, Acemoglu et al. (2012) express the aggregate output as a reduced form function of the sector-specific shocks, based
on which they are only able to derive a lower bound to the decay rate of sector-specific shocks on aggregate outcomes.
They consider the first- and second-order effects, and acknowledge that ignoring higher-order interconnections might
bias the results. In contrast, the present paper provides an exact expression for the effects of sector-specific shocks on
aggregate fluctuations, and shows that its rate of decay only depends on the extent to which the dominant unit (sector)
is pervasive, namely the one with the largest δ, denoted by δmax. We derive upper as well as lower bounds for the rate
of convergence of the variability of aggregate output in terms of N , and show that these bounds converge at the same
rate, and thus establish an exact rate of convergence for aggregate output variability. Finally, Acemoglu et al. (2012)
do not identify the dominant unit(s). Instead, they approximate the tail distribution, for some given cut-off value, of
the outdegrees by a power law distribution and provide estimates for the shape parameters. By contrast, we propose a
nonparametric approach, which is applicable irrespective of whether the outdegrees are Pareto distributed, and does not
require knowing the cut-off value above which the Pareto tail behavior begins. The inverse of the proposed estimator of
δmax is an extremum estimator of the shape parameter of the Pareto distribution, β . It is simple to compute and is given
by the average log of the largest outdegree relative to all other outdegrees, scaled by the size of the network, N .

Small sample properties of the extremum estimator are investigated by Monte Carlo techniques and are shown to be
satisfactory. A comparison of the estimates of the shape parameter β based on Pareto distribution with the estimates based
on the inverse of the extremum estimator of δmax, shows that the latter performs much better, particularly when N is large
(300+). Furthermore, the extremum estimator is shown to perform well even under a Pareto tail distribution, whereas
the commonly used estimators of the shape parameter, β , display substantial biases if the true underlying distribution is
non-Pareto.

Application of our estimation procedure to US input–output tables over the period 1972–2002 yields yearly estimates
of δmax that lie between 0.72 and 0.82. These estimates are by and large close to the inverse of the estimates of the shape
parameter β considered in Acemoglu et al. (2012) when a 20% cut-off value is used, although the log–log regression
estimates of β tend to be highly sensitive to the choice of the cut-off values and the different orders of interconnections
considered. To provide more reliable estimates, we also conduct panel estimation and find that the largest estimate of δmax
is about 0.76 for the sub-sample covering 1972–1992 and 0.72 for the sub-sample covering 1997–2007. Quite remarkably,
we find that estimates of δmax and the identity of the dominant sector are rather stable throughout the period from 1972
to 2007, with the wholesale trade sector identified as the most dominant sector for all years except for the year 2002
when the wholesale trade is estimated to be the second most dominant sector. Our estimates also suggest that no sector
in the US economy is strongly dominant, which requires the value of δmax to be close to unity, whilst the largest estimate
we obtain is around 0.8. Overall, our analyses support the view that sector-specific shocks have some macro effects, but
we do not find such effects to be sufficiently strong to explain aggregate fluctuations.

The rest of the paper is organized as follows. Section 2 presents the production network. Section 3 derives the
associated price network. Section 4 introduces the concepts of strongly and weakly dominant, and non-dominant units,
and network pervasiveness. It also shows the relation between the degree of network pervasiveness and the shape
parameter of the power law distribution. Section 5 derives exact conditions under which micro (sectoral) shocks can lead
to aggregate fluctuations. Section 6 introduces the extremum estimator, derives its asymptotic distribution, and shows its
robustness to the choice of the underlying distribution. Section 7 provides evidence on the small sample properties of the
alternative estimators of δmax using a number of Monte Carlo experiments. Section 8 presents the empirical application,
and Section 9 concludes. Some of the mathematical details are provided in Appendix A–Appendix C. Additional Monte
Carlo results are provided in an Online Supplement.

Notations. The total number of cross section units (sectors) in the economy is denoted by N , which is then decomposed
into m dominant units and n non-dominant units. The number of dominant units is also decomposed into strongly
dominant units and weakly dominant units. (See Definition 1). δi denotes the degree of dominance (or pervasiveness)
of unit i in a network, where i = 1, 2, . . . ,N , and 0 ≤ δi ≤ 1. If {fN}

∞

N=1 is any real sequence and {gN}
∞

N=1 is a sequence of
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positive real numbers, then fN = O(gN ) if there exists a positive finite constant K such that |fN | /gN ≤ K for all N . fN = o(gN )
if fN/gN → 0, as N → ∞. If {fN}

∞

N=1 and {gN}
∞

N=1 are both positive sequences of real numbers, then fN = ⊖ (gN) if there
exists N0 ≥ 1 and positive finite constants K0 and K1, such that infN≥N0 (fN/gN) ≥ K0, and supN≥N0

(fN/gN) ≤ K1. ϱ(A) is
the spectral radius of the N ×N matrix A =

(
aij
)
, defined as ϱ(A) = max {|λi| , i = 1, 2, . . . ,N}, where λi is an eigenvalue

of A and |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λN (A)|. ∥A∥∞ = max
1≤i≤N

∑N
j=1

⏐⏐aij⏐⏐ and ∥A∥1 = max
1≤j≤N

∑N
i=1

⏐⏐aij⏐⏐ are the maximum row

sum norm and the maximum column sum norm of matrix A, respectively. Generic finite positive constants are denoted
by K and Ci for i = 0, 1, 2, . . . .

2. Production network

To show how the two strands of literature on production networks and cross-sectional dependence are related, we
begin with a panel version of the input–output model developed in Acemoglu et al. (2012). Our goal is to provide an exact
characterization of the effect of unit-specific shocks on aggregate output. We assume that production of sector i at time
t , qit , is determined by the following Cobb–Douglas production function subject to constant returns to scale:

qit = e(1−ρ)uit l(1−ρ)it

N∏
j=1

q
ρwij
ij,t , for i = 1, 2, . . . ,N; t = 1, 2, . . . , T , (1)

where lit is the labor input, qij,t is the amount of output of sector j used in production of sector i, wij is the share of sector
j’s output in the total intermediate input use of sector i, and ρ is capital’s share of output (0 < ρ < 1). We assume that
wij ≥ 0 for all i and j, and the input shares of all sectors sum up to one, namely,

∑N
j=1wij = 1, for all i = 1, 2, . . . ,N .

Finally, uit is the productivity shock to sector i, composed of common and idiosyncratic components. Specifically, uit is
decomposed into r (r is finite) common factors ft = (f1t , f2t , . . . , frt)′, with factor loadings γ i, and a sector-specific shock,
εit :

uit = γ ′

ift + εit . (2)

Following the literature, and without loss of generality, we shall assume that ft and εit are uncorrelated. Examples of
common factors include common technological shocks, regulatory changes and organizational innovations that may affect
production in all sectors. The factor loadings, γ i = (γi1, γi2, . . . , γir)

′, for i = 1, 2, . . . ,N , are fixed constants that measure
the relative importance of the common factors for sector i. Following Bailey et al. (2016), we use αℓ, for ℓ = 1, 2, . . . , r ,
to denote the cross-section exponent of γiℓ, which measures the degree of pervasiveness of factor fℓt , over the N sectors
in the economy. More specifically, αℓ is defined by

N∑
i=1

|γiℓ| = ⊖ (Nαℓ) , (3)

with 0 ≤ αℓ ≤ 1. The standard factor model sets αℓ = 1, and treats the common factors as ‘‘strong’’ or ‘‘fully pervasive’’,
in the sense that changes in fℓt affect all sectors of the economy. But in what follows we shall also consider cases where
one or more of the factors are weak in the sense that αℓ < 1 for some ℓ. If αmax = max (α1, α2, . . . , αr) = 1, there exists
at least one ‘‘strong’’ or ‘‘pervasive’’ factor. If αmax < 1, factors are weak but could be influential if αmax is close to unity.
Following Acemoglu et al. (2012), we shall assume that the sector-specific shocks are cross-sectionally independent with
zero means and finite variances, Var(εit ) = σ 2

i , such that 0 < σ 2 < σ 2
i < σ̄ 2 < K < ∞. The independence assumption is

not necessary and can be relaxed by assuming that εit are cross-sectionally weakly dependent. We also assume that εit
are serially uncorrelated, although this is not essential either for our main theoretical results.

The amount of final goods, cit , are defined by

cit = qit −

N∑
j=1

qji,t , i = 1, 2, . . . ,N, (4)

which are consumed by a representative household with the Cobb–Douglas preferences

u
(
c1t,c2t , . . . , cNt

)
= A

N∏
i=1

c1/Nit , A > 0. (5)

We further assume that the aggregate labor supply, lt , is given exogenously and labor markets clear, lt =
∑N

i=1 lit .
Let P1t , P2t , . . . , PNt be the sectoral equilibrium prices, Waget the equilibrium wage rate, and denote their logarithms

by pit = log (Pit), ωt = log (Waget). Then it can be shown by using similar arguments as in Appendix A of Acemoglu et al.
(2012) that in the competitive equilibrium the logarithm of real wage, which is taken as a measure of GDP (or real value
added), is given by

ωt − pt = µ+ υ′

Nut , (6)
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where pt is the aggregate log price index defined by,

pt = N−1
N∑
i=1

pit = N−11′

Npt , (7)

pt =
(
p1t , p2t, . . . , pNt

)′, ut = (u1t , u2t , . . . , uNt)
′, and

υN = (υ1, υ2, . . . , υN)
′
=
(1 − ρ)

N

(
IN − ρW′

)−1 1N , (8)

where W is the N × N matrix W =
(
wij
)
, 1N is an N × 1 vector of ones, and µ is a constant independent of ut , which is

given by

µ = (1 − ρ)−1

⎡⎣(1 − ρ) log (1 − ρ)+ ρ log (ρ)+ ρ

N∑
i=1

N∑
j=1

υiwij log
(
wij
)⎤⎦ .

The (log) real-wage equation, (6), generalizes equation (3) in Acemoglu et al. (2012) by allowing for time variations
in prices. By normalizing pt such that pt = −µ and ignoring common factors, Acemoglu et al. (2012) concentrate on
ωt = υ′

Nεt as a measure of aggregate output, where εt = (ε1t , ε2t , . . . , εNt)
′. The authors refer to υN as the ‘‘influence

vector’’ (their Eq. (4)), and show that υi ≥ 0, and 1′

NυN = 1.1 They measure aggregate volatility by the standard
deviation of aggregate output, namely

[
Var

(
υ′

Nεt
)]1/2, and focus on the asymptotic properties of υ′

Nεt , as N → ∞. Since
Var

(
υ′

Nεt
)

= υ′

NVar (εt)υN , it follows that

σ 2 (υ′

NυN
)

≤ Var
(
υ′

Nεt
)

≤ σ̄ 2 (υ′

NυN
)
,

and hence the asymptotic properties of Var
(
υ′

Nεt
)
is governed by υ′

NυN . The same conclusion also follows if we allow for
common factors as in (2) so long as the factors are weak, in the sense that αmax = max (α1, α2, . . . , αr) < 1.2 This result
follows by noting that in the presence of common factors(

υ′

NυN
)
λN
(
Σ u,N

)
≤ Var

(
υ′

Nut
)

≤
(
υ′

NυN
)
λ1
(
Σ u,N

)
,

where λN
(
Σ u,N

)
and λ1

(
Σ u,N

)
are, respectively, the smallest and largest eigenvalues of Σ u,N = E

(
utu′

t

)
, and ut =

(u1t , u2t , . . . , uNt )′ = Γ if + εt , with Γ i =
(
γ1, γ2, . . . , γN

)′. In the case where ut is cross-sectionally weakly dependent,
all eigenvalues of Σ u,N will be bounded in N and the asymptotic behavior of Var

(
υ′

Nut
)
continues to be determined by

that of υ′

NυN .
Acemoglu et al. (2012, p.2009) derive a lower bound for υ′

NυN and show that3

υ′

NυN ≥ c0N−1
+ c1N−2

N∑
j=1

d2j , (9)

where c0 and c1 are finite constants that do not depend on N , and dj is the outdegree of the jth unit defined by
dj =

∑N
i=1wij. In their analysis, Acemoglu et al. (2012) consider the limiting behavior of N−2∑N

j=1 d
2
j . But as we shall

see below, it is also important to consider the limiting behavior of individual column sums of W, and in particular to
identify the ones that rise with N , as distinguished from those that are bounded in N . To fully understand the limiting
behavior of υ′

NυN we also need to investigate the limiting properties of the upper bound to υ′

NυN which is not addressed
by Acemoglu et al. (2012).

3. Price network as a dual to the production network

Instead of analyzing the aggregate output directly in terms of the sector-specific shocks, we derive a price network
which is dual to the production network discussed in Section 2. By a price network we mean the interconnections
that exist between the sectoral prices through the input–output coefficients. In this way, we are able to obtain an
exact expression for the decay rate of aggregate volatility, rather than just a lower bound to it. Given sector prices,
P1t , P2t , . . . , PNt , and the wage rate, Waget , solving sector i’s problem leads to

qij,t =
ρwijPitqit

Pjt
, (10)

1 See Appendix A of Acemoglu et al. (2012).
2 See Chudik et al. (2011) Theorem 3.1.
3 These authors also consider higher-order interconnection terms which they include on the right-hand-side of υ′

NυN , but these terms are
dominated by N−2∑N

j=1 d
2
j .



Please cite this article as: M.H. Pesaran and C.F. Yang, Econometric analysis of production networks with dominant units. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.03.014.

M.H. Pesaran and C.F. Yang / Journal of Econometrics xxx (xxxx) xxx 5

and

lit =
(1 − ρ) Pitqit

Waget
. (11)

Substituting the above results in (1) and simplifying yields

pit = ρ

N∑
j=1

wijpjt + (1 − ρ)ωt − bi − (1 − ρ) uit , (12)

where the price-specific intercepts, bi, depend only on ρ and W,

bi = (1 − ρ) log (1 − ρ)+ ρ log (ρ)+ ρ

N∑
j=1

wij log(wij), (13)

for i = 1, 2, . . . ,N . In cases where wij = 0, we set wij log
(
wij
)

= 0 as well. In matrix notation the ‘‘price network’’, (12),
can be written as

pt = ρWpt + (1 − ρ)ωt1N − [b + (1 − ρ)ut ] , (14)

where b = (b1, b2, . . . , bN)′.
A dual to the price equation in (12) can also be obtained using (10) in (4) to obtain

Sit = ρ

N∑
j=1

wjiSjt + Cit , (15)

where Cit = Pitcit , and Sit = Pitqit is the sales of sector i. The sales equation, (15), can also be written as

St = ρW′St + Ct , (16)

where St = (S1t , S2t , . . . , SNt)′ and Ct = (C1t , C2t , . . . , CNt)
′. Note that W enters as its transpose, W′, in (16) as compared

to the price equations in (14).
Aggregating (11) over i, we have

Waget
N∑
i=1

lit = (1 − ρ)

N∑
i=1

Pitqit ,

or

ltWaget = (1 − ρ)

N∑
i=1

Sit = (1 − ρ) 1′

NSt . (17)

Also using (16)

St =
(
IN − ρW′

)−1 Ct , (18)

where
(
IN − ρW′

)−1 is known as the Leontief inverse.4 Using (18) in (17) now yields the following expression for the
total wage bill,

ltWaget = (1 − ρ) 1′

N

(
IN − ρW′

)−1 Ct . (19)

Similarly, solving (14) for the log-price vector, pt , and applying Lemma A.1 in Appendix A we have

pt = (1 − ρ)ωt (IN − ρW)−1 1N − (1 − ρ) (IN − ρW)−1 ξt , (20)

where ξt = (1 − ρ)−1 b + ut . Then the aggregate log price index, pt , defined in (7), is given by

pt =

[
(1 − ρ)

N
1′

N (IN − ρW)−1 1N

]
ωt −

(1 − ρ)

N
1′

N (IN − ρW)−1 ξt . (21)

But since wij ≥ 0, W1N = 1N , and 0 < ρ < 1, then (IN − ρW)−1 1N = 1N/(1 − ρ), and hence (21) can also be written as

ωt − pt = υ′

Nξt , (22)

where υN is the influence vector given by (8). Now let xt = pt −ωt1N , and rewrite (14) in terms of log price-wage ratios,
xt , as

xt = ρWxt − b − (1 − ρ)ut . (23)

Eq. (23) represents a first-order spatial autoregressive (SAR(1)) model.

4 A proof that the Leontief matrix is invertible even in the presence of dominant units is provided in Lemma A.1 of Appendix A.
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Consider now the following simple average over the units, xit , for i = 1, 2, . . . ,N , in the above network

xN,t =
1
N
1′

Nxt = − (ωt − p̄t) ,

which is the negative of the aggregate output measure, defined by (6). Also, using (22) we have

ωt − p̄t = −xN,t = (1 − ρ)−1 (υ′

Nb
)
+ υ′

Nut , (24)

which fully specifies the dependence of aggregate output on the productivity shocks.
Note that Eqs. (19) and (24) are dual of each other. (19) gives the total wage bill in terms of a weighted sum of

consumption expenditures, with the weights given by (1 − ρ) (IN − ρW)−1 1N , whilst (24) gives the log of the real wage
rate in terms of the aggregate shocks. Recall that ut = Γ ft + εt , where Γ =

(
γ1, γ2, . . . , γN

)′, and common and sectoral
shocks are assumed to be uncorrelated. The key issue is howmuch of the cyclical fluctuations in (log) real wages, Var

(
xN,t

)
,

is due to common shocks, Var
(
υ′

NΓ ft
)
, and how much is due to sectoral shocks, Var

(
υ′

Nεt
)
.

There are two advantages in directly focusing on the price network model, (23). First, it allows us to relate the
production network to the literature on spatial econometrics that should facilitate the econometric analysis of production
networks, and allows us to address more easily the issues of identification and estimation of the structural parameters,
including capital’s share ρ, factor loadings γ i and error variances σ 2

i , for i = 1, 2, . . . ,N .5 The direct use of the SAR
model, (23), also enables us to provide exact bounds on Var

(
xN,t

)
= Var (ωt − p̄t) rather than the lower bounds obtained

by Acemoglu et al. (2012). Instead, by considering the price network explicitly we are able to show that at most only a
few sectors can have significant aggregate effects, and these sectors are those with outdegrees that rise with N . The rate
at which the outdegrees rise with N could differ across sectors and it is important that such sectors are identified and
their empirical contribution to aggregate fluctuations evaluated.

4. Degrees of dominance of units in a network and network pervasiveness

Consider a network represented by a given N × N adjacency matrix W =
(
wij
)
, where wij ≥ 0 for all i and j, and

W is row-normalized such that
∑N

j=1wij = 1, for all i. Denote the jth column of W by w·j and the associated column
sum by dj = 1′

Nw·j, the outdegree of unit j. The outdegree is one of many network centrality measures considered in
the literature. The most widely used centrality measure is degree centrality, which refers to the number of ties a node
has, and in a directed network can be classified into indegree and outdegree. The indegree counts the number of ties a
node receives, and the outdegree counts the number of ties a node directs to others. In this paper, we are focusing on
how the weighted outdegree vary with N and normalize the weighted indegree (row sums of W) to one, because we are
interested in studying the influence of a unit to other downstream units. Other centrality measures, including closeness,
betweenness, and eigenvector centralities, are not relevant for our purpose, since we aim to characterize the effects of
idiosyncratic shocks to a unit on some aggregate measure of the network, rather than the pattern of interdependencies
of the network. To this end, we introduce the notions of strongly and weakly dominant units in the following definition.
We consider units with nonzero outdegrees and assume throughout that dj > 0, for all j.

Definition 1 (δ-Dominance). We shall refer to unit j of the row-standardized network W =(wij ≥ 0) as δj-dominant if its
(weighted) outdegree, dj =

∑N
i=1wij > 0, is of order Nδj , where δj is a fixed constant in the range 0 ≤ δj ≤ 1. More

specifically,

dj = κjNδj , for j = 1, 2, . . . ,N, (25)

where κj is a strictly positive random variable defined on 0 < κ ≤ κj ≤ κ̄ < K , where κ and κ̄ are fixed constants. The
unit j is said to be strongly dominant if δj = 1, weakly dominant if 0 < δj < 1, and non-dominant if δj = 0. We refer to δj
as the degree of dominance of unit j in the network.

Remark 1. It is worth noting that δj is identified by requiring that κj is a strictly positive random variable bounded in N ,
and δj is a fixed constant that does not vary with N .

In the standard case where the column sum of W is bounded in N we must have δj = 0 for all j, that is, all units are
non-dominant. W will have an unbounded column sum if δj > 0 for at least one j. But due to the bounded nature of the
rows of W, not all columns of W can be δ-dominant with δj > 0 for all j. To see this, let d = (d1, d2, . . . , dN )′ = W′1N ,
and note that

1′

Nd = 1′

NW
′

1N = N. (26)

5 For example, see the recent contributions of Bai and Li (2013) and Yang (2020) on estimation of SAR models with unobserved common factors.
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Hence, there must exist 0 < κj < K < ∞ for j = 1, 2, . . . ,N , such that
N∑
j=1

κjNδj = N,

for a fixed N and as N → ∞. Let δmin = min (δ1, δ2, . . . , δN), and note that

N =

N∑
j=1

κjNδj ≥ NκNδmin ,

which in turn implies

κNδmin ≤ 1. (27)

Since by assumption κ > 0 and δmin ≥ 0, it is clear that (27) cannot be satisfied for all values of N unless δmin = 0, which
establishes that not all units in a given network can be dominant. This result is summarized in the following proposition.

Proposition 1. Consider the network represented by W =(wij ≥ 0), and assume that W is row-standardized. Suppose that the
outdegrees of the network, dj =

∑N
i=1wij, are non-zero (dj > 0) and follow the power function, (25), with δj being the degree

of dominance of unit j in the network. Then not all units of the network can be δ-dominant, with δj > 0 for all j.

Let SN = N−1∑N
j=1 κjN

δj , and note that since κ > 0 and hence

SN = N−1
N∑
j=1

κjeδj lnN
≥ κN−1

N∑
j=1

eδj lnN . (28)

Now using a Taylor series expansion of eδj lnN , we obtain

N∑
j=1

eδj lnN
=

N∑
j=1

[
1 +

∞∑
s=1

δsj (lnN)s

s!

]
= N +

∞∑
s=1

(lnN)s

s!

⎛⎝ N∑
j=1

δsj

⎞⎠ ,
which if substituted in (28) yields

SN ≥ κ

⎡⎣1 +

∞∑
s=1

(∑N
j=1 δ

s
j

)
(lnN)s

s!N

⎤⎦ . (29)

Since SN = 1, and all the summands over s in (29) are nonnegative as δj ≥ 0 and lnN > 0, it is necessary that(∑N
j=1 δ

s
j

)
(lnN)s

s!N
→ 0, as N → ∞, for all s = 1, 2, 3, . . . . (30)

Also note that for any finite s, (lnN)s /(s!N) → 0, as N → ∞, and since
∞∑
s=1

(lnN)s

s!N
=

N − 1
N

→ 1, as N → ∞,

then it must be that (lnN)s /(s!N) → 0, as N → ∞, for all s, including s → ∞. Furthermore, since 0 ≤ δj ≤ 1 then
N∑
j=1

δsj ≤

N∑
j=1

δj, for s ≥ 1,

and (∑N
j=1 δ

s
j

)
(lnN)s

s!N
≤

⎛⎝ N∑
j=1

δj

⎞⎠ (lnN)s

s!N
.

Hence, for conditions in (30) to be met it is sufficient that
{
δj
}
satisfies the following summability assumption.

Assumption 1. The degrees of dominance of all units in a network,
{
δj, j = 1, 2, . . . ,N

}
, are summable, namely,

N∑
j=1

δj < K < ∞. (31)
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As we shall see, Assumption 1 plays an important role in the proof of consistency of the extremum estimator proposed
in Section 6.2.

Suppose now that m units are strongly dominant with δj = 1, and the rest are non-dominant with δj = 0. Then using
(29) we have

SN ≥ κ

[
1 + m

∞∑
s=1

(lnN)s

s!N

]
= κ

[
1 + m

(
N − 1
N

)]
,

and since SN = 1, it follows that m cannot rise with N , and must be a fixed integer.
In the case where m units are dominant with δj > 0, then m must be finite if the summability condition given by (31)

is to hold. For example, suppose that only m units are dominant. Then
∑N

j=1 δj ≥ mδmin > 0, and from the summability
condition (31) we have K >

∑N
j=1 δj ≥ mδmin, from which it follows that m ≤ K/δmin and in consequence m must be

bounded in N . These findings are summarized in the next proposition.

Proposition 2. Consider the network represented by W =(wij ≥ 0), and assume that W is row-standardized, and the
outdegrees of the network, dj =

∑N
i=1wij, are non-zero (dj > 0). Then the number of strongly dominant units must be fixed

and cannot rise with N. Moreover, under Assumption 1 the number of dominant units with δj ̸= 0 must be finite, where δj is
the degree of dominance of unit j in the network.

Remark 2. Analogous results have also been found in Chudik et al. (2011) regarding the possible number of strong factors,
and in Chudik and Pesaran (2013) on the number of dominant units in large dimensional vector autoregressions.

Using the concept of δ-dominance of units in a given network, we now introduce the idea of network pervasiveness,
which is relevant for characterization of the degree to which shocks to an individual unit diffuse across the network.

Definition 2 (Network Pervasiveness). Degree of pervasiveness of a given row-standardized network, W =(wij ≥ 0,∑N
j=1wij = 1), is defined by δmax = max (δ1, δ2, . . . , δN), where δj is the degree of dominance of its jth unit.

The degree of network pervasiveness, δmax, defined in Definition 2, is related to β , the shape parameter of the power
law assumed by Acemoglu et al. (2012, Definition 2) for the outdegree sequence, {d1, d2, . . . , dN}. To see this, we first use
the specification of the outdegrees given by (25) in (9) to obtain

υ′

NυN ≥ c0N−1
+ c1N−2

m∑
j=1

κ2
j N

2δj + c1
N − m
N2

⎛⎝ N∑
j=m+1

κ2
j

N − m

⎞⎠ ,
where (N − m)−1∑N

j=m+1 κ
2
j = O(1). Also, recall that m must be finite if

{
δj
}
is summable (Proposition 2). Therefore,

recalling that κj ≤ κ̄ , then

N−2
m∑
j=1

κ2
j N

2δj ≤ mκ̄2N2(δmax−1),

and the limiting behavior of υ′

NυN will be determined by that of N2(δmax−1), namely the cross section exponent of the
strongest of the dominant units, δmax.

Consider now Corollary 1 of Acemoglu et al. (2012), which establishes that aggregate volatility behaves asymptotically
as N−2(β−1)/β−2ϵβ , for some small ϵβ > 0 and β ∈ (1, 2). Matching this rate of expansion with N2(δmax−1), we have

2 (δmax − 1) ≥ −2(β − 1)/β − 2ϵβ ,

or δmax ≥ 1/β − ϵβ . Therefore, δmax can be viewed as measuring the inverse of β , a result that we formally establish in
Section 6.

We are now in a position to consider the exact rate at which Var
(
xN,t

)
varies with N . We will show that it is

governed by the pervasiveness of the network, measured by δmax, and the maximum of the exponents of the factors,
αmax = max (α1, α2, . . . , αr), where αℓ (ℓ = 1, 2, . . . , r) is defined by (3). For unit-specific shocks to dominate the macro
or common factor shocks we need δmax > αmax > 1/2.

5. Price networks with dominant units

Consider the price network (23), and assume that it contains one dominant unit and n = N − 1 non-dominant units.
The analysis can be readily extended to networks with m dominant units (m fixed), but to simplify the exposition here we
confine our analysis to networks with one dominant unit. (The derivations for the general case is provided in Appendix B).
In addition, the analysis is conducted assuming a single common factor for ease of notation and it can be easily extended
to allow for multiple factors without additional complexity.
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Without loss of generality, suppose that the first element of xt , namely x1t , is the dominant unit, and write (23) in the
partitioned form as (setting w11 = 0)(

x1t
x2t

)
=

(
0 ρw′

12
ρw21 ρW22

)(
x1t
x2t

)
+

(
g1t
g2t

)
, (32)

where x2t = (x2t , x3t , . . . , xNt )′, w21 = (w21, w31, . . . , wN1)′, w12 = (w12, w13, . . . , w1N )′, g2t = (g2t , g3t , . . . , gNt )′, and
git = −bi − (1 − ρ) (γift + εit ), for i = 1, 2, . . . ,N . W22 is the n × n weight matrix associated with the n non-dominant
units and is assumed to satisfy the condition |ρ| ∥W22∥1 < 1. Furthermore, note that since

W1N =

(
0 w′

12
w21 W22

)(
1
1n

)
=

(
1
1n

)
,

then w′

121n = 1, and 1n − w21 = W221n. The latter result states that the ith row sum of W22 is given by 1 − wi1 ≤ 1,
and considering that 0 ≤ wi1 < 1, then we must have ∥W22∥∞ ≤ 1, which also establishes that ϱ(W22) ≤ 1, where ϱ(A)
denotes the spectral radius of A. Under the assumption that |ρ| < 1, by Lemma A.1 in Appendix A the system of equations
(32) has a unique solution given by(

x1t
x2t

)
=

(
1 −ρw′

12
−ρw21 S22

)−1 (
g1t
g2t

)
= S−1(ρ)gt , (33)

where S22 = In − ρW22. In addition, since |ρ| ∥W22∥1 < 1, it follows from Lemma A.2 in Appendix A that S−1
22 has

bounded row and column norms. For future reference also note that the (1, 1)th element of S−1(ρ) is given by ζ−1
1 , where

ζ1 = 1 − ρ2w′

12S
−1
22 w21 ̸= 0.6 Finally, to allow unit 1 to be δ -dominant we consider the following exponent formulation

d1 =

N∑
i=2

wi1 = κ1Nδ1 , (34)

where d1 is allowed to rise with N , with κ1 > 0 and 0 < δ1 ≤ 1. Recall that κ1 is a strictly positive random variable
bounded in N , and δj is a fixed constant that does not vary with N .

The system of equations (32) can now be solved for x2t in terms of x1t , namely (recall that by assumption |ρ| ∥W22∥1
< 1)

x2t = x1tρ
(
S−1
22 w21

)
+ S−1

22 g2t , (35)

and

x1t = ζ−1
1

(
g1t + ρw′

12S
−1
22 g2t

)
. (36)

Using the above in (35), we now have

x2t = (ρ/ζ1)
(
g1t + ρw′

12S
−1
22 g2t

)
S−1
22 w21 + S−1

22 g2t .

The first term of x2t refers to the direct and indirect effects of the dominant unit, and the second term relates to the
network dependence of the non-dominant units.

Our primary focus is the extent to which shocks to individual units affect aggregate measures over the network. A
standard aggregate measure is cross-section averages of xit over i = 1, 2, . . . ,N . Here we consider the simple average

xN,t =
x1t +

∑N
i=2 xit

N
=

x1t + 1′
nx2t

N
,

but our analysis equally applies to weighted averages, x∗

N,t =
∑N

i=1ϖixit , so long as the weights ϖi are granular in the
sense that ϖi = O

(
N−1

)
. Using (35) and (36) we have

xN,t =
x1t + 1′

nS
−1
22

[
ρw21x1t − b2 − (1 − ρ) ε2t − (1 − ρ) γ2ft

]
N

,

where b2 = (b2, b3, . . . , bN )′ and γ2 = (γ2, γ3, . . . , γN )′. Hence

xN,t = N−1 [
−an + θnx1t − (1 − ρ)ψnft − (1 − ρ)φ′

nε2t
]
, (37)

where an = 1′
nS

−1
22 b2, φ′

n = 1′
nS

−1
22 , θn = 1 + ρφ′

nw21, and ψn = φ′

nγ2. The first term of (37), N−1an, is bounded in N ,
since ∥W22∥∞ ≤ 1 and ρ ∥W22∥1 < 1, and as a result S−1

22 will have bounded row and column norms by Lemma A.2 in
Appendix A. The second term captures the effect of the dominant unit. The third term is due to the common factor, ft , and
the final term represents the average effects of the micro productivity shocks. N−1φn is the influence vector associated
with the non-dominant units. It is analogous to the influence vector defined by (8) which applies to all units.

6 In deriving (36), it is required that ζ1 ̸= 0. This condition is met since the N × N matrix on the right-hand-side of (33) is non-singular.
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Starting with the final term of (37), we first note that

σ 2N−2φ′

nφn ≤ Var
(
N−1φ′

nε2t
)

≤ σ̄ 2N−2φ′

nφn, (38)

where φ′

n = (φ2, φ3, . . . , φN ) is an n × 1 vector of column sums of S−1
22 and has bounded elements. Furthermore, since

φ′

n = 1′

n + ρ1′

nW22 + ρ21′

nW
2
22 + · · · ,

ρ > 0 and wij ≥ 0, then φmin = min(φ2, φ3, . . . , φN ) > 1, and φmax = max(φ2, φ3, . . . , φN ) < K < ∞. Hence,

1 < φ2
min ≤ N−1φ′

nφn ≤ φ2
max < K < ∞,

and N−1φ′

nφn is bounded from below and above by finite non-zero constants. Using this result in (38) we also have

σ 2 < NVar
(
N−1φ′

nε2t
)
< σ̄ 2φ2

max < ∞,

which establishes that

Var
(
N−1φ′

nε2t
)

= ⊖
(
N−1) , (39)

where ⊖
(
N−1

)
denotes the convergence rate of Var

(
N−1φ′

nε2t
)
in terms of N , and should be distinguished from the

O
(
N−1

)
notation, which provides only an upper bound on Var

(
N−1φ′

nε2t
)
.

Next, using (36) we have

Cov
(
x1t ,N−1φ′

nε2t
)

= − (1 − ρ) ρζ−1
1 N−1w′

12H221n, (40)

and

Cov (x1t , ft) = − (1 − ρ)
(
ζ−1
1 γ1 + ρζ−1

1 h2
)
Var (ft) , (41)

where H22 = S−1
22 V22,εS′−1

22 , V22,ε = diag
(
σ 2
2 , σ

2
3 , . . . , σ

2
N

)
, and h2 = w′

12S
−1
22 γ2. It then follows that overall (recalling that

ft and εit are independently distributed), we have

Var
(
xN,t

)
= N−2θ2nVar (x1t)− 2 (1 − ρ)N−2θnCov

(
x1t ,φ′

nε2t
)

+ (1 − ρ)2 N−2Var
(
φ′

nε2t
)
+ (1 − ρ)2 N−2χnVar (ft) , (42)

where

χn = ψ2
n + 2ψnθnζ

−1
1 γ1 + 2ρψnθnζ

−1
1 h2.

Also, using (36) we have

Var (x1t) = ζ−2
1 (1 − ρ)2

[(
γ 2
1 + ρ2h2

2

)
Var(ft ) + σ 2

1

]
+ ζ−2

1 ρ2 (1 − ρ)2 w′

12H22w21,

which is easily seen to be bounded in N .
A number of results can now be obtained from (42). First, without a common factor and a dominant unit, Var

(
xN,t

)
=

⊖(N−1), and the effects of idiosyncratic shocks on xN,t will vanish at the rate of N−1/2, as N → ∞. This rate matches the
decay rate of shocks in models without a network structure, namely even if we set W = 0. Therefore, for micro shocks
to have macroeconomic implications there must be at least one dominant unit in the network. To see this consider now
the case where there is no common factor but the network includes a dominant unit. Then using (39) and (42) we have

Var
(
xN,t

)
= N−2θ2nVar (x1t)− 2 (1 − ρ)N−2θnCov

(
x1t ,φ′

nε2t
)
+ O

(
N−1) . (43)

Recall that Var(x1t ) is bounded in N and θn = 1 + ρφ′

nw21. Consider the limiting properties of N−1θn. Since

N−1
+ φminρN−1d1 ≤ N−1θn ≤ N−1

+ φmaxρN−1d1, (44)

where 1 ≤ φmin ≤ φmax < K , then the asymptotic behavior of N−1θn depends on the way the outdegree of the dominant
unit, namely d1, varies with N . Using the exponent specification given by (25), d1 = κ1Nδ1 , it follows that

N−1
+ φminρκ1Nδ1−1

≤ N−1θn ≤ N−1
+ φmaxρκ1Nδ1−1,

which leads to

N−1θn = ⊖(Nδ1−1), 0 < δ1 ≤ 1. (45)

Consider now the second term of (43), and note from (40) that⏐⏐Cov (x1t , v′

nε2t
)⏐⏐ ≤

⏐⏐⏐⏐ (1 − ρ)ρ
ζ1

⏐⏐⏐⏐N−1
w′

12


∞

S−1
22


∞

V22,ε


∞

φn


∞

= O
(
N−1) ,

since
w′

12


∞

= ∥w12∥1 =
∑N

i=2w1i = 1,
S−1

22


∞
< K ,

V22,ε


∞
= σ̄ 2 < K , and

φn


∞

= φmax < K . Using the above
results in (43) we have

Var
(
xN,t

)
= ⊖(N2δ1−2) + O(Nδ1−2) + O

(
N−1) ,
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which simplifies to (since δ1 ≤ 1)

Var
(
xN,t

)
= ⊖(N2δ1−2) + O

(
N−1) , (46)

and hence

Var
(
xN,t

)
= ⊖(N2δ1−2), if δ1 > 1/2. (47)

This is the main result for the analysis of macro economic implications of micro shocks, and is more general than the one
established by Acemoglu et al. (2012) who only provide a lower bound on the rate at which aggregate volatility changes
with N .

It is also instructive to relate N−1θn to the first- and higher-order network connections discussed in Acemoglu et al.
(2012). Expanding the terms of the inverse S−1

22 , N
−1θn can also be written as

N−1θn = N−1 (1 + ρ1′

nw21 + ρ21′

nW22w21 + ρ31′

nW
2
22w21 + · · ·

)
,

where N−1ρ1′
nw21 = ρN−1d1 represents the effects of the first-order network connections on θN , N−1ρ21′

nW22w21,
the effects of the second-order network connections and so on. But in view of (44) and (45) all these higher order
interconnections (individually and together) at most behave as ⊖(Nδ1−1).

Therefore, the rate at which unit-specific shocks influence the macro economy depends on δ1, which measures the
strength of the dominant unit. But it should be noted from (46) that to ensure a non-vanishing variance, Var

(
xN,t

)
> 0,

as N → ∞, we need a value of δ1 = 1. When 1/2 < δ1 < 1, the network accentuates the diffusion of the idiosyncratic
shocks across the network but does not lead to lasting impacts. No network effects of unit-specific shocks can be identified
when δ1 ≤ 1/2. Hence, for the dominant unit to have any impact over and above the standard rates of diversification of
micro shocks on xN,t , we need δ1 > 1/2.7

Consider now networks subject to a common shock but without a dominant unit, and note that

Var
(
xN,t

)
= (1 − ρ)2 N−2ψ2

nVar (ft)+ ⊖
(
N−1) ,

and the rate of convergence of xN,t is determined by the strength of the factor as given by N−2ψ2
n . Recall that ψn = φ′

nγ2
and ϱ (W22) ≤ 1, we have

N−1ψn = N−11′

nS
−1
22 γ2 = N−1 (1′

nγ2 + ρ1′

nW22γ2 + ρ21′

nW
2
22γ2 + · · ·

)
.

By a similar line of reasoning as before, it is then easily seen that N−1ψn = ⊖
(
Nα−1

)
, where α is the cross-section

exponent of the factor loadings, γi, and measures the degree to which the common factor is pervasive in its effects
on sector-specific productivity. Finally, suppose that the production network is subject to a common factor as well as
containing a dominant unit. Then for δ1 > 1/2 and α > 1/2 we have

Var
(
xN,t

)
= ⊖

(
N2δ1−2)

+ ⊖
(
N2α−2)

+ ⊖
(
N−1) . (48)

It is clear that the relative importance of the dominant unit and the common factor depends on the relative magnitudes
of δ1 and α. We need estimates of these exponents for a further understanding of the relative importance of macro and
micro shocks in business cycle analysis. It is also clear that for the first two terms of (48) to dominate the third terms we
must have δ1 = δmax > 1/2 and/or α = αmax > 1/2.

Allowing for multiple factors and multiple dominant units does not alter the main results, and the general expression
in (48) will continue to apply. The following proposition summarizes the main theoretical results for the general case.

Proposition 3. Consider the price network represented by (23), where xt = pt − ωt1N is the log price-wage ratio. Suppose
that the network contains m dominant units with degrees of dominance δi, i = 1, 2, . . . ,m (m is finite), and is subject to r
common factors with factor loadings having cross-sectional exponents αℓ, for ℓ = 1, 2, . . . , r (r is finite). Then macro volatility,
defined as the variance of the aggregate measure xN,t = N−11′

Nxt , has the following order decomposition

Var
(
xN,t

)
= ⊖

(
N2δmax−2)

+ ⊖
(
N2αmax−2)

+ ⊖
(
N−1) , (49)

where δmax = max(δ1, δ2, . . . , δN ) and αmax = max (α1, α2, . . . , αr), with the first two terms having a dominant effects if
δmax > 1/2 and/or αmax > 1/2.

6. Estimation and inference

In this section we consider the problem of estimating the degree of dominance of units in a given network. We consider
the power law approach employed in the literature as well as a new method that we propose when the outdegrees,
{d1, d2, . . . , dN}, follow the exponent specification defined by (25). It is unclear if a power law specification for the
outdegrees (above a given cut-off value) is necessarily to be preferred to a specification which relates the outdegrees
directly to the size of the network, N , without the need to specify a cut-off value. The exponent specification of outdegrees
has the added advantage that it also allows identification of more than one dominant units in the network.

7 The finding that δ1 cannot be distinguished from zero if δ1 < 1/2 is also related to the study by Bailey et al. (2016), who show that the
exponent of cross-sectional dependence, α, can only be identified and consistently estimated for values of α > 1/2.
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6.1. Power law estimators

Suppose that we have observations on the outdegrees, di, for i = 1, 2, . . . ,N . The power law estimate of δmax is given by
1/β̂ , where β̂ is an estimator of the shape parameter of the power law distribution fitted to the outdegrees that lie above
a given minimum cut-off value, dmin. A random variable D is said to follow a power law distribution if its complementary
cumulative density function (CCDF) satisfies

Pr (D ≥ d) ∝ d−β ,

where β > 0 is a constant known as the shape parameter of the power law, and ∝ denotes asymptotic equivalence.8 As
the name suggests, the tail of the power law distribution decays asymptotically at the power of β . It is readily seen that
the probability density function of D follows fD (d) ∝ d−(β+1).

A popular specification is the Pareto distribution. Its CCDF is given by

Pr (D ≥ d) = (d/dmin)
−β , d ≥ dmin,

for some shape parameter β > 0, and the lower bound dmin > 0. The Pareto distribution has been widely used to study
the heavy-tailed phenomena in many fields including economics, finance, geology, physics, just to name a few. Since
our focus is on the estimation of the shape parameter β , in what follows we briefly describe three approaches that are
frequently used in the literature. The first is to run the following log–log regression (also known as Zipf regression),

ln i = a − β ln d(i), i = 1, 2, . . . ,Nmin,

where a is a constant, i is the rank of the unit i in the sequence {d(i)}, and dmax = d(1) ≥ d(2) ≥ · · · ≥ d(Nmin), are the
largest ordered outdegrees such that d(Nmin) ≥ dmin, and Nmin is the number of cut-off observations used in the regression.
A bias-corrected version of the log–log estimator of β , is proposed by Gabaix and Ibragimov (2011) who suggest shifting
the rank i by 1/2 and estimating β by Ordinary Least Squares (OLS) using the following regression

ln (i − 1/2) = a − β ln d(i), i = 1, 2, . . . ,Nmin. (50)

In what follows we consider this log–log estimator and refer to it as the Gabaix–Ibragimov (GI) estimator, which we
denote by β̂GI . The standard error of β̂GI is estimated by σ̂

(
β̂GI

)
=

√
2/Nmin β̂GI .

Another often-used estimator of β is the maximum likelihood estimator (MLE), denoted by β̂MLE , which is also the
well-known Hill estimator (Hill et al., 1975). It can be easily verified that9

β̂MLE =
Nmin∑Nmin

i=1 ln d(i) − Nmin ln d(Nmin)

, (51)

and its standard error is given by σ̂
(
β̂MLE

)
= β̂MLE/

√
Nmin. The ML estimator is most efficient if dmin is known and the

underlying distribution above the cut-off point is Pareto.
Finally, some researchers, notably Clauset et al. (2009, CSN) have proposed joint estimation of β and dmin, and

recommend estimating dmin by minimizing the Kolmogorov–Smirnov or KS statistics, which is the maximum distance
between the empirical cumulative distribution function (CDF) of the sample, S (d), and the CDF of the reference
distribution, F (d), namely,

TKS = max
d≥dmin

|S (d)− F (d)| .

Here F (d) is the CDF of the Pareto distribution that best fits the data for d ≥ dmin. The MLE in (51) is then computed
using the estimated value of dmin. Hereafter, we refer to this estimator as the feasible maximum likelihood estimator and
denote it by β̂CSN .10

In the subsequent analysis, we examine how the inverse of β , which is estimated by the three procedures discussed
above, behave as an estimator of δmax, and how these estimators compare to the extremum estimator that we now
consider.

6.2. Extremum estimators

Our proposed extremum estimator is motivated by the exponent specification of outdegrees given by (25). In line with
the literature on estimation of β , we begin with the case where only a single set of observations on the outdegrees, {di},

8 More generally, power law distributions take the form Pr (D ≥ d) ∝ L(d)d−β , where L(d) is some slowly varying function, which satisfies
limd→∞ L (rd) /L (d) = 1, for any r > 0.
9 See, for example, Appendix B of Newman (2005).

10 The code implementing this method can be downloaded from http://tuvalu.santafe.edu/~aaronc/powerlaws/.

http://tuvalu.santafe.edu/%7Eaaronc/powerlaws/
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is available, but instead of the power law specification we assume that di, i = 1, 2, . . . ,N , are generated according to the
following exponent specification:

di = κNδi exp(υi), i = 1, 2, . . . ,N, (52)

where 0 ≤ δi ≤ 1, and κ > 0 are fixed constants. The above specification is in line with (25) in Definition 1, where we
have set κi = κ exp(υi), with {υi, i = 1, 2, . . . ,N} representing the idiosyncratic shocks to the outdegrees. We also note
that since by construction

∑N
i=1 di = 1, then (see also (26))

κ

N∑
i=1

Nδi exp(υi) = N. (53)

We make the following assumptions on {υi}.

Assumption 2. The errors {υi, i = 1, 2, . . . ,N} have zero means and a constant variance σ 2
υ , and there exist finite positive

constants C0 and C1 such that for all a > 0,

sup
i

Pr (|υi| > a) ≤ C0 exp
(
−C1a2

)
. (54)

Assumption 3. The errors {υi, i = 1, 2, . . . ,N} are a stationary sequence of mixing random variables with exponential
mixing coefficients given by ηk = η0ϕ

k, η0 > 0, 0 < ϕ < 1, and are cross-sectionally weakly correlated, namely,

sup
i

N∑
j=1

⏐⏐Cov (υi, υj)⏐⏐ < K . (55)

Remark 3. Assumption 2 requires the errors to be sub-Gaussian, which is implied by condition (54).

Remark 4. Assumption 3 allows for a limited degree of dependence in the errors. The mixing condition can also be
justified using the mixing results established in Jenish and Prucha (2009) for arrays of random fields. For our application
this requires that there exists an ordering of the outdegrees, {di}, such that the cross-correlations decline sufficiently fast
along that ordering.

To establish the asymptotic distribution of the extremum estimator, we require a stronger assumption than Assump-
tion 3.

Assumption 4. Denote the ordered values of δi by δ(i), where δmax = δ(1) > δ(2) ≥ · · · ≥ δ(N). Also denote the random
variable, υi, associated with δ(i) by υ∗

i , for i = 1, 2, . . . ,N . There exists a finite integer m > 0, such that for any ai ∈ R,

Pr(∩m
i=1υ

∗

i < ai,∩N
i=m+1υ

∗

i < ai) = Pr(∩m
i=1υ

∗

i < ai)ΠN
i=m+1 Pr(υ

∗

i < ai). (56)

Remark 5. υ∗

1 is associated with δ(1), υ∗

2 is associated with δ(2), and so on, but note that υ∗

i for i = 1, 2, . . . ,N need not
have the same ordering as δ(i).

Remark 6. Assumption 4 allows the shocks to the first m largest outdegrees to dependend on each other, but
requires the remaining outdegrees to be independently distributed. Therefore, it follows that supi

∑N
j=1

⏐⏐cov (υi, υj)⏐⏐ =

supi
∑N

j=1

⏐⏐cov (υ∗

i , υ
∗

j

)⏐⏐ < K , for a finite m, and under Assumption 4 condition (55) will also be met.

Remark 7. It is worth noting that δ(1) is assumed to be strictly greater than δ(2), whereas δ(i), for i = 2, 3, . . . ,N , do not
need to take different values. This is a key assumption for identification of δ(1) associated with the unit with the largest
outdegree. The same argument also applies to δ(2) and so on.

Now we are ready to introduce the extremum estimator. Taking the log transformation of (52) we obtain

ln di = ln κ + δi lnN + υi, i = 1, 2, . . . ,N. (57)

Averaging across i yields

N−1
N∑
i=1

ln di = ln κ +

(
N−1

N∑
i=1

δi

)
lnN + N−1

N∑
i=1

υi. (58)

But from the summability condition (31) of Assumption 1, it follows that(
N−1

N∑
i=1

δi

)
lnN ≤ K

(
lnN
N

)
, (59)
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and hence(
N−1

N∑
i=1

δi

)
lnN → 0, as N → ∞. (60)

Under Assumptions 2 and 3, the last term of (58) also tends to zero, and ln κ can be estimated by

l̂n κ = N−1
N∑
i=1

ln di. (61)

An extremum estimator of δmax now emerges as

δ̂max =
ln dmax − N−1∑N

i=1 ln di
lnN

=
N−1∑N

i=1 ln (dmax/di)
lnN

, (62)

where dmax is the largest value of di > 0.
We will next establish the asymptotic properties of the extremum estimator, δ̂max. To this end, we make use of the

following proposition that gives the tail probability bounds for the sum and deviations of the errors.

Proposition 4. (i) Under Assumptions 2 and 4, there exist finite positive constants C0, C̃1, and C2, that do not depend on N,
such that for any a ∈ R+,

Pr

(⏐⏐⏐⏐⏐
N∑
i=1

υi

⏐⏐⏐⏐⏐ > Na

)
≤ C0m exp

(
−C̃1N2a2

)
+ exp

[
−C2

N2a2

(N − m)

]
, (63)

where m is the positive finite integer such that (56) holds.
(ii) Under Assumptions 2 and 3, there exist constants C0, C1 not depending on N, 0 < C0, C2 < ∞, and C1N , C3N > 0 that

are bounded in N, such that for any a ∈ R+,

sup
i

Pr (|υi − ῡ| > a) ≤ C0 exp
(
−C1Na2

)
+ C2 exp

[
−C3Na2/3(N − 1)1/3

]
, (64)

where ῡ = N−1∑N
j=1 υj.

See Appendix C for a proof.

Remark 8. The second term in (64) is due to ῡ and will not be present if υi is Gaussian or if υi for i = 1, 2, . . . ,N is
a sequence of independent sub-Gaussian processes. In the general case considered here the second term plays a crucial
role in allowing the errors, υi, to be weakly cross-correlated.

The following theorem establishes the consistency and asymptotic distribution of δ̂max. Its proof is given in Appendix C.

Theorem 1. Suppose that the outdegrees of a network follow the exponent specification given by (52). Consider the extremum
estimator, δ̂max, defined by (62).

(i) Under Assumptions 1–3, δ̂max is a consistent estimator of δmax.
(ii) Under Assumptions 1, 2 and 4, for any a ∈ R,

lim
N→∞

Pr

⎡⎣ (lnN)
(
δ̂max − δmax

)
συ

≤ a

⎤⎦ ≤ Pr
(
υ∗

1

συ
≤ a

)
, (65)

where υ∗

1 is the shock associated with the unit having the largest outdegree and σ 2
υ = Var

(
υ∗

1

)
.

(iii) If υ∗

1 ∼ N
(
0, σ 2

υ

)
and συ is known, then a 100 (1 − p) % symmetric confidence interval for δmax is given by[

δ̂max − cp συ
lnN , δ̂max + cp συ

lnN

]
, where cp ≥ Φ−1(1−p/2), andΦ (·) denotes the cumulative distribution function of the standard

normal distribution.

Remark 9. Derivation of the asymptotic distribution of the extremum estimator is based on Assumption 4 which is
stronger than Assumption 3, although it is compatible with it. The results in Theorem 1 differ from those in the literature
on order statistics, since the distribution of outdegrees differs across i, even if it is assumed that the shocks, υi, are
identically distributed.

Remark 10. The above theorem can be applied sequentially to identify units associated with δ(2) > δ(3) > · · · > δ(m), for a
fixed a priori given value of m, so long as δ(m) > 1/2. We conjecture that this result follows since we have shown that the
most dominant unit with δ(1) can be identified with probability tending to unity as N → ∞, and conditional on knowing
this unit the theorem can then be applied to the rest of the units, and so on. However, it is important to note that our
analysis cannot distinguish between two units that are equally dominant, namely if δ(i) = δ(i−1) for any i = 1, 2, . . . ,m.
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It can be seen from (65) that the limiting distribution of δ̂max depends on the distribution of υ∗

1 , i.e., the shock to the
largest outdegree. If υ∗

1 is normally distributed, or equivalently the largest outdegree follows a log-normal distribution,
then the critical value of the standard normal distribution can be applied in constructing confidence bounds around δmax,
assuming συ is known. The confidence bounds on δmax also shrink at the logarithmic rate of 1/(lnN), which could be slow
unless N is sufficiently large. Both of these shortcomings can be overcome in the panel contexts where observations on
the outdegrees are available for more than one time period. In most empirical applications the focus would be on short
T panels, due to data availability and also because it is unlikely that the same unit continues to be dominant over a long
time period.

Specifically, consider as before the exponent specification for dit :

dit = κNδi exp(υit ), i = 1, 2, . . . ,N; t = 1, 2, . . . , T , (66)

where T is finite (T > 1) and N is large. Let ῡiT = T−1∑T
t=1 υit , and ῡNT = N−1∑N

i=1 ῡi, and suppose that Assumptions 2–4
hold with υi replaced by ῡiT . Consider the estimators

δ̂i,T =
T−1∑T

t=1 ln dit − (TN)−1∑T
t=1
∑N

j=1 ln djt
lnN

, for i = 1, 2, . . . ,N, (67)

and note that the ‘‘panel extremum estimator’’ of δmax is given by δ̂max,T = supi(δ̂i,T ). Using (66) we also have

δ̂i,T − δi = δ̄ +
ῡiT − ῡNT

lnN
, (68)

where as before δ̄ = N−1∑N
j=1 δj. Consistency of δ̂max now follows by setting ξi = ῡiT − ῡNT in the proof of Theorem 1

and noting that ῡiT continues to be sub-Gaussian so long as υit is sub-Guassian. The distributional results of Theorem 1
also follows with this difference that under independence of υit over t , the confidence band for δmax is now given by[
δ̂max,T − cp

συ,T
lnN , δ̂max,T + cp

συ,T
lnN

]
, where σ 2

υ,T = Var (ῡiT ), and assuming that the average shock to the largest outdegree

is normally distributed. However, δ̂max continues to be consistent even if the errors are non-Gaussian.
To estimate σ 2

υ,T we assume that υit ∼ IID(0, σ 2
υ ) and note that in this case σ 2

υ,T = T−1σ 2
υ , and σ

2
υ can be estimated by

(for T > 1)

σ̂ 2
υ =

∑N
i=1
∑T

t=1 υ̂
2
it

N (T − 1)
, (69)

where υ̂it = ln dit − l̂n κ − δ̂i lnN , and

l̂n κ = (TN)−1
T∑

t=1

N∑
i=1

ln dit . (70)

It is now easily seen that under our assumptions, σ̂ 2
υ is an asymptotically unbiased estimator of σ 2

υ for any fixed T > 1.
To see this note that

υ̂it = ln dit − l̂n κ − δ̂i lnN (71)

= −
(
l̂n κ − ln κ

)
−

(
δ̂i − δi

)
lnN + υit .

Now using (70) and (68) yields υ̂it = −2δ̄ lnN + υit − ῡiT , and in view of Assumptions 1 and 4 it follows that

υ̂it = υit − ῡiT + o(1),

with υit being cross-sectionally weakly dependent. Using this result in (69) and taking expectations, we have (for a fixed
T > 1)

E
(
σ̂ 2
υ

)
=

∑N
i=1
∑T

t=1 E (υit − ῡiT )
2

N (T − 1)
+ o(1) = σ 2

υ + o(1),

which establishes the desired result.
A test of the null hypothesis that δmax = δ0max can now be based on the statistic

D =

(lnN)
(
δ̂max,T − δ0max

)
σ̂υ
( 1
T −

1
TN

)1/2 , (72)

which will be normally distributed if ῡ∗

1T ∼ N
(
0, σ 2

υ

)
, where ῡ∗

1T is the time average of the shocks to the most dominant
unit, the unit with the largest outdegree. But one would expect that the normality assumption becomes less critical
for large (but finite) values of T . This is because for T sufficiently large,

√
T ῡ∗

1T is likely to be approximately normally
distributed under some standard regularity conditions on υ∗

1t , for t = 1, 2, . . . , T . However, it is important that T is not
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too large relative N , otherwise the distribution of δ̂max,T could depend on the nuisance parameter, δ̄. To avoid such a
possibility we must have

δ̄ (lnN)
√
T =

(
N∑
i=1

δi

)
(lnN)

√
T

N
→ 0, as N → ∞. (73)

Under the summability condition (31) of Assumption 1, this requires that (lnN)
√
T

N → 0, as N and T → ∞, jointly. A
full treatment of the case where both N and T → ∞ is outside the scope of the present paper and is not considered as
empirically relevant since in most network applications T is likely to be small relative to N .

6.3. Comparison of power law and extremum estimators

The exponent specification has the advantage that it is closely related to (25) in that κi = κ exp(υi) > 0, and is in line
with the production network model derived from a set of underlying economic relations. Nonetheless, in practice it is
difficult to know if the true data generating process follows the exponent or a power law specification. But it turns out that
1/δ̂max is a consistent estimator of β , the shape parameter of the Pareto distribution, even under the Pareto distribution.

To see this, suppose that the observations on the outdegrees, di, for i = 1, 2, . . . ,N , are independent draws from the
following mixed-Pareto distribution

f (di) ∝ d−1−β
i , if di ≥ dmin, (74)

∝ ψ(di), if di < dmin,

where di > 0 follows a Pareto distribution with the shape parameter β for values of di above dmin, and an arbitrary
non-Pareto distribution, ψ(dit ), for values of di below dmin. The constants of the proportionality for both branches of the
distribution are set to ensure that

∫
∞

0 f (x)dx = 1, and that a given non-zero proportion of the observations fall above
dmin.

Using (62), the extremum estimator, δ̂max, can be rewritten as

δ̂max =
zmax − N−1∑N

i=1 zi
lnN

, (75)

where zi = ln(di/dmin), for all i, and z(i) = ln(d(i)/dmin), with d(i) being the ith largest value of di as before. Since dmin is
a given constant and by assumption di are independently distributed, it then follows that for zi ≥ 0, zi are independent
draws from an exponential distribution with parameter β , namely

fZ (z) = βe−βz , for z ≥ 0,

with E (z |z ≥ 0 ) = 1/β , and Var (z |z ≥ 0 ) = 1/β2, for β > 0.11 We also assume that E (zi |zi < 0 ) exists, which is a mild
moment condition imposed on ψ(di) for ln (di/dmin) < 0. The following theorem summarizes the consistency property of
δ̂max as an estimator of 1/β .

Theorem 2. Suppose that the outdegrees di, for i = 1, 2, . . . ,N, are independent draws from the Pareto tail distribution given
by (74) with the shape parameter β > 0, and assume that zi = ln(di/dmin) has finite second order moments for all values of
zi. It then follows that

lim
N→∞

E
(
δ̂max

)
= 1/β , and Var

(
δ̂max

)
= O

[
1

(lnN)2

]
, (76)

where δ̂max is defined by (75).

A proof is provided in Appendix C.

Remark 11. The convergence of δ̂max to δ = 1/β , is at the rate of 1/(lnN) which is rather slow. But it is obtained without
making any assumptions about dmin and/or the shape of ψ(d), the non-Pareto part of the distribution.

As compared to the power law estimators, the extremum estimator has several advantages. First, it does not require
knowing the true value of dmin, whereas the estimates of the shape parameter may be highly sensitive to the choice of the
cut-off value. Although procedures such as the feasible MLE proposed by Clauset et al. (2009) estimate dmin jointly with
β , such estimates assume that the true distributions below and above dmin are known, whilst the extremum estimator is
robust to any distributional assumptions below dmin, so long as ln(di/dmin) has second order moments. Granted that it may
not be as efficient as MLE if the true distribution is indeed Pareto, one does not need to make such strong assumptions
on the entire distribution. Third, the extremum estimator allows for possible dependence across the largest outdegrees,
whilst the power law estimators assume that outdegrees are independent draws from a Pareto distribution.

11 It is worth noting that z has moments even if β ≤ 1, although the Pareto distribution has moments only for β > 1.
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7. Monte Carlo experiments

In this section, we investigate the small sample properties of the proposed extremum estimator for balanced panels
using Monte Carlo (MC) techniques, and compare its performance with that of the power law method.12

We consider two types of data generating processes (DGPs) for the outdegrees (dit ): an exponent specification and a
power law specification. The DGP for the exponent specification is given by

ln dit = ln κ + δi lnN + υit , i = 1, 2, . . . ,N; t = 1, 2, . . . , T , (77)

where υit are weakly cross-sectionally dependent and generated as

υit = ψ

N∑
j=1

wυ,ijυjt + εit , (78)

or in stacked form,

υt = ψWυυt + εt ,

where υt = (υ1t , υ2t , . . . , υNt)
′, εt = (ε1t , ε2t , . . . , εNt)

′, εit ∼ IIDN (0, 1), and Wυ =
(
wυ,ij

)
N×N is the 1-ahead-and-1-

behind circular weights matrix:

Wυ =

⎛⎜⎜⎜⎜⎜⎝
0 1

2 0 . . . 1
2

1
2 0 1

2 . . . 0
0 1

2 0 1
2 0

...
...

. . .
...

1
2 0 . . . 1

2 0

⎞⎟⎟⎟⎟⎟⎠ . (79)

The strength of cross-sectional dependence is set to ψ = 0.5.13 To ensure that dit add up to N across i for each t , κ is set
to

κ =

exp
(
−
σ2
υ

2

)
N−1

∑N
i=1 Nδi

> 0, (80)

where σ 2
υ = Var (υit), which equals the diagonal element of Var (υt) = RR′, where R = (IN − ψWυ)

−1.
For the power law model we closely follow Clauset et al. (2009), and initially generate yit as random draws from the

following mixture distribution that obeys an exact Pareto distribution above ymin,t and an exponential distribution below
ymin,t :

f (yit ) =

{
Ct (yit/ymin,t )−(β+1), for yit ≥ ymin,t

Cte−(β+1)(yit/ymin,t−1), for yit < ymin,t
, (81)

for i = 1, 2, . . . ,N , and t = 1, 2, . . . , T . To ensure that f (yit ) integrates to 1 over its full support, yit > 0, we set Ct as

Ct =

[
ymin,t

(
eβ+1

− 1
)

β + 1
+

ymin,t

β

]−1

. (82)

We then set dit = yit/ȳt and dmin,t = ymin,t/ȳt , where ȳt = N−1∑N
i=1 yit , which ensure that the outdegrees add up to N .

It is worth noting that under this DGP

Pr
(
dit ≥ dmin,t

)
= Pr

(
yit ≥ ymin,t

)
=

1
β

(
eβ+1

− 1
β + 1

+
1
β

)−1

, (83)

which is time-invariant and depends only on the value of β .14 The inverse transformation sampling method is used to
generate yit such that its distribution satisfies (81). To this end we first generate uit as IIDU[0, 1], i = 1, 2, . . . ,N; t =

1, 2, . . . , T , and set

umin,t = Ct

(
ymin,t

β + 1

) (
eβ+1

− 1
)
, (84)

12 Small sample properties of the extremum estimator for unbalanced panels are investigated in the online supplement.
13 We have considered various intensities of cross-sectional dependence: ψ = 0.2, 0.5 and 0.75, as well as independent errors. A full set of results
are presented in the online supplement.
14 When T > 1, we construct a panel data assuming that all units maintain their relative dominance over time, and therefore for each t we sort
dit in a descending order.
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We carry out two sets of experiments based on the above two DGPs:
Exponent DGP: Observations on dit are generated according to the exponent specification, (77), with a finite number

of dominant units and a large number of non-dominant units. Specifically

• A.1. One dominant unit: δmax = δ(1) > 0, and δ(i) = 0 for i = 2, 3, . . . ,N . In particular, we consider four cases: (i)
δmax = 1; (ii) δmax = 0.95; (iii) δmax = 0.85; and (iv) δmax = 0.75.

• A.2. Two dominant units: δmax = δ(1) > 0, δ(2) > 0, and δ(i) = 0 for i = 3, 4, . . . ,N . We consider δ(1) = 0.95 and
δ(2) = 0.85..15

We consider all combinations of N = 100, 300, 500, and 1000, and T = 1, 2, 6, 10, and 20, and also provide simulation
results for a very large data set with N = 450,000, which can arise when using inter-firm level sales data.16 We focus on
the 5 largest estimates of δ, which we denote by δ̂max,T = δ̂(1),T > δ̂(2),T > · · · > δ̂(5),T , computed according to (67). When
T > 1, the test statistic is computed following (72), where σ̂ 2

υ is given by (69).
Pareto DGP: Observations on dit are generated according to the mixture Pareto distribution, (81), described above and

we consider Experiments B.1: β = 1.0, and B.2: β = 1.3.17 The values of ymin,t are set as ymin,t = ymin = 15. The sample
sizes are combinations of N = 100, 300, 500, 1000, and 450,000, and T = 1 and 2. We assess the performance of the
Gabaix–Ibragimov estimator (β̂GI ) given by (50) for different given cut-off values,dmin,t , the maximum likelihood estimator
(β̂MLE) given by (51) for differentdmin,t , and the CSN estimator (β̂CSN ) which estimates β jointly with the cut-off value.

As shown in Theorem 2, the inverse of the extremum estimator, 1/δ̂max, is a consistent estimator of β , and analogously
one can consider the inverse of β as an estimator δmax.18 It is therefore of interest to see how the extremum estimator
performs under the Pareto DGP, and conversely how the power law estimators perform under the Exponent DGP. To
investigate the robustness of the alternative estimators of β to the choice of the underlying distribution, we conduct two
sets of misspecification experiments where we compare the small sample properties of the four estimators of β , namely
β̂GI , β̂MLE , β̂CSN , and β̂max = 1/δ̂max,T , when the underlying DGP is Pareto, and conversely when Exponent DGP is used. We
consider the values of β = 1, and 1.3 under Pareto DGP, and δmax = 1 and 1/1.3 ≈ 0.77 under Exponent DGP. We focus
on small values of T = 1 and 2, for all combinations of N = 100, 300, 500, 1000, and 450,000.

All experiments are carried out with 2,000 replications.19
MC results The estimation results under Exponent DGP for Experiment A are summarized in Table 1, and focus on

the extremum estimator of δmax = δ(1) and δ(2) when applicable. For each experiment we report bias (×100), root mean
squared error (RMSE×100), as well as size (×100) and power (×100) for the estimators under consideration. We first
note that the bias and RMSE of the extremum estimator decline as N and/or T rises. The bias and RMSE reduction is
particularly pronounced as T is increased. This is in line with the theoretical derivations which establish that along the
cross-sectional dimension the rate of convergence is of order 1/(lnN), as compared to T−1/2 along the time dimension.
We also note that the empirical sizes of the tests based on δ̂max,T and δ̂(2),T are close to the assumed 5% nominal size in
most cases. It is particularly satisfying to note that the extremum estimator has satisfactory performance even when N
approaches 450,000. The slow rate of convergence along the cross section dimension is, however, important for the power
of the test. For example, in the case of Experiment A.1, the power of detecting the strongly dominant unit (against the
alternative that δmax = 0.8) is around 17.05% for N = 100 and T = 2, and rises only slowly as N is increased. However,
we see a significant rise in power if T is increased to 6. For T = 6 the power rises from 41% for N = 100 to 99.9% for
N = 450,000, more than twice the values obtained for T = 2.

We also consider the frequency with which the dominant unit is correctly selected under Exponent DGP for Experiment
A.1. The results are summarized in Table 2, and show that the dominant unit is almost always correctly selected, especially
when T > 2. The frequency of correct selection can be low in the case where δmax = 0.75 and T = 1, but it increases
substantially when T ≥ 2 even if N = 100.

Tables 3 and 4 summarize the results for the first set of misspecification experiments where the data are generated
from the Pareto tail distribution given by (74). For different values of β , the extremum estimator demonstrates robustness

15 We have also considered other values of δ(1) and δ(2) for Experiment A.2, including δ(1) = 0.95, δ(2) = 0.75; and δ(1) = 0.85, δ(2) = 0.75. These
results are provided in the online supplement.
16 For example, Carvalho et al. (2016) use a subset of data compiled by Tokyo Shoko Research Ltd that contains information on inter-firm
transactions of around one million firms across Japan. This data set is proprietary and has not been made available to us.
17 We have also considered β = 1.1 and 1.2. The results are given in the online supplement.
18 See also the discussions at the end of Section 4 on the relationship between δmax and β .
19 We have also investigated the small sample properties of the extremum estimator of δmax for exponentially decaying δi ’s and for unbalanced
panels. The results are provided in the online supplement.
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Table 1
Bias, RMSE, size and power of the extremum estimator for the dominant unit or units under Exponent DGP for Experiment A.

Bias(×100) RMSE(×100) Size(×100) Power(×100)

T\N 100 300 500 1,000 450,000 100 300 500 1,000 450,000 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Experiment A.1(i): δmax = 1

1 0.41 −0.03 −0.30 −0.13 −0.09 23.89 20.82 19.36 17.49 9.44 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
2 −1.26 −0.09 −0.57 −0.30 0.03 18.95 15.58 13.97 12.70 6.75 4.90 5.20 5.05 4.75 5.80 17.05 25.00 28.25 33.95 83.85
6 −1.12 −0.28 −0.44 −0.14 0.02 11.29 9.04 8.07 7.39 3.89 6.10 5.75 5.30 5.05 4.55 41.00 59.00 67.90 77.55 99.90

10 −0.91 −0.29 −0.31 −0.19 0.01 8.63 6.81 6.31 5.70 2.96 5.20 5.00 4.65 5.35 4.45 60.80 81.45 87.95 93.55 100.00
20 −1.00 −0.23 −0.25 −0.23 −0.04 5.96 4.89 4.45 4.09 2.12 4.75 5.00 4.90 6.15 4.80 88.70 98.15 99.20 99.60 100.00

Experiment A.1(ii): δmax = 0.95

1 1.19 0.29 −0.09 −0.01 −0.09 23.12 20.39 19.06 17.28 9.44 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
2 −1.15 −0.07 −0.56 −0.29 0.03 18.83 15.54 13.97 12.70 6.75 4.65 5.15 5.05 4.75 5.80 17.10 25.00 28.25 33.95 83.85
6 −1.07 −0.26 −0.43 −0.14 0.02 11.29 9.04 8.07 7.39 3.89 6.05 5.80 5.25 5.05 4.55 41.00 59.10 68.05 77.55 99.90

10 −0.86 −0.27 −0.30 −0.19 0.01 8.62 6.81 6.31 5.70 2.96 5.20 5.00 4.70 5.35 4.45 60.95 81.65 88.05 93.55 100.00
20 −0.95 −0.22 −0.24 −0.23 −0.04 5.95 4.89 4.45 4.09 2.12 4.80 5.00 4.90 6.15 4.80 88.90 98.15 99.20 99.60 100.00

Experiment A.1(iii): δmax = 0.85

1 3.46 1.49 0.73 0.48 −0.09 21.40 19.06 18.04 16.57 9.44 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
2 −0.82 0.02 −0.54 −0.28 0.03 18.44 15.42 13.96 12.69 6.75 4.05 5.05 5.00 4.75 5.80 17.20 25.20 28.35 33.90 83.85
6 −0.97 −0.23 −0.41 −0.13 0.02 11.28 9.04 8.07 7.39 3.89 6.05 5.80 5.25 5.05 4.55 41.35 59.25 68.05 77.55 99.90

10 −0.76 −0.24 −0.28 −0.18 0.01 8.61 6.81 6.30 5.70 2.96 5.25 4.95 4.70 5.35 4.45 61.55 81.90 88.15 93.55 100.00
20 −0.85 −0.18 −0.22 −0.22 −0.04 5.94 4.89 4.45 4.09 2.12 4.50 4.95 4.85 6.05 4.80 89.15 98.15 99.20 99.60 100.00

Experiment A.1(iv): δmax = 0.75

1 6.80 3.74 2.57 1.69 −0.08 20.03 17.37 16.38 15.26 9.43 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
2 −0.09 0.23 −0.44 −0.23 0.03 17.57 15.07 13.79 12.61 6.75 2.55 4.35 4.50 4.60 5.80 17.30 25.35 28.25 33.85 83.85
6 −0.87 −0.20 −0.39 −0.12 0.02 11.27 9.03 8.07 7.39 3.89 6.00 5.85 5.20 5.10 4.55 41.85 59.35 68.20 77.55 99.90

10 −0.66 −0.20 −0.26 −0.17 0.01 8.61 6.81 6.30 5.70 2.96 5.25 4.90 4.70 5.35 4.45 62.15 82.05 88.15 93.60 100.00
20 −0.75 −0.15 −0.20 −0.21 −0.04 5.92 4.89 4.45 4.09 2.12 4.40 4.95 4.85 6.05 4.80 89.60 98.20 99.20 99.60 100.00

Experiment A.2: δ(1) = 0.95, δ(2) = 0.85
δ(1) = 0.95

1 5.41 3.95 3.34 2.86 0.63 23.21 19.89 18.41 16.57 9.04 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
2 1.71 1.95 1.28 1.15 0.27 17.57 14.67 13.18 11.99 6.58 3.30 4.25 3.75 3.50 5.15 19.30 28.10 31.60 37.05 85.30
6 −0.79 −0.01 −0.16 0.08 0.03 10.69 8.71 7.71 7.19 3.88 4.70 5.10 4.05 4.70 4.45 41.20 60.55 69.15 78.65 99.90

10 −1.22 −0.32 −0.30 −0.19 0.01 8.37 6.62 6.15 5.62 2.96 4.50 4.10 4.15 5.15 4.45 59.80 82.15 88.20 94.05 100.00
20 −1.68 −0.45 −0.39 −0.31 −0.04 6.02 4.86 4.43 4.09 2.12 4.70 4.95 4.70 6.00 4.80 86.55 98.15 99.40 99.60 100.00

δ(2) = 0.85

1 −3.44 −3.19 −3.21 −2.80 −0.89 19.47 17.64 16.82 15.86 9.23 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
2 −5.34 −3.12 −2.56 −1.71 −0.25 17.60 14.68 13.18 11.95 6.58 3.75 4.95 3.50 4.20 4.45 9.60 17.75 21.80 28.45 84.15
6 −3.07 −1.10 −0.82 −0.39 −0.01 10.68 8.69 7.74 7.18 3.82 4.40 4.20 4.05 5.10 4.55 33.35 57.05 66.10 76.20 99.95

10 −2.29 −0.62 −0.54 −0.32 0.00 8.31 6.53 6.22 5.65 2.96 4.30 4.00 4.80 4.85 4.55 55.35 81.80 88.35 93.35 100.00
20 −1.82 −0.48 −0.41 −0.33 −0.02 6.18 4.78 4.43 4.04 2.07 5.25 4.30 4.50 4.40 5.30 86.25 98.25 99.50 99.85 100.00

Notes: The Data Generating Process (DGP) is given by the exponent specification (77), where the errors are generated by (78) with ψ = 0.5.
For Experiment A.1, there is one dominant unit and the rest of the units are non-dominant: δmax = δ(1) > 0, and δ(i) = 0 for i = 2, 3, . . . ,N . For
Experiment A.2, there are two weakly dominant units and the rest are non-dominant: δmax = δ(1) = 0.95, δ(2) = 0.85, and δ(i) = 0 for i = 3, 4, . . . ,N .
δ(i) denotes the ith largest δ, i.e., δmax = δ(1) > δ(2) ≥ δ(3) ≥ . . ., which are estimated by (67). The test statistic is computed using (72), for T ≥ 2.
N/A indicates that the standard error cannot be computed when T = 1. The nominal size of the test is 5%. The power is computed at δ = δmax − 0.2
for Experiment A.1, and at δ = δ(i) − 0.2, where i = 1, 2, for Experiment A.2. The number of replications is 2,000.

to the model misspecification, although it converges to the true value much more slowly than the other shape estimators
under Pareto type distributions. This finding is in line with our theoretical results provided in 6.3. The extremum estimator,
β̂max = 1/δ̂max,T , performs well particularly when β = 1, even when N is relatively small. For example, under Pareto DGP
with β = 1 (Experiment B.1), for N = 300 and T = 2, β̂max = 1.01 (0.05), while β̂GI = 1.04 (0.19) and β̂MLE = 1.05 (0.14),
assuming a 10% cut-off value.20 It is also worth noting that the Gabaix–Ibragimov estimator (β̂GI ) and the ML estimator
(β̂MLE) are quite sensitive to the choice of the cut-off values.21 The feasible MLE, β̂CSN , performs better, but it is important
to note that the validity of the feasible MLE procedure critically depends on how close the assumed specification of the
distribution of dit below dmin,t is to the true underlying distribution.

Consider now the case where the outdegrees are generated according to the exponent specification, (77). In this
misspecified case the Pareto estimators, β̂GI , β̂MLE , and β̂CSN , all show significant biases (see Tables 5 and 6). For instance,
when β = 1, N = 300 and T = 2, and the outdegrees are generated according to the Exponent DGP, the bias of β̂GI ranges

20 Figures in brackets are standard errors.
21 Similar Monte Carlo evidence illustrating the truncation sensitivity problem is reported in Table 1–4 of Gabaix and Ibragimov (2011). An
interesting theoretical discussion can be found in Eeckhout (2004).
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Table 2
Frequencies with which the dominant unit is correctly selected, under Exponent DGP for
Experiment A.1.

Empirical frequency (percent)

T\N 100 300 500 1,000 450,000

A.1(i): δmax = 1

1 87.15 94.95 97.05 98.25 100.00
2 99.15 99.80 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00 100.00

10 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00

A.1(ii): δmax = 0.95

1 83.40 92.70 95.20 97.15 100.00
2 98.65 99.70 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00 100.00

10 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00

A.1(iii): δmax = 0.85

1 73.65 83.90 88.00 92.70 100.00
2 96.35 99.25 99.85 99.90 100.00
6 100.00 100.00 100.00 100.00 100.00

10 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00

A.1(iv): δmax = 0.75

1 61.20 71.30 75.00 81.50 99.90
2 90.30 96.55 98.35 99.20 100.00
6 100.00 100.00 100.00 100.00 100.00

10 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00

Notes: This table complements Table 1 and reports the frequencies with which the
dominant unit is correctly selected across 2,000 replications. In Experiment A.1, there is
one dominant unit and the rest of the units are non-dominant, namely, δmax = δ(1) > 0,
and δ(i) = 0 for i = 2, 3, . . . ,N . See also the notes to Table 1.

from 0.10 to 0.35, for the cut-off values 10% to 30%. Also, the bias of β̂GI increases rapidly with N . The ML type estimators
exhibit similar biases.

Finally, the extremum estimator continues to perform well in the case of unbalanced panels, and large N and T panels
with heteroskedastic and serially correlated errors. It is also reasonably robust to alternative network structures under
different specifications of the distribution of outdegrees, such as exponentially decaying δi’s. The relevant summary tables
are available in the online supplement.

8. Dominant units in US production networks

In this section we apply the proposed estimation strategy to identify the top five most pervasive (dominant) sectors in
the US economy. We also compare our results with the estimates of β (the inverse of δmax) obtained by Acemoglu et al.
(2012) for the most dominant sector. We provide estimates based on the US input–output tables for single years as well
as when two or more input–output tables are pooled in an unbalanced panel. Acemoglu et al. (2012) only consider the
estimates of β based on single-year input–output tables.

We begin with a re-examination of the data set used by Acemoglu et al. (2012) so that we have a direct comparison of
the estimates of β (or its inverse) based on the shape of the power law, and the extremum estimator which is given by
δ̂max,T = supi

(
δ̂i,T

)
, and δ̂i,T is computed using (67). The Acemoglu et al. (2012) data set is based on the US input–output

accounts data over the period 1972–2002 compiled by the Bureau of Economic Analysis (BEA) every five years. We first
confirmed that we can replicate their estimates of β , which we denote by β̂GI assuming a 20% cut-off value (the percentage
above which the degree sequences are assumed to follow the Pareto distribution). The estimates δ̂max and the inverse of
β̂ for the years 1972, 1977, 1982, 1987, 1992, 1997 and 2002 are given in Tables 7 and 8. For the inverse of β̂ , Tables 7
and 8 report estimates based on the first-order and second-order interconnections, respectively.22 We estimate β by the
three approaches discussed above, namely Gabaix–Ibragimov estimator (β̂GI ) given by (50), the MLE (β̂MLE) given by (51),

22 The first-order degree of sector j is just its outdegree, dj , defined as before, while the second-order degree of sector j is defined by dj,2 = d′w·j ,
where d = (d1, d2, . . . , dN )′ is the vector of first-order degrees and w·j is the jth column of W.
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Table 3
Estimates of the shape parameter, β , of the power law and inverse of the exponent, δmax , under Pareto DGP for Experiment B.1 (β = 1).

T = 1 T = 2

N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed cut-off value Log–log regression
(̂
βGI
)

10% 1.11 1.02 1.01 1.00 1.00 1.11 1.04 1.02 1.01 1.00
(0.50) (0.26) (0.20) (0.14) (0.01) (0.35) (0.19) (0.14) (0.10) (0.00)

20% 1.04 1.01 1.00 1.00 1.00 1.06 1.02 1.01 1.00 1.00
(0.33) (0.18) (0.14) (0.10) (0.00) (0.24) (0.13) (0.10) (0.07) (0.00)

30% 1.02 1.00 1.00 1.00 1.00 1.04 1.01 1.00 1.00 1.00
(0.26) (0.15) (0.12) (0.08) (0.00) (0.19) (0.11) (0.08) (0.06) (0.00)

Infeasible cut-off value Using true dmin,t

1.03 1.00 1.00 1.00 1.00 1.05 1.02 1.01 1.00 1.00
24% (0.30) (0.17) (0.13) (0.09) (0.00) (0.22) (0.12) (0.09) (0.06) (0.00)

Assumed cut-off value Maximum Likelihood Estimation
(̂
βMLE

)
10% 1.24 1.07 1.04 1.02 1.00 1.15 1.05 1.03 1.01 1.00

(0.39) (0.20) (0.15) (0.10) (0.00) (0.26) (0.14) (0.10) (0.07) (0.00)
20% 1.11 1.03 1.02 1.01 1.00 1.07 1.02 1.01 1.00 1.00

(0.25) (0.13) (0.10) (0.07) (0.00) (0.17) (0.09) (0.07) (0.05) (0.00)
30% 1.06 1.01 1.01 1.00 1.00 1.02 0.99 0.99 0.98 0.99

(0.19) (0.11) (0.08) (0.06) (0.00) (0.13) (0.07) (0.06) (0.04) (0.00)

Infeasible cut-off value Using true dmin,t

1.09 1.03 1.01 1.01 1.00 1.04 1.01 1.00 1.00 1.00
24% (0.23) (0.12) (0.09) (0.07) (0.00) (0.15) (0.08) (0.07) (0.05) (0.00)

Estimated cut-off value Feasible MLE
(̂
βCSN

)
44% 38% 37% 35% 24% 37% 33% 31% 29% 22%
1.02 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00

(0.17) (0.10) (0.08) (0.06) (0.00) (0.13) (0.08) (0.06) (0.04) (0.00)

β̂max = 1/̂δmax,T

1.04 1.03 1.02 1.02 1.00 1.01 1.01 1.00 1.00 1.00
(N/A) (N/A) (N/A) (N/A) (N/A) (0.08) (0.05) (0.04) (0.04) (0.01)

Notes: The DGP follows the Pareto tail distribution given by (74) with β = 1. dmin,t denotes the assumed lower bound for the Pareto distribution.
The cut-off value refers to the percentage of the largest observations (sorted in descending order) that are assumed to follow the Pareto distribution.
The infeasible cut-off value is computed by (83) assuming the true value of dmin,t is known. All estimates are averaged across 2,000 replications.
Standard errors are in parentheses. β̂GI is the Gabaix–Ibragimov estimator obtained by running the log–log regression, (50). β̂MLE is computed by
(51). β̂CSN is calculated by applying the joint MLE procedure described in Clauset et al. (2009). δ̂max,T = supi

(
δ̂i,T

)
, where δ̂i,T is computed using (67).

The standard error for the inverse of δ̂max,T is computed by the delta method. (N/A) indicates that the standard error of δ̂max,T cannot be computed
when T = 1.

and the feasible MLE (β̂CSN ). For the Gabaix–Ibragimov regression and MLE, we give estimates for the cut-off values of
10%, 20%, and 30%. For the feasible MLE, we present both the estimates of β and the estimated cut-off values.23

The results in Tables 7 and 8 show that the yearly estimates of δmax are clustered within the narrow range of 0.77
to 0.82, covering a relatively long period of 30 years. We cannot provide standard errors for such yearly estimates, but
given the small over-time variations in these estimates we can confidently conclude that there is a high degree of sectoral
pervasiveness in the US economy, although these estimates do not support the presence of a strongly dominant unit which
requires δ̂max to be close to unity. In contrast, the estimates of δmax based on the inverse of β̂ differ considerably depending
on the estimation methods, the choice of the cut-off value, and whether the first- or second-order interconnections are
considered. For example, for 1972, the estimates based on the power law, inverse of β̂GI , range from 0.694 when the cut-
off value is 10% and the first-order interconnections are used, and rise to 1.035 when the second-order interconnections
are used with a 30% cut-off value. The estimates of δ based on the inverses of β̂GI and β̂MLE , rise with the choice of
cut-off values and with the order of interconnections, whilst our estimator does not require making such choices. Recall
that δmax provides an exact measure of the rate at which the variance of aggregate output responds to sectoral shocks,
whilst β characterizes a lower bound if the first-order interconnections are used. A 20% cut-off value, which is assumed

23 Acemoglu et al. (2012) estimated the shape parameter of the power law by the log–log regression and non-parametric Nadaraya–Watson
regression, taking the tail to correspond to the top 20% of the samples for each year and did not try other cut-off values. They also estimated the
shape parameter by the feasible maximum likelihood method proposed by Clauset et al. (2009), but did not report the estimates for each year or
the estimated cut-off values.
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Table 4
Estimates of the shape parameter, β , of the power law and inverse of the exponent, δmax , under Pareto DGP for
Experiment B.2 (β = 1.3).

T = 1 T = 2

N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed cut-off value Log–log regression
(̂
βGI
)

10% 1.44 1.33 1.31 1.30 1.30 1.42 1.34 1.32 1.30 1.30
(0.65) (0.34) (0.26) (0.18) (0.01) (0.45) (0.24) (0.19) (0.13) (0.01)

20% 1.35 1.31 1.30 1.29 1.30 1.36 1.32 1.31 1.30 1.30
(0.43) (0.24) (0.18) (0.13) (0.01) (0.30) (0.17) (0.13) (0.09) (0.00)

30% 1.31 1.29 1.29 1.29 1.29 1.32 1.30 1.29 1.29 1.29
(0.34) (0.19) (0.15) (0.11) (0.00) (0.24) (0.14) (0.11) (0.07) (0.00)

Infeasible cut-off value Using true dmin,t

1.37 1.31 1.30 1.30 1.30 1.37 1.32 1.31 1.30 1.30
16% (0.49) (0.27) (0.20) (0.14) (0.01) (0.34) (0.19) (0.14) (0.10) (0.00)

Assumed cut-off value Maximum Likelihood Estimation
(̂
βMLE

)
10% 1.61 1.39 1.35 1.32 1.30 1.48 1.35 1.33 1.31 1.30

(0.51) (0.25) (0.19) (0.13) (0.01) (0.33) (0.17) (0.13) (0.09) (0.00)
20% 1.44 1.34 1.32 1.31 1.30 1.37 1.32 1.31 1.30 1.30

(0.32) (0.17) (0.13) (0.09) (0.00) (0.22) (0.12) (0.09) (0.06) (0.00)
30% 1.34 1.28 1.26 1.26 1.25 1.28 1.25 1.25 1.24 1.25

(0.24) (0.13) (0.10) (0.07) (0.00) (0.17) (0.09) (0.07) (0.05) (0.00)

Infeasible cut-off value Using true dmin,t

1.49 1.35 1.33 1.31 1.30 1.39 1.33 1.31 1.31 1.30
16% (0.37) (0.19) (0.15) (0.10) (0.00) (0.24) (0.13) (0.10) (0.07) (0.00)

Estimated cut-off value Feasible MLE
(̂
βCSN

)
39% 32% 30% 28% 17% 33% 28% 26% 24% 17%
1.31 1.30 1.30 1.30 1.30 1.31 1.30 1.30 1.30 1.30

(0.23) (0.14) (0.11) (0.08) (0.00) (0.18) (0.11) (0.08) (0.06) (0.00)

β̂max = 1/̂δmax,T

1.27 1.27 1.27 1.27 1.27 1.24 1.25 1.25 1.25 1.27
(N/A) (N/A) (N/A) (N/A) (N/A) (0.08) (0.05) (0.04) (0.03) (0.00)

Notes: The DGP follows the Pareto tail distribution given by (74) with β = 1.3. See also the notes to Table 3.

by Acemoglu et al. (2012) seems reasonable, considering the closeness between the estimates of δ̂max and the inverse of
β̂GI , and given its similarity to the estimated cut-off values by the feasible MLE. Nevertheless, the estimated cut-off value
based on the first-order interconnections for the year 1992 is only 9.5%, which is markedly lower than that for the other
years. Similar issues arise when the second-order interconnections are used. The differences between δ̂max and inverse of
β̂GI also vary across the years. For example, using the second-order interconnections and a cut-off value of 20%, δ̂max and
inverse of β̂GI are reasonably close for the years 1992, 1997 and 2002, but diverge for the earlier years of 1972, 1977 and
1982.

The data set provided by Acemoglu et al. (2012) does not give the identities of the sectors, which is fine if one is
only interested in β or δmax. But, as noted earlier, our estimation approach also allows us to identify the sectors with the
highest degrees of pervasiveness in the production network. With this in mind, we compiled our own W matrices from
the input–output tables downloaded from the BEA website.24 The W matrices for different years were computed from
commodity-by-commodity direct requirements tables at the most detailed level that cover around 400–500 US industries.
The (i, j)th entry of such a table shows the expenditure on commodity j per dollar of production of commodity i.25 These
direct requirements tables can be derived from the total requirement tables at the detailed level, which are compiled by
the BEA every five years.26

The top five largest estimates of δ, denoted by δ̂max = δ̂(1) > δ̂(2) > · · · > δ̂(5), for each of the years 1972 to 2007
are given in Table 9. The identities of the associated sectors are given in Table 10. We note that both the degrees of
dominance and the identities of the pervasive sectors in the US economy are relatively stable over the years. Consistent

24 The input–output accounts data are available at http://www.bea.gov/industry/io_annual.htm.
25 As in Acemoglu et al. (2012), the terms sector and commodity are used interchangeably to convey the same meaning.
26 The Commodity-by-Commodity Direct Requirements (DR) table is derived by: DR = (TR − I) (TR)−1 , where I is an identity matrix, and TR denotes
the Commodity-by-Commodity Total Requirements table. Then W is set to the transpose of DR and row-standardized so that the intermediate input
shares sum to one for each sector. The sectors without any direct requirements and those with zero outdegrees are excluded from W.

http://www.bea.gov/industry/io_annual.htm
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Table 5
Estimates of the shape parameter, β , of the power law and inverse of the exponent, δmax , under Exponent DGP for
Experiment A.1 (β = 1).

T = 1 T = 2

N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed cut-off value Log–log regression
(̂
βGI
)

10% 0.98 1.10 1.20 1.36 2.39 0.97 1.10 1.20 1.37 2.39
(0.44) (0.29) (0.24) (0.19) (0.02) (0.31) (0.20) (0.17) (0.14) (0.01)

20% 1.11 1.28 1.39 1.54 2.11 1.11 1.29 1.39 1.55 2.11
(0.35) (0.23) (0.20) (0.15) (0.01) (0.25) (0.17) (0.14) (0.11) (0.01)

30% 1.17 1.34 1.44 1.56 1.91 1.18 1.35 1.45 1.57 1.91
(0.30) (0.20) (0.17) (0.13) (0.01) (0.22) (0.14) (0.12) (0.09) (0.01)

Assumed cut-off value Maximum Likelihood Estimation
(̂
βMLE

)
10% 1.53 1.74 1.84 1.95 2.11 1.44 1.71 1.82 1.93 2.11

(0.48) (0.32) (0.26) (0.19) (0.01) (0.32) (0.22) (0.18) (0.14) (0.01)
20% 1.52 1.64 1.68 1.73 1.79 1.46 1.62 1.67 1.72 1.79

(0.34) (0.21) (0.17) (0.12) (0.01) (0.23) (0.15) (0.12) (0.09) (0.00)
30% 1.42 1.49 1.51 1.54 1.58 1.38 1.48 1.51 1.54 1.58

(0.26) (0.16) (0.12) (0.09) (0.00) (0.18) (0.11) (0.09) (0.06) (0.00)

Estimated cut-off value Feasible MLE
(̂
βCSN

)
39% 29% 24% 18% 2% 36% 26% 21% 16% 1%
1.37 1.58 1.69 1.85 2.83 1.36 1.59 1.71 1.87 2.87

(0.24) (0.19) (0.17) (0.15) (0.04) (0.17) (0.13) (0.12) (0.11) (0.03)

β̂max = 1/ δ̂max,T

1.06 1.04 1.03 1.02 1.01 1.04 1.02 1.02 1.01 1.00
(N/A) (N/A) (N/A) (N/A) (N/A) (0.16) (0.13) (0.12) (0.10) (0.05)

Notes: The DGP is given by the exponent specification, (77). There is one strong dominant unit and the rest are
non-dominant: δmax = δ(1) = 1, with δ(i) = 0 for i = 2, 3, . . . ,N , where δ(i) denotes the ith largest δ. The true value
of β is β = 1. See also the notes to Table 3 for other details.

with the results in Table 7, no sector is strongly dominant. The highest estimate of δmax is 0.82, for the year 1992, with an
average estimate of around 0.78 over the sample. The wholesale trade sector turns out to be the most dominant sector
for all the years with the exception of 2002. In this year the management of companies and enterprises is the most
dominant sector with the wholesale trade coming second. It seems reasonable that wholesale trade plays the dominant
role given the importance of transportation linking up the different sectors of the economy, providing intermediate goods
and transporting final goods to retail sectors.27

But it is generally difficult to distinguish between the top two or three sectors as their δ estimates are quite close
to one another and we are not able to apply formal statistical tests to their differences as standard errors cannot be
computed using outdegrees for one single year.28 Accordingly, to provide more reliable estimates of δ(1), δ(2), . . . , δ(5) and
the associated sectoral identities, we also consider pooled estimates. However, there have been major changes in the
BEA industry classifications over the years, with the input–output tables for the period 1972–1992 being based on the
Standard Industrial Classification (SIC) system, while starting from 1997 they are based on the North American Industry
Classification System (NAICS). Accordingly, we compute panel estimates of δ for the two sub-samples separately.29 The
results are summarized in Table 11, which also gives standard errors in parentheses. It is interesting that despite changes
to the sectoral classifications, the wholesale trade sector is identified as the most dominant sector in both sub-samples,
with δ̂max,T = 0.762 (0.036) for the first sub-sample (1972–1992), and δ̂max,T = 0.716 (0.045) for the second sub-sample
(1997–2007). The two panel estimates are quite close and identify wholesale trade as the most dominant sector in the US
economy. Turning to the estimates of δ(2), δ(3), . . . , δ(5), we find that these estimates are also remarkably similar across
the two sub-samples, ranging from 0.667 to 0.605 in the first sub-sample, and 0.683 to 0.595 in the second sub-sample.
What has changed is the identity of the sectors across the two sub-samples. For example, the second most dominant
sector has been blast furnaces and steel mills over the first sub-sample (1972–1992), whilst it is management companies
and enterprises over the second sub-sample (1997–2007).

27 The wholesale trade sector is also found to be dominant in other economies. Dungey and Volkov (2018) apply our extremum estimator to 49
OECD countries and find that in over half of them wholesale trade is in fact the dominant sector.
28 Acemoglu et al. (2012) are able to compute standard errors for their estimates of β because they impose a Pareto distribution on the ordered
outdegrees beyond a cut-off point, which they take as given.
29 The estimates are computed with unbalanced panels. See Section S2 of the online supplement for an extension of the extremum estimator to
unbalanced panels.
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Table 6
Estimates of the shape parameter, β , of the power law and inverse of the exponent, δmax , under Exponent DGP for
Experiment A.1 (β = 1.3).

T = 1 T = 2

N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed cut-off value Log–log regression
(̂
βGI
)

10% 1.43 1.53 1.61 1.76 2.40 1.38 1.51 1.61 1.76 2.40
(0.64) (0.39) (0.32) (0.25) (0.02) (0.44) (0.28) (0.23) (0.18) (0.01)

20% 1.45 1.59 1.67 1.79 2.11 1.44 1.60 1.68 1.79 2.11
(0.46) (0.29) (0.24) (0.18) (0.01) (0.32) (0.21) (0.17) (0.13) (0.01)

30% 1.44 1.57 1.64 1.72 1.92 1.44 1.58 1.65 1.73 1.92
(0.37) (0.23) (0.19) (0.14) (0.01) (0.26) (0.17) (0.13) (0.10) (0.01)

Assumed cut-off value Maximum Likelihood Estimation
(̂
βMLE

)
10% 1.84 1.89 1.95 2.01 2.11 1.70 1.85 1.92 1.99 2.11

(0.58) (0.35) (0.28) (0.20) (0.01) (0.38) (0.24) (0.19) (0.14) (0.01)
20% 1.65 1.70 1.72 1.75 1.79 1.58 1.67 1.71 1.74 1.79

(0.37) (0.22) (0.17) (0.12) (0.01) (0.25) (0.15) (0.12) (0.09) (0.00)
30% 1.50 1.52 1.54 1.55 1.58 1.45 1.51 1.53 1.55 1.58

(0.27) (0.16) (0.13) (0.09) (0.00) (0.19) (0.11) (0.09) (0.06) (0.00)

Estimated cut-off value Feasible MLE
(̂
βCSN

)
38% 26% 22% 16% 2% 32% 22% 18% 13% 1%
1.50 1.70 1.80 1.95 2.83 1.51 1.72 1.83 1.99 2.87

(0.28) (0.22) (0.19) (0.17) (0.04) (0.21) (0.17) (0.15) (0.13) (0.03)

β̂max = 1/̂δmax,T

1.35 1.36 1.35 1.35 1.31 1.38 1.34 1.34 1.33 1.31
(N/A) (N/A) (N/A) (N/A) (N/A) (0.21) (0.17) (0.15) (0.14) (0.07)

Notes: The DGP is given by the exponent specification, (77). There is one strong dominant unit and the rest of the
units are non-dominant: δmax = 1/1.3 = 0.77, with δ(i) = 0 for i = 2, 3, . . . ,N , where δ(i) denotes the ith largest δ.
The true value of β is β = 1.3. See also the notes to Table 5.

Table 7
Yearly estimates of the degree of dominance, δmax , and inverse of the shape parameter of power law, β , based on the first-order
interconnections, using US input–output tables compiled by Acemoglu et al. (2012).
Year N δ̂max δ̂max based on the inverse of β̂ using the first-order interconnections

Inverse of β̂GI Inverse of β̂MLE Inverse of β̂CSN

Assumed cut-off value Assumed cut-off value Estimated
cut-off value10% 20% 30% 10% 20% 30%

1972 483 0.767 0.694 0.727 0.832 0.736 0.829 1.135 0.728 16.8%
(0.142) (0.104) (0.098) (0.106) (0.095) (0.145) (0.081)

1977 524 0.778 0.677 0.725 0.804 0.715 0.852 1.009 0.726 13.6%
(0.133) (0.100) (0.091) (0.099) (0.099) (0.114) (0.086)

1982 529 0.788 0.717 0.739 0.818 0.719 0.786 1.039 0.741 15.3%
(0.139) (0.101) (0.092) (0.099) (0.084) (0.119) (0.082)

1987 510 0.804 0.667 0.731 0.814 0.724 0.849 1.028 0.742 13.3%
(0.132) (0.102) (0.093) (0.101) (0.099) (0.118) (0.090)

1992 476 0.824 0.672 0.758 0.842 0.738 0.891 1.002 0.706 9.5%
(0.137) (0.110) (0.100) (0.107) (0.110) (0.114) (0.105)

1997a 474 0.778 0.625 0.698 0.791 0.617 0.909 0.982 0.670 13.1%
(0.129) (0.101) (0.094) (0.090) (0.137) (0.131) (0.085)

2002 417 0.765 0.639 0.687 0.759 0.685 0.756 0.930 0.730 19.4%
(0.139) (0.107) (0.096) (0.106) (0.092) (0.113) (0.081)

Notes: Estimates are obtained using the data sets provided by Acemoglu et al. (2012), which are based on the US input–output
account data by the Bureau of Economic Analysis (BEA). N is the total number of sectors in a given year and the standard errors
are in parentheses. δ̂max is the extremum estimator given by (62). The first-order degree sequence is used in the estimation
of the shape parameter of the power law, β . β̂GI is obtained by the log–log regression with (Gabaix and Ibragimov, 2011)
correction using the OLS regression defined by (50). β̂MLE is the maximum likelihood estimate (MLE) of β computed by (51).
A 10% cut-off value, for example, means that the Pareto tail is taken to be the top 10% of all sectors in terms of outdegrees
in each year. Acemoglu et al. (2012) report β̂GI estimates only based on a 20% cut-off point. β̂CSN is the feasible MLE proposed
by Clauset et al. (2009) and its estimated cut-off values are reported in the last column of the table.
aFrom the year 1997 and thereafter, the BEA input–output tables are based on the North American Industry Classification
System (NAICS), while for the earlier years they are based on the Standard Industrial Classification (SIC) system.
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Table 8
Yearly estimates of the degree of dominance, δmax , and inverse of the shape parameter of power law, β , based on the
second-order interconnections, using US input–output tables compiled by Acemoglu et al. (2012).
Year N δ̂max δ̂max based on the inverse of β̂ using the second-order interconnections

Inverse of β̂GI Inverse of β̂MLE Inverse of β̂CSN

Assumed cut-off value Assumed cut-off value Estimated
cut-off value10% 20% 30% 10% 20% 30%

1972 483 0.767 0.719 0.880 1.035 0.873 1.126 1.353 0.973 15.7%
(0.147) (0.126) (0.122) (0.126) (0.147) (0.174) (0.112)

1977 524 0.778 0.718 0.870 1.008 0.821 1.058 1.351 0.750 9.4%
(0.141) (0.120) (0.114) (0.114) (0.133) (0.177) (0.107)

1982 529 0.788 0.773 0.913 1.013 0.885 1.028 1.329 1.088 23.6%
(0.150) (0.125) (0.114) (0.122) (0.116) (0.158) (0.097)

1987 510 0.804 0.686 0.879 1.031 0.883 1.070 1.325 1.110 22.9%
(0.136) (0.123) (0.118) (0.124) (0.128) (0.161) (0.103)

1992 476 0.824 0.661 0.869 1.012 0.750 1.014 1.277 0.818 12.2%
(0.135) (0.126) (0.120) (0.108) (0.141) (0.182) (0.107)

1997a 474 0.778 0.632 0.790 0.955 0.648 1.100 1.202 0.666 12.0%
(0.130) (0.115) (0.113) (0.095) (0.192) (0.187) (0.088)

2002 417 0.765 0.620 0.768 0.954 0.721 0.998 1.245 0.772 13.4%
(0.135) (0.119) (0.121) (0.111) (0.151) (0.192) (0.103)

Notes: This table differs from Table 7 in that the second-order degree sequence is used to produce the estimates of β . The
results of δ̂max in the third column are the same as those in Table 7 and are reproduced here for the convenience of readers.
See also the notes to Table 7 for further details.

Table 9
Yearly estimates of the degree of dominance, δ, for the top five pervasive
sectors, using US input–output tables (our data).
Year N δ̂(1) δ̂(2) δ̂(3) δ̂(4) δ̂(5)

1972 446 0.764 0.740 0.701 0.638 0.608
1977 468 0.774 0.704 0.628 0.608 0.590
1982 468 0.786 0.669 0.655 0.635 0.619
1987 457 0.802 0.669 0.657 0.633 0.629
1992 451 0.823 0.678 0.677 0.646 0.631
1997a 452 0.775 0.725 0.635 0.622 0.597
2002 408 0.758 0.743 0.639 0.563 0.560
2007 365 0.722 0.649 0.606 0.591 0.550

Notes: Estimates are obtained using the input–output accounts data down-
loaded from the Bureau of Economic Analysis (BEA) website. The table
reports the five largest yearly estimates of δ, computed using (67), denoted
by δ̂(1) = δ̂max , δ̂(2), . . . , δ̂(5) . N is the number of sectors with non-zero
outdegrees.
aFrom the year 1997 and thereafter, the BEA input–output tables are based
on the North American Industry Classification System (NAICS), while for
the previous years they are based on the Standard Industrial Classification
(SIC) system.

9. Concluding remarks

This paper extends the production network considered by Acemoglu et al. (2012) and derives a dual price network,
which allows us to obtain exact conditions under which sectoral shocks can have aggregate effects. The paper presents
a simple nonparametric estimator of the degree of pervasiveness of sectoral shocks that compares favorably with the
parametric estimators based on Pareto distribution fitted to the outdegrees. The proposed extremum estimator is simple
to implement and is applicable not only to the pure cross section models where the Pareto shape parameter is estimated,
but also extends readily to short T panels. The paper also develops a simple test of the degree of pervasiveness of the most
dominant units in the network, which is shown to have satisfactory size and power properties when N is large, even if T is
quite small. The production and price networks considered in this paper are static, but the proposed statistical framework
can be extended to allow for dynamics, along similar lines as in Pesaran and Chudik (2014) who consider aggregation of
large dynamic panels.

Our empirical application to US input–output tables suggests some evidence of sector-specific shock propagation, but
such effects do not seem sufficiently strong and long-lasting, and are likely to be dominated by common technological
effects. Similar empirical evidence are also provided by Foerster et al. (2011), who incorporate sectoral linkages into
multisector growth models producing an approximate factor model. Their factor analytic approach, however, cannot
distinguish dominant unit(s) from common factors and therefore may underestimate the influence of input–output
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Table 10
Identities of the top five pervasive sectors based on the yearly
estimates of δ.
Year The top five pervasive sectors

1972 Wholesale trade
Blast furnaces and steel mills
Real estate
Miscellaneous business services
Motor freight transportation & warehousing

1977 Wholesale trade
Blast furnaces and steel mills
Real estate
Petroleum refining
Industrial inorganic & organic chemicals

1982 Wholesale trade
Blast furnaces and steel mills
Petroleum refining
Private electric services (utilities)
Advertising

1987 Wholesale trade
Blast furnaces and steel mills
Advertising
Motor freight transportation and warehousing
Electric services (utilities)

1992 Wholesale trade
Real estate agents, managers, operators, and lessors
Blast furnaces and steel mills
Trucking and courier services, except air
Advertising

1997a Wholesale trade
Management of companies and enterprises
Real estate
Iron and steel mills
Truck transportation

2002 Management of companies and enterprises
Wholesale trade
Real estate
Electric power generation, transmission, and distribution
Iron and steel mills and ferroalloy manufacturing

2007 Wholesale trade
Management of companies and enterprises
Other real estate
Iron and steel mills and ferroalloy manufacturing
Petroleum refineries

Notes: This table complements Table 9 and reports the identities
of those sectors corresponding to the five largest estimates of δ (in
descending order) for each year.
aFrom the year 1997 and thereafter, the BEA input–output tables
are based on the North American Industry Classification System
(NAICS), while for the previous years they are based on the
Standard Industrial Classification (SIC) system.

linkages.30 The issue of the relative importance of internal network interactions and external common shocks for macro
economic fluctuations continues to be an open empirical question.

Appendix A. Lemmas

Lemma A.1. Let A be an N × N matrix whose entries are non-negative and each row adds up to 1. Then λ1 (A) = 1, where
λ1 (A) is the largest eigenvalue of A, and IN − ρA is invertible given that |ρ| < 1.

Proof. Matrix A is a right stochastic matrix, and λ1 (A) = 1 follows. See, for example, Property 10.1.2 in Stewart (2009).
Given that |ρ| < 1 and λ1 (A) = 1, it is then readily seen that all eigenvalues of IN − ρA are strictly positive in absolute
value, and hence invertible. □

30 The factor analysis also requires large N and T panels and is not applicable when T is small.
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Table 11
Pooled panel estimates of the degree of dominance, δ, for the top five pervasive sectors, using US input–output tables
for the two sub-periods 1972–1992 and 1997–2007.

Sub-sample 1972–1992 Sub-sample 1997–2007

δ̂(1),T 0.762 Wholesale trade 0.716 Wholesale trade
(0.036) (0.045)

δ̂(2),T 0.667 Blast furnaces and steel mills 0.683 Management of companies and enterprises
(0.036) (0.045)

δ̂(3),T 0.642 Real estate 0.609 Real estatea
(0.036) (0.045)

δ̂(4),T 0.605 Trucking and courier services, except air 0.598 Iron and steel mills
(0.036) (0.045)

δ̂(5),T 0.605 Miscellaneous business services 0.595 Other real estatea
(0.036) (0.045)

N 548 619
T 5 3

Notes: The pooled estimates for the years 1972, 1977, 1982, 1987 and 1992 are based on US input–output data using
the Bureau of Economic Analysis (BEA) industry codes, which are in turn based on the Standard Industrial Classification
(SIC). For the years 1997, 2002 and 2007, the sectoral classifications are based on the BEA industry codes, which are
based on the North American Industry Classification System (NAICS). The table gives the five largest panel estimates
of δ together with the identities of the associated sectors. The estimates are denoted by δ̂(1),T = δ̂max,T , δ̂(2),T , . . . , δ̂(5),T ,
and the standard errors are given in parentheses. N is the total number of sectors with non-zero outdegrees, and T is
the number of time periods in the panel.
aIn the BEA industry classifications, the real estate sector was subdivided into housing and other real estate sectors
starting from 2007. Since the pooled estimates are based on unbalanced panels constructed according to BEA codes,
real estate and other real estate are considered as two sectors.

Remark A.1. It should be noted that this lemma holds irrespective of whether A has bounded column matrix norm. Also
note that λ1

(
A′
)

= 1 and IN −ρA′ is invertible, since a matrix and its transpose always have the same set of eigenvalues.

Lemma A.2. Let A be an N × N matrix and B = IN − ρA. Suppose that

|ρ| < max (1/∥A∥∞ , 1/∥A∥1) .

Then B−1 has bounded row and column sum matrix norms.

Proof. See Pesaran (2015, p.756). □

Appendix B. Multiple dominant units

This appendix extends the analysis of Section 5 to the scenario where there is more than one dominant unit in the
network. Specifically, we assume that the first m units are dominant with degrees of dominance {δ1, δ2, . . . , δm}, and the
rest n units are non-dominant, with δi = 0, for i = m + 1,m + 2, . . . ,m + n, and let N = m + n. Consider now the
following partitioned version of model (23),(

x1t
x2t

)
=

(
ρW11 ρW12
ρW21 ρW22

)(
x1t
x2t

)
+

(
g1t
g2t

)
,

where x1t = (x1t , x2t , . . . , xmt )′, x2t = (xm+1,t , xm+2,t , . . . , xNt )′, W11 is the m × m weight matrix associated with
the dominant units, W22 is the n × n weight matrix associated with the non-dominant units and assumed to satisfy
|ρ| ∥W22∥1 < 1, and g1t = (g1t , g2t , . . . , gmt )′, g2t = (gm+1,t , gm+2,t , . . . , gNt )′, where git = −bi − (1 − ρ) (γift + εit ), for
i = 1, 2, . . . ,N . As ϱ(W22) ≤ 1 and |ρ| < 1, we have

x2t = S−1
22 (ρW21x1t + g2t) , (B.1)

where S22 = In − ρW22. Substituting (B.1) into

x1t = ρW11x1t + ρW12x2t + g1t ,

and rearranging yields

x1t = Z−1
1 g1t + ρZ−1

1 W12S−1
22 g2t , (B.2)

where

Z1 = Im − ρW11 − ρ2W12S−1
22 W21,

and Z1 is invertible as (IN − ρW) is nonsingular by Lemma A.1 in Appendix A.
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Now consider the cross-section average of xit for i = 1, 2, . . . ,N ,

xNt = N−1 (1′

mx1t + 1′

nx2t
)
. (B.3)

Using (B.1) in (B.3) gives

xNt = N−1 [(1′

m + ρ1′

nS
−1
22 W21

)
x1t + 1′

nS
−1
22 g2t

]
,

and by the definition of g1t we obtain

xNt = N−1 [
−an + θ′

nx1t − (1 − ρ)ψnft − (1 − ρ)φ′

nε2t
]
,

where an = 1′
nS

−1
22 b2, θ′

n = 1′
m + ρφ′

nW21, ψn = φ′

nγ2, φ′

n = 1′
nS

−1
22 , with b2 = (bm+1, bm+2, . . . , bN)′ and γ2 =

(γm+1, γm+2, . . . , γN)
′.

We will derive Var(xNt ) and inspect its asymptotic order of magnitude as N → ∞ following similar steps as in Section 5.
First, as with the case of one dominant unit, we have 1 < φmin ≤ φmax < K < ∞, where φ′

n = (φm+1, φm+2, . . . , φN ),
φmin = min(φm+1, φm+2, . . . , φN ), and φmax = max(φm+1, φm+2, . . . , φN ). Also, it readily follows that an = O(1) and
Var

(
N−1φ′

nε2t
)

= ⊖
(
N−1

)
. Consider now the terms due to the dominant units. Using (B.2) we have

Cov
(
x1t ,N−1φ′

nε2t
)

= Cov
(
Z−1
1 g1t + ρZ−1

1 W12S−1
22 g2t ,N−1φ′

nε2t
)

= −N−1ρ (1 − ρ) Z−1
1 W12S−1

22 V22,εS−1′
22 1n,

Cov (x1t , ft) = − (1 − ρ) Var(ft )
(
Z−1
1 γ1 + ρZ−1

1 W12S−1
22 γ1

)
,

Var (x1t) = (1 − ρ)2 Z−1
1 V11,εZ′−1

1 + (1 − ρ)2 ρ2Z−1
1 W12S−1

22 V22,εS−1′
22 W′

12Z
′−1
1

+ (1 − ρ)2 Var(ft )
(
Z−1
1 γ1γ

′

1Z
′−1
1 + ρ2Z−1

1 W12S−1
22 γ2γ

′

2S
−1′
22 W′

12Z
′−1
1

)
,

where V11,ε = diag
(
σ 2
1 , σ

2
2 , . . . , σ

2
m

)
, V22,ε = diag

(
σ 2
m+1, σ

2
m+2, . . . , σ

2
N

)
, and γ1 = (γ1, γ2, . . . , γm)

′.
Turning to the individual terms of Var(xNt ), which is given by

Var
(
xNt
)

= N−2θ′

nVar(x1t )θn − 2 (1 − ρ)N−2θ′

nCov
(
x1t ,φ′

nε2t
)
+ (1 − ρ)2 N−2Var

(
φ′

nε2t
)

+ (1 − ρ)2 N−2Var(ft )
(
ψ2

n + 2ψnθ
′

nZ
−1
1 γ1 + 2ρψnθ

′

nZ
−1
1 W12S−1

22 γ2
)
.

In the case where the network contains m dominant units but is not subject to common shocks,

Var
(
xNt
)

= N−2θ′

nVar(x1t )θn − 2 (1 − ρ)N−2θ′

nCov
(
x1t ,φ′

nε2t
)
+ ⊖(N−1).

Consider the ith element of N−1θn, denoted by N−1θi,n, for i = 1, 2, . . . ,m, and note that m is fixed and does not rise
with N . Then by definition, N−1θi,n= N−1 (1 + ρφ′

nw·i,21
)
, where w·i,21 is the ith column of W21. Hence

φminN−1
n∑

j=1

wji,21 ≤ N−1φ′

nw·i,21 ≤ φmaxN−1
n∑

j=1

wji,21,

and

N−1
+ φminN−1

n∑
j=1

wji,21 ≤ N−1θi,n ≤ N−1
+ φmaxN−1

n∑
j=1

wji,21. (B.4)

Also note that w′

·i,211n = ⊖(Nδi ), which immediately follows that

w′

·i,211n + w′

·i,111m = di = κiNδi ,

with m being fixed. Therefore, by (B.4) it follows that N−1θi,n = ⊖(Nδi−1), for i = 1, 2, . . . ,m, and then N−2θ′

nθn =

⊖(N2δmax−2), where 0 < δmax = max (δ1, δ2, . . . , δm) ≤ 1. Further notice that

N−2θ′

nθnλm [Var(x1t )] ≤ N−2θ′

nVar(x1t )θn ≤ N−2θ′

nθnλ1 [Var(x1t )] ,

where λ1 [Var(x1t )] and λm [Var(x1t )] denote the largest and smallest eigenvalue of Var(x1t ), respectively, and 0 <
λm [Var(x1t )] ≤ λ1 [Var(x1t )] < K < ∞. Hence we obtain

N−2θ′

nVar(x1t )θn = ⊖
(
N2δmax−2) .

Turning now to the jth element of the covariance term, for j = 1, 2, . . . ,m, we have⏐⏐Cov (xjt ,N−1φ′

nε2t
)⏐⏐ ≤ N−1

|ρ (1 − ρ)|
Z−1

j.,1


∞

∥W12∥∞

S−1
22


∞

V22,ε


∞

φn


∞
,

where Z−1
j.,1 denotes the jth row of Z−1

1 , and using similar line of reasoning as in the main text it is easily verified that⏐⏐Cov (xjt ,N−1φ′

nε2t
)⏐⏐ = O

(
N−1

)
, and therefore

N−2θ′

nCov
(
x1t ,φ′

nε2t
)

= O
(
Nδmax−2) .
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Consequently, in the absence of common shocks, we have demonstrated that

Var
(
xNt
)

= ⊖
(
N2δmax−2)

+ ⊖
(
N−1) ,

which clearly shows that the rate of convergence of xNt depends on the strongest dominant unit in the network.
Finally, if the network is subject to both dominant units and a common factor, using N−1ψn = ⊖(Nα−1) and similar

arguments as before leads to

Var
(
xNt
)

= ⊖
(
N2δmax−2)

+ ⊖
(
N2α−2)

+ ⊖
(
N−1) ,

which is a direct extension of (48) to the multiple-dominant-units network. It is easily seen that when there are multiple
factors and multiple dominant units, (49) in Proposition 3 readily follows.

Appendix C. Mathematical proofs

C.1. Proof of Proposition 4

We begin by proving (i). By the triangle inequality,⏐⏐⏐⏐⏐
N∑
i=1

υi

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
N∑
i=1

υ∗

i

⏐⏐⏐⏐⏐ ≤

⏐⏐⏐⏐⏐
m∑
i=1

υ∗

i

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐

N∑
i=m+1

υ∗

i

⏐⏐⏐⏐⏐ ,
and it follows that for any aN ∈ R+,

Pr

(⏐⏐⏐⏐⏐
N∑
i=1

υi

⏐⏐⏐⏐⏐ > aN

)
≤ Pr

(⏐⏐⏐⏐⏐
m∑
i=1

υ∗

i

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐

N∑
i=m+1

υ∗

i

⏐⏐⏐⏐⏐ > aN

)
.

By Lemma A11 in the supplement to Chudik et al. (2018), there exists a constant π in the range 0 < π < 1, such that

Pr

(⏐⏐⏐⏐⏐
N∑
i=1

υi

⏐⏐⏐⏐⏐ > aN

)
≤ Pr

(⏐⏐⏐⏐⏐
m∑
i=1

υ∗

i

⏐⏐⏐⏐⏐ > πaN

)
+ Pr

(⏐⏐⏐⏐⏐
N∑

i=m+1

υ∗

i

⏐⏐⏐⏐⏐ > (1 − π) aN

)
. (C.1)

Consider the first term on the right-hand side of (C.1). Applying Lemma A11 of Chudik et al. (2018) again gives

Pr

(⏐⏐⏐⏐⏐
m∑
i=1

υ∗

i

⏐⏐⏐⏐⏐ > πaN

)
≤

m∑
i=1

Pr
(⏐⏐υ∗

i

⏐⏐ > πiπaN
)
,

where πi are any constants satisfying 0 < πi < 1 and
∑m

i=1 πi = 1. By the sub-Gaussian condition (54) of Assumption 2,
we have

Pr
(⏐⏐υ∗

i

⏐⏐ > πiπaN
)

≤ C0 exp
(
−C1π

2
i π

2a2N
)
,

for i = 1, 2, . . . ,m, and hence

Pr

(⏐⏐⏐⏐⏐
m∑
i=1

υ∗

i

⏐⏐⏐⏐⏐ > πaN

)
≤ C0

m∑
i=1

exp
(
−C1π

2
i π

2a2N
)

≤ C0m exp
(
−C1π

2
minπ

2a2N
)
, (C.2)

where πmin = min (π1, π2, . . . , πm). Consider now the second term on the right-hand side of (C.1). Note that {υi},
i = m + 1,m + 2, . . . ,N , are independently distributed under Assumption 4; they have zero means, variance σ 2

υ , and
are sub-Gaussian under Assumption 2. Therefore, Lemma A3 of Chudik et al. (2018) is applicable,31 and we have

Pr

[⏐⏐⏐⏐⏐
N∑

i=m+1

υ∗

i

⏐⏐⏐⏐⏐ > (1 − π) aN

]
≤ exp

[
−

c2 (1 − π)2 a2N
2σ 2

υ (N − m)

]
, (C.3)

where c is any constant in the range 0 < c < 1. Overall, using (C.2) and (C.3) in (C.1) and letting aN = Na, a > 0, we
obtain

Pr

(⏐⏐⏐⏐⏐
N∑
i=1

υi

⏐⏐⏐⏐⏐ > Na

)
≤ C0m exp

(
−C1π

2
minπ

2N2a2
)
+ exp

[
−

c2 (1 − π)2 N2a2

2σ 2
υ (N − m)

]
.

31 Lemma A3 of Chudik et al. (2018) provides a more general result on the tail bound for martingale difference sequence.
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Setting C̃1 = C1π
2
minπ

2, C2 =
c2(1−π)2

2σ2
υ

and recalling that m is finite leads to

Pr

(⏐⏐⏐⏐⏐
N∑
i=1

υi

⏐⏐⏐⏐⏐ > Na

)
≤ C0m exp

(
−C̃1N2a2

)
+ exp

[
−C2

N2a2

(N − m)

]
,

as required.
We now turn to proving (ii). Let ξi = υi − ῡ and note that

ξi = (1 − N−1)υi − N−1
N∑
j̸=i

υj.

By the triangle inequality |ξi| ≤ (1 − N−1) |υi| + N−1
⏐⏐⏐∑j̸=i υj

⏐⏐⏐, and hence for any a ∈ R+,

Pr (|ξi| > a) ≤ Pr

⎡⎣(1 − N−1) |υi| + N−1

⏐⏐⏐⏐⏐⏐
N∑
j̸=i

υj

⏐⏐⏐⏐⏐⏐ > a

⎤⎦ .
By Lemma A11 in the supplement to Chudik et al. (2018), there exists a constant π in the range 0 < π < 1, such that

Pr (|ξi| > a) ≤ Pr
[
(1 − N−1) |υi| > (1 − π )a

]
+ Pr

⎛⎝N−1

⏐⏐⏐⏐⏐⏐
N∑
j̸=i

υj

⏐⏐⏐⏐⏐⏐ > πa

⎞⎠ . (C.4)

But by the sub-Gaussian condition (54) of Assumption 2, we have

Pr
[
(1 − N−1) |υi| > (1 − π )a

]
≤ C0 exp

[
−C1

N2(1 − π )2a2

(N − 1)2

]
.

Consider now the second term of (C.4) and note that

Pr

⎛⎝N−1

⏐⏐⏐⏐⏐⏐
N∑
j̸=i

υj

⏐⏐⏐⏐⏐⏐ > πa

⎞⎠ = Pr

⎛⎝⏐⏐⏐⏐⏐⏐
N∑
j̸=i

υj

⏐⏐⏐⏐⏐⏐ > Nπa

⎞⎠ .
Under Assumption 3, Theorem 3.5 of White and Wooldridge (1991) can be applied to obtain (for choice of p = 2 and
λ = 1 in their notations)

Pr

⎛⎝⏐⏐⏐⏐⏐⏐
N∑
j̸=i

υj

⏐⏐⏐⏐⏐⏐ > Nπa

⎞⎠ ≤ C2 exp
{
−C3

[
Nπa (N − 1)−1/2]2/3}

= C2 exp

[
−C3

(
πN

N − 1

)2/3

a2/3(N − 1)1/3
]
,

for some finite positive constants C2 and C3. Hence

Pr (|ξi| > a) ≤ C0 exp
[
−C1

N2(1 − π )2a2

(N − 1)2

]
+ C2 exp

[
−C3

(
πN

N − 1

)2/3

a2/3(N − 1)1/3
]
.

Setting C1N =
C1(1−π )2N2

(N−1)2
, C3N = C3

(
πN
N−1

)2/3
, and noting that C1N and C3N are positive and bounded in N , we have

Pr (|ξi| > a) ≤ C0 exp
(
−C1Na2

)
+ C2 exp

[
−C3Na2/3(N − 1)1/3

]
,

which is the desired result.

C.2. Proof of Theorem 1

(i) Consistency of δ̂max. The extremum estimator of δmax can be rewritten as δ̂max = supi

(
δ̂i

)
, where δ̂i is defined by

δ̂i =
ln di − N−1∑N

j=1 ln dj
lnN

. (C.5)

Substituting (57) into (C.5) we obtain

δ̂i − δi = δ̄ +
ξi

lnN
, (C.6)
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where ξi = υi − ῡ , ῡ = N−1∑N
j=1 υj, and under Assumption 1 we have δ̄ = N−1∑N

j=1 δj = O(N−1). For any ϵ > 0,

Pr
(⏐⏐⏐δ̂max − δmax

⏐⏐⏐ > ϵ

)
= Pr

(
δ̂max − δmax > ϵ

)
+ Pr

(
δ̂max − δmax ≤ −ϵ

)
. (C.7)

Consider the first term on the right-hand side of (C.7), and note that

Pr
(
δ̂max − δmax > ϵ

)
= Pr

[
sup

i

(
δ̂i

)
> ϵ + δmax

]
= Pr

[
∪

N
i=1

(
δ̂i > ϵ + δmax

)]
= Pr

[
∪

N
i=1

(
δ̂i − δi > ϵ + ai

)]
≤

N∑
i=1

Pr
(
δ̂i − δi > ϵ + ai

)
,

where ai = δmax − δi ≥ 0. Using (C.6) we obtain

Pr
(
δ̂max − δmax > ϵ

)
≤

N∑
i=1

Pr
(
δ̄ +

ξi

lnN
> ϵ + ai

)
=

N∑
i=1

Pr (ξi > qiN) , (C.8)

where qiN =
(
ϵ − δ̄ + ai

)
(lnN). Since ai ≥ 0 for all i, and δ̄ ≤ K/N , for some fixed K > 0, we then have qiN ≥

ϵ lnN − K
( lnN

N

)
, and hence

Pr (ξi > qiN) ≤ Pr
[
ξi > ϵ lnN − K

(
lnN
N

)]
.

Using this result in (C.8) we now obtain

Pr
(
δ̂max − δmax > ϵ

)
≤ N sup

i
Pr
[
ξi > ϵ lnN − K

(
lnN
N

)]
, (C.9)

where for any choice of ϵ and K , there is some N0, such that for all N > N0, ϵ lnN−K
( lnN

N

)
> 0. Applying Proposition 4(ii)

to ξi leads to

Pr
[
ξi > ϵ lnN − K

(
lnN
N

)]
≤ C0 exp

{
−C1N

[
ϵ lnN − K

(
lnN
N

)]2}

+ C2 exp

{
−C3N

[
ϵ lnN − K

(
lnN
N

)]2/3
(N − 1)1/3

}
.

Substituting this result in (C.9) now yields

Pr
(
δ̂max − δmax > ϵ

)
≤ C0 exp

{
lnN − C1N

[
ϵ lnN − K

(
lnN
N

)]2}

+ C2 exp

{
lnN − C3N

[
ϵ lnN − K

(
lnN
N

)]2/3
(N − 1)1/3

}
.

The first exponential term tends to zero since (lnN) /N = o(1), C1Nϵ
2 > 0, C1N is bounded in N , and as a result

lnN − C1Nϵ
2 (lnN)2 → −∞, as N → ∞. Similarly, the second exponential term also approaches zero for ϵ sufficiently

small. To see this, note that

lnN − C3N

[
ϵ lnN − K

(
lnN
N

)]2/3
(N − 1)1/3

= −C3N

[
ϵ lnN − K

(
lnN
N

)]2/3
(N − 1)1/3

{
1 −

lnN

C3N
[
ϵ lnN − K

( lnN
N

)]2/3
(N − 1)1/3

}
.

But (recalling that C3N is bounded in N)

lnN

C3N
[
ϵ lnN − K

( lnN
N

)]2/3
(N − 1)1/3

= O

[(
lnN
N

)1/3
]

= o(1),

and hence Pr
(
δ̂max − δmax > ϵ

)
→ 0 as N → ∞. Consider now the second term on the right-hand side of (C.7),

Pr
(
δ̂max − δmax ≤ −ϵ

)
= Pr

[
sup

i

(
δ̂i

)
≤ −ϵ + δmax

]
= Pr

[
∩

N
i=1

(
δ̂i ≤ −ϵ + δmax

)]
= Pr

[
∩

N
i=1

(
δ̂i − δi ≤ −ϵ + ai

)]
.
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Using (C.6) again gives

Pr
(
δ̂max − δmax ≤ −ϵ

)
= Pr

[
∩

N
i=1

(
ξi

lnN
≤ −ϵ − δ̄ + ai

)]
.

Consider the ordered values of δi, namely δ(1) > δ(2) ≥ · · · ≥ δN ≥ 0, and denote the ξi associated with this ordering by
ξ ∗

i . Specifically, ξ
∗

1 is associated with δ(1), ξ ∗

2 is associated with δ(2) and so on. Note that the probability of intersection of
events is invariant to the reordering. Therefore, we have

Pr
(
δ̂max − δmax ≤ −ϵ

)
= Pr

[
∩

N
i=1

(
ξ ∗

i

lnN
≤ −ϵ − δ̄ + a(i)

)]
,

where a(1) = δmax − δ(1) = 0, and a(i) > 0 for i > 1. Denote the events { ξ
∗
i

lnN ≤ −ϵ − δ̄ + a(i), i = 1, 2, . . . ,N} by{
A∗

i

}
, and suppose that Pr

(
A∗

1

)
> 0. The case where Pr

(
A∗

1

)
= 0 can be ruled out, since in that case we must have

Pr
(
δ̂max − δmax ≤ −ϵ

)
= 0, and Pr

(
δ̂max − δmax > ϵ

)
→ 0 as N → ∞, and consistency of δ̂max follows trivially. But

under Pr
(
A∗

1

)
> 0, the conditional probability Pr

(
∩

N
i=2A

∗

i

⏐⏐A∗

1

)
exists and since 0 ≤ Pr

(
∩

N
i=2A

∗

i

⏐⏐A∗

1

)
≤ 1, it follows that

Pr
[
∩

N
i=1

(
ξ ∗

i

lnN
≤ −ϵ − δ̄ + a(i)

)]
= Pr

(
A∗

1

)
× Pr

(
∩

N
i=2A

∗

i

⏐⏐A∗

1

)
≤ Pr

(
A∗

1

)
.

Consider now Pr
(
A∗

1

)
and note that Pr

(
A∗

1

)
= Pr

[
ξ ∗

1 ≤ −
(
ϵ + δ̄

)
lnN

]
, where ϵ + δ̄ > 0. Now using result (ii) in

Proposition 4 we have

Pr
(
δ̂max − δmax ≤ −ϵ

)
≤ C0 exp

[
−C1N

(
ϵ + δ̄

)2
(lnN)2

]
+ C2 exp

[
−C3N

(
ϵ + δ̄

)2/3
(lnN)2/3 (N − 1)1/3

]
.

Recalling that δ̄ lnN = O
(
N−1 lnN

)
= o(1), C1N and C3N are positive and bounded in N , it is easily seen that both

exponential terms of the above tend to zero for any ϵ > 0. Thus, overall Pr
(⏐⏐⏐δ̂max − δmax

⏐⏐⏐ > ϵ

)
→ 0 as N → ∞, and this

completes the proof of part (i) of the theorem.

(ii) Asymptotic distribution of δmax. Consider now part (ii) of the Theorem and note that for any a ∈ R,

Pr

⎡⎣ (lnN)
(
δ̂max − δ(1)

)
συ

≤ a

⎤⎦ = Pr

⎧⎨⎩∩
N
i=1

⎡⎣ (lnN)
(
δ̂i − δ(1)

)
συ

≤ a

⎤⎦⎫⎬⎭ .
Let DN = (lnN)

(
δ̂max − δ(1)

)
/συ . Using (C.5) we have

Pr (DN ≤ a) = Pr
[
∩

N
i=1

(
υi − ῡ

συ
≤ biN

)]
,

where

biN = a +
(lnN)

(
δ(1) − δi − δ̄

)
συ

Equivalently, we can also write

Pr (DN ≤ a) = Pr
[
∩

N
i=1

(
υ∗

i − ῡ

συ
≤ b∗

iN

)]
,

where υ∗

i is defined in Assumption 4 and

b∗

iN = a +
(lnN)

(
δ(1) − δ(i) − δ̄

)
συ

.

Furthermore,

Pr (DN ≤ a) = Pr
[
∩

N
i=1

(
υ∗

i − ῡ

συ
≤ b∗

iN

) ⏐⏐⏐⏐ῡ ≤
lnN
√
N

]
×

[
1 − Pr

(
ῡ >

lnN
√
N

)]
+ Pr

[
∩

N
i=1

(
υ∗

i − ῡ

συ
≤ b∗

iN

) ⏐⏐⏐⏐ῡ > lnN
√
N

]
× Pr

(
ῡ >

lnN
√
N

)
.

Note that

Pr
[
∩

N
i=1

(
υ∗

i − ῡ

συ
≤ b∗

iN

) ⏐⏐⏐⏐ῡ ≤
lnN
√
N

]
≤ Pr

[
∩

N
i=1

(
υ∗

i

συ
≤ b∗

iN + σ−1
υ

lnN
√
N

)]
,
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and under Assumption 4 we have

Pr
[
∩

N
i=1

(
υ∗

i − ῡ

συ
≤ b∗

iN

) ⏐⏐⏐⏐ῡ ≤
lnN
√
N

]
≤ Pr

[
∩

m
i=1

(
υ∗

i

συ
≤ b∗

iN + σ−1
υ

lnN
√
N

)]
ΠN

i=m+1 Pr
(
υ∗

i

συ
≤ b∗

iN + σ−1
υ

lnN
√
N

)
.

In addition,

Pr
(
ῡ >

lnN
√
N

)
≤ Pr

(
|ῡ| >

lnN
√
N

)
= Pr

(⏐⏐⏐⏐⏐
N∑
i=1

υi

⏐⏐⏐⏐⏐ > N
lnN
√
N

)
.

Applying Proposition 4(i) yields

Pr
(
ῡ >

lnN
√
N

)
= O

{
exp

[
−C3

(
N

N − m

)
(lnN)2

]}
,

for some positive finite constant C3. Thus, overall we have

Pr (DN ≤ a) ≤ Pr
[
∩

m
i=1

(
υ∗

i

συ
≤ b∗

iN + σ−1
υ

lnN
√
N

)]
ΠN

i=m+1 Pr
(
υ∗

i

συ
≤ b∗

iN + σ−1
υ

lnN
√
N

)
+O

{
exp

[
−C3

(
N

N − m

)
(lnN)2

]}
.

Now consider the limit of the above probability distribution as N → ∞. Since m is assumed to be finite, the last term
approaches zero as N → ∞. Note that

b∗

iN + σ−1
υ

lnN
√
N

→ a, for i = 1,

b∗

iN + σ−1
υ

lnN
√
N

→ +∞, for i > 1.

Also recall that under Assumption 1, lnN δ̄ = O
(
N−1 lnN

)
= o(1), and δ(1) − δ(i) > 0, for i > 1 under Assumption 4.

Therefore, it follows that

lim
N→∞

Pr
(
υ∗

i

συ
≤ b∗

iN + σ−1
υ

lnN
√
N

)
= 1, for i = m + 1,m + 2, . . . ,N ,

and

lim
N→∞

Pr
[
∩

m
i=1

(
υ∗

i

συ
≤ b∗

iN + σ−1
υ

lnN
√
N

)]
= Pr

(
υ∗

1

συ
≤ a,

υ∗

2

συ
< ∞, . . . ,

υ∗
m

συ
< ∞

)
= Pr

(
υ∗

1

συ
≤ a

)
,

which is the marginal distribution of the shock to the dominant unit. Hence, overall we conclude that for any a ∈ R,

lim
N→∞

Pr (DN ≤ a) ≤ Pr
(
υ∗

1

συ
≤ a

)
.

(iii) Confidence interval for δmax. Let F (D ≤ a) denote the limiting distribution of DN . In the case where υ∗

1 ∼ N(0, σ 2
υ ),

the result in (ii) implies that for any a ∈ R and as N → ∞ we have

F (D ≤ a) ≤ Φ (a) . (C.10)

In constructing a symmetric confidence bounds for the upper tail we need to find cp > 0 such that F (D > cp) ≤ p/2, and
for the lower tail, F (D < −cp) ≤ p/2. Consider the upper tail and note that 1− F (D ≤ cp) ≤ p/2, or F (D ≤ cp) ≥ 1− p/2.
Using (C.10) we now have

1 − p/2 ≤ F (D ≤ cp) ≤ Φ
(
cp
)
,

and hence Φ
(
cp
)

≥ 1−p/2, which yields cp ≥ Φ−1(1−p/2), since Φ
(
cp
)
is non-decreasing in cp. Similarly, for the lower

tail (using (C.10)) we also have

F (D < −cp) ≤ Φ
(
−cp

)
≤ p/2.

But Φ
(
−cp

)
≤ p/2 can also be written as 1 − Φ

(
cp
)

≤ p/2, or Φ
(
cp
)

≥ 1 − p/2, which gives the same range of values
for cp as obtained for the upper tail. Therefore, under log-normality of the largest outdegree and for N sufficiently large,
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setting cp ≥ Φ−1(1 − p/2) will ensure that

lim
N→∞

Pr
(
|DN | > cp

)
≤ F (D > cp) + F (D < −cp) ≤ p.

C.3. Proof of Theorem 2

First we note that since zi are distributed independently with finite means and variances then

E (z̄N) = N−1
N∑
i=1

E (zi) = β−1 Pr (z ≥ 0)+ E (z |z < 0 ) [1 − Pr (z ≥ 0)] ,

which is finite. Further using standard results for the moments of ordered random variables (see, for example, Section 4.6
of Arnold et al. (1992)) we have

E
(
z(i)
)

= (1/β)

⎛⎝N−i+1∑
j=1

1
j

⎞⎠ , Var(z(i)) = (1/β)2

⎛⎝N−i+1∑
j=1

1
j2

⎞⎠ , for i = 1, 2, . . . ,N. (C.11)

Noting that δ̂max is given by (75), and making use of the above results we now have

E
(
δ̂max

)
=

E (zmax)− E (z̄N)
lnN

=
(1/β)

∑N
j=1 j

−1
− E (z̄N)

lnN
, (C.12)

Var
(
δ̂max

)
=

Var (zmax)+ N−2∑N
i=1 Var(zi) − 2N−1∑N

i=1 Cov(zmax, z(i))

(lnN)2

=
Var (zmax)+ N−2∑N

i=1 Var(zi) − 2N−1∑N
i=1 Var(z(i))

(lnN)2
. (C.13)

Also using well known bounds to harmonic series (see, for example, Sections 3.1 and 3.2 of Bonar et al., 2006), we have

ln(N + 1) <

⎛⎝ n∑
j=1

1
j

⎞⎠ ≤ 1 + lnN,

and hence

lim
N→∞

∑N
j=1 j

−1

lnN
= 1. (C.14)

Using (C.11) and (C.14) in (C.12) we now have limN→∞ E
(
δ̂max

)
= 1/β .

Turning to the variance of δ̂max, we note that

Var
(
δ̂max

)
=

Var (zmax)+

(
1−2N
N2

)∑N
i=1 Var(z(i))

(lnN)2
,

(lnN)−2 Var (zmax) ≤ Var
(
δ̂max

)
≤ (lnN)−2

[
Var (zmax)+

(
2N − 1

N2

)
NVar (zmax)

]
,

(lnN)−2 δ
2

⎛⎝ N∑
j=1

1
j2

⎞⎠ ≤ Var
(
δ̂max

)
≤ (lnN)−2

(
3N − 1

N

)
δ
2

⎛⎝ N∑
j=1

1
j2

⎞⎠ .
But

∑N
j=1 j

−2
≤ π2/6, and hence Var

(
δ̂max

)
= O

[
(lnN)−2].

Appendix D. Supplementary Monte Carlo results

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.03.014.
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