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Geographically weighted regression (GWR) is a technique that explores spatial nonsta-

tionarity in data-generating processes by allowing regression coefficients to vary spa-

tially. It is a widely applied technique across domains because it is intuitive and conforms

to the well-understood framework of regression. An alternative method to GWR that has

been suggested is spatial filtering, which it has been argued provides a superior alterna-

tive to GWR by producing spatially varying regression coefficients that are not correlated

with each other and which display less spatial autocorrelation. It is, therefore, worth-

while to examine these claims by comparing the output from both methods. We do this by

using simulated data that represent two sets of spatially varying processes and examining

how well both techniques replicate the known local parameter values. The article finds no

support that spatial filtering produces local parameter estimates with superior properties.

The results indicate that the original spatial filtering specification is prone to overfitting

and is generally inferior to GWR, while an alternative specification that minimizes the

mean square error (MSE) of coefficient estimates produces results that are similar to

GWR. However, since we generally do not know the true coefficients, the MSE minimizing

specification is impractical for applied research.

Introduction

Nonstationarity in data-generating processes goes largely undetected in traditional global

models. Hence, local models are necessary to capture the effects of spatially heterogenous pro-

cesses. While many local statistical techniques exist (Fotheringham and Brunsdon 1999), one

method that has become particularly popular is geographically weighted regression (GWR),

which explicitly allows regression coefficients to vary over space using a relatively simple

extension of a global ordinary least-squares estimator. Location-specific coefficients are partic-

ularly useful because they can be mapped so that nonstationary processes can be explored

visually and analytically (Fotheringham, Brunsdon, and Charlton 2002). Furthermore, GWR
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inherits traditional regression diagnostics, such as standard errors and t-values, making it sim-

ple to understand and apply. As a result, GWR has been used to model many different phenom-

ena, including crime patterns (Cahill and Mulligan 2007), health risks (Gilbert and

Chakraborty 2011), house prices (Fotheringham, Crespo, and Yao 2015), climate change

(Brown et al. 2011), and species distribution (Miller and Hanham 2011).

One critique of GWR is that it is highly susceptible to multicollinearity (Wheeler and

Tiefelsdorf 2005), whereby it is suggested that multicollinearity among explanatory variables

causes intolerable levels of correlation among GWR coefficients. While Wheeler and Tiefels-

dorf make the point that there may be locally induced multicollinearity, even when none or lit-

tle is detected in the global data set, their assertion that low-to-moderate levels of global

multicollinearity implies problematic levels of local multicollinearity may be highly exagger-

ated. First, in their initial experiments either the true coefficient values are unknown and cannot

be assessed or their synthetic data and models are inappropriately specified. Second, subse-

quent results show that GWR is robust to high levels of multicollinearity, when the sample size

is large (P�aez, Farber, and Wheeler 2011; Fotheringham and Oshan 2016). While a method for

explicitly determining when a sample size is sufficiently large or insufficiently small has yet to

be developed, several global regression modeling tools, such as multicollinearity measures,

visualizations, and regularized regression have been extended to diagnose or mitigate the

effects that may arise from small sample sizes and high multicollinearity (Wheeler 2007,

2010). However, these tools can be relatively complex compared to their global regression

counterparts.

A general critique of the work of Wheeler and Tiefelsdorf (2005) is that they use the term

multicollinearity to refer to several different correlation phenomena and do not always clearly

distinguish between them. Following Fotheringham and Oshan (2016), we distinguish between

three types of correlation that can be observed in GWR: (1) between explanatory variables; (2)

between location-specific coefficient estimates of different coefficient surfaces; and (3)

between coefficient estimates within a single coefficient surface (i.e., spatial autocorrelation).

It is well known that extreme levels of multicollinearity among explanatory variables in global

regression can cause issues such as unstable coefficients, counter-intuitive coefficient signs,

artificially high R2 diagnostics despite few or no significant estimates, and inflated standard

errors of the coefficient estimates (Belsey, Kuh, and Welsch 1980; Obrien 2007). An outcome

of this scenario is a type-II error problem, which has also been demonstrated in GWR

(Fotheringham and Oshan 2016).

However, attributing the correlation between coefficient estimate surfaces solely to corre-

lation between explanatory variables is an overly simplistic characterization of relationships in

local models. Correlation between coefficient estimate surfaces may also be caused by con-

curvity, a concept from the generalized additive modeling literature, which describes correla-

tion between functionally transformed variables, and has been shown to be an issue more

generally within local modeling (Ramsay, Burnett, and Krewski 2003a,b). In GWR, conurvity

may be likely due to the fact that the same kernel function and spatial dimensions are often

used to weight several variables. Furthermore, when this kernel is parameterized with a single

bandwidth, the risk of concurvity may be greater since the kernel functions will be more similar

than if they were each parameterized with a unique bandwidth. Specifications proposing differ-

ent distance metrics and multiple bandwidths (Lu et al. 2015; Fotheringham Yang, and Kang,

in press) may be useful for mitigating concurvity within a GWR framework, though concurvity

in GWR remains an under-explored issue. Finally, correlation across sets of local coefficient
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estimates may be due to the fact the data-generating processes that are represented by the true

local coefficients may themselves be correlated.

Spatial autocorrelation within a set of GWR coefficient estimates may be caused by the

smoothing nature of the continuous kernel functions used. However, it is possible to explain

much of the spatial autocorrelation observed in GWR parameter estimates as desirable proper-

ties and not as undesirable properties. The essence of GWR is to leverage Tobler’s first law of

geography, which states that nearer things will be more related, such that autocorrelated data

can been seen as the product of autocorrelated processes, which are represented by spatially

autocorrelated model coefficients. Hence, there is nothing inherently wrong with spatial auto-

correlation among estimated local coefficients.

An eigenvector spatial-filter-based local regression (SFLR) has been suggested (Griffith

2008) as an alternative to GWR to reduce or remove multicollinearity effects described by

Wheeler and Tiefelsdorf (2005). This technique creates synthetic variables by interacting the

explanatory variables with the eigenvectors of a spatial weight matrix. A subset of the synthetic

variables is then selected using a stepwise regression procedure, whereby local coefficients can

be obtained by combining the global explanatory variable coefficients with the coefficients for

the selected interaction terms that correspond to each explanatory variable. The SFLR tech-

nique is touted as superior to GWR in one empirical application in that it accounts for more

autocorrelation in the residuals, produces less spatial autocorrelation within sets of coefficients,

and displays less multicollinearity across sets of location-specific coefficients (Griffith 2008).

However, the true properties of the local coefficients were unknown and without knowledge of

the true local coefficients it is impossible to claim superiority of one technique over another by

comparing predicted coefficients. In addition, it is alarming that GWR and SFLR, which are

claimed to be approximately equivalent methods, seemingly produce contrasting coefficient

estimate values (Griffith 2008). The SFLR method has been applied infrequently (Griffith

2008), while GWR has produced agreeable results in many studies. Therefore, the primarily

goal of this article is to explore this incongruence by employing simulated data in order to test

which of the techniques can more reliably estimate the true coefficients of nonstationary pro-

cesses. The results of the two approaches are compared with particular attention to the levels of

correlation within and between the true coefficient surfaces and the estimated coefficient surfa-

ces. An alternative computational routine is then investigated which illuminates the true rela-

tionship between the GWR and SFLR frameworks. Furthermore, several issues of

generalizability and replicability of the SFLR framework are discussed.

Background

Geographically weighted regression

A basic GWR model may be specified as

yi5bi01
Xp

k51

bikxik1ei; i51; . . . ; n; (1)

where yi is the dependent variable at location i, bi0 is the intercept coefficient at location i, xik

is the kth explanatory variable at location i, bik is the kth local regression coefficient for the kth

explanatory variable at location i, and ei is the random error term associated with location i.
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Using a weighted least squares estimation routine, this specification produces a set of coeffi-

cients for each explanatory variable at every location. In matrix form this is given by

b̂ðiÞ5½X0WðiÞX�21X0WðiÞy (2)

where X is a matrix of explanatory variables, WðiÞ5diag½w1ðiÞ; . . . ;wnðiÞ� is the diagonal

weights matrix that weights each observation based on its distance from location i, b̂ðiÞ is a

vector of coefficients, y is a vector of observations of the dependent variable, and 0 denotes the

matrix transpose operation. A kernel function is applied to the distances between observations

and calibration locations to calculate the weights matrix. The bi-square function is a common

kernel function for placing emphasis on observations that are closer in space to calibrations

points and is given by

wjðiÞ5
½12ðdij

b Þ
2�2; if j 2 fNig;

0; if j =2fNig

(
(3)

where dij is the distance between i and j, b is the distance to the Nth nearest neighbor, and fNig
is the set of all observations that are no more than b distance from i. An observation at location

i would have a weight of 1 whereas those observations which are farther than distance d will

have a weight of zero. Prior to fitting a GWR model, an optimal number of number of nearest

neighbors must be selected, which in turn defines b in the above bi-square kernel, also called

the bandwidth. We opt to use an AIC minimization routine to select the kernel bandwidth

throughout this research as it provides a useful trade-off between goodness-of-fit and degrees

of freedom or model complexity (Fotheringham, Brunsdon, and Charlton 2002). A GWR-

specific AIC is calculated as

AICc52nlog eðr̂Þ1nlog eð2pÞ1n
n1trðSÞ

n222trðSÞ

� �
(4)

with n denoting the sample size, r̂ defined as the standard deviation of the error term, and

trðSÞ being the trace of the hat matrix. After the bandwidth is selected, the weights can be com-

puted using equation (3) and finally, the GWR model can be fitted at each calibration location

using equation (2) to obtain a set of local coefficients. An overall R2 for a GWR model can be

obtained by taking the average of the local R2 values for each calibration location.

Spatial-filter-based local regression

Eigenvector spatial filters are based on the interpretation that the eigenvectors of a modified

connectivity matrix are the set of possible orthogonal and uncorrelated map patterns (i.e.,

degree of spatial autocorrelation) (Griffith 1996, 2011). Further, the first eigenvector, E1, is the

set of real numbers that produces the map pattern with the largest achievable Moran’s I correla-

tion coefficient (MC), the second eigenvector, E2, is the set of real numbers that produces the

map pattern with the largest achievable MC while remaining uncorrelated with E1, and contin-

ues on such that En, achieves the largest negative MC and is uncorrelated with the preceding

ðn21Þ eigenvectors. The modified connectivity matrix,1 W, is most frequently defined as
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ðI2110=nÞCnðI2110=nÞ (5)

where I is an n 3 n identity matrix, 1 is an n31 vector of 10s, and Cn is the original binary con-

nectivity matrix for n mutually exclusive and exhaustive spatial units that partition the study

space.

By selecting a subset of the eigenvectors derived from W and creating a linear combina-

tion, it is possible to produce a synthetic variable that accounts for spatial autocorrelation in the

residuals, which can be incorporated into a linear regression model as

y5b011
XP

p51

Xpbp1
XK

k51

EkbEk
1e (6)

where the first two terms give a traditional linear regression specification (i.e., the intercept and

a combination of coefficient and explanatory variable pairs), and the third term represents the

spatial filter. Here, Ek is a potential eigenvector in the total set of K selected eigenvectors. Grif-

fith posits that the specification in (6) should also include an interaction term between each

explanatory variable and each selected eigenvector in order to create local coefficients. He fur-

ther postulates that adding the new terms will provide a specification that is approximately

equal to a GWR model such that

ŷgwr � ðb011
XK0

k051

Ek0
bk0
Þ1
XP

p51

ðbp11
XKp

kp51

Ekp
bkp
Þ � Xp1e (7)

where ŷ is the vector of predicted values of a GWR model, � denotes element-wise matrix mul-

tiplication (i.e., Hadamard matrix multiplication), and kp represents an eigenvector from the set

of Kp eigenvectors that describe explanatory variable p. According to Griffith (2008), when the

first and third term in (6) are combined in (7) they become the GWR intercept coefficients,

which will be explored in more detail in subsequent sections. Finally, by distributing the Xp

across their premultiplied sums in equation (7) and re-arranging the terms, the following speci-

fication is achieved

y5b011
XP

p51

Xp � 1bp1
XK

k51

EkbEk
1
XP

p51

XK

k51

Xp � EkbpEk
1e (8)

where the first term is the regression intercept, the second term represents the explanatory vari-

ables with their global coefficients, and the third and fourth terms denote the global eigenvec-

tors and the interaction terms between explanatory variables and eigenvectors, respectively.

Importantly, the global explanatory variables are required in this specification in order to con-

struct the interaction terms, which ultimately allow the construction of local coefficients. Once

eigenvectors and interaction terms are selected and equation (8) is estimated, the local coeffi-

cients for each explanatory variable can be obtained through an additive combination of the

coefficient associated with each global explanatory variable, p and those coefficients associated

with the interaction terms based on the corresponding global explanatory variable, unlike the

GWR framework. However, it is not clear how hypothesis testing regarding local coefficients

from spatial filtering is performed, nor how a correction for multiple hypothesis testing can be

applied.
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An important step in the spatial-filter-based framework is selecting a subset of the eigen-

vectors and interaction terms. The methodology entails a forward stepwise regression variable

selection algorithm among all interaction terms and global eigenvectors based on statistical sig-

nificance. To begin, only eigenvectors displaying moderate to high spatial autocorrelation (i.e.,

Moran’s I coefficient (MC) approximately greater than 0.25) are selected. Then, for each itera-

tion of the stepwise routine, each candidate variable is tested in the model. The variable that

produces the smallest P-value is selected, and if any other variables become insignificant (P-

value greater than 0.1), they are removed from the model. The algorithm continues until no var-

iable can be added to the model that also produces an associated P-value of less than 0.1001, at

which point the routine terminates and the local coefficients can be processed (Griffith 2008).

In a later section, this specification is compared to two alternative mean-square-error-

minimization (MSE) selection variations of this stepwise selection routine developed as part of

this research.

Simulating nonstationarity and multicollinearity

Two processes were used to simulate data with known properties in order to reliably compare

local modeling methods. Process (I) relies on neither the GWR or SFLR specification while

process (II) explicitly relies on the SFLR specification.

Agnostic simulated data—process I

To begin, 2,500 observations were generated for the cells of a 50 by 50 grid, where each cell is

considered a spatial unit. The observations within the cells were generated using the following

equation

Yi5b0i1b1iX1i1b2iX2i1ei (9)

where Y is the generated observation, b0, b1, and b2 are known locally varying coefficients, X1

and X2 are variables drawn from random normal distributions (mean of 50 and variance of 75),

e is a random normal error term (mean of 0 and variance of 15), and i is the index for each of

the 2,500 locations. The spatial distributions of b0, b1, and b2 for process I are illustrated in

Fig. 1. b0 has a gradual regional trend, with values generally increasing from the north–west to

the south–east; b1 is distributed in a checker-board manner generally with the lowest values in

the north–west, higher values in the south–east, and medium values in the north–east and

south–west; and b2 is also distributed with a checker-board pattern but a more complex one,

where smaller values form a cross and larger values are found in each of the four corners. b1

and b2 were derived by sampling from different multivariate normal distributions depending

on discrete localities. These surfaces were then smoothed using a uniform filter to remove rigid

boundaries between locales and subsequently resampled from a normal distribution with the

smoothed value as the mean and the original locale-specific variance in order to generate the

speckled patterns observed in Fig. 1. Since these surfaces are based on local processes, they

result in MC values that signify very strong spatial autocorrelation (0.982, 0.947, and 0.912 for

b0, b1, and b2, respectively).2 There is strong correlation between b0 and b1 (Pearson’s

r 5 0.88), though there is virtually no correlation among b0 and b2 or b1 and b2 (Pearson’s

r< 0.1). Moderate collinearity between X1 and X2 was generated using the formula
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X25r � X11
ffiffiffiffiffiffiffiffiffiffiffi
12r2
p

� X2 (10)

where r is the approximate level of correlation desired between X1 and X2 and was specified at

0.5 to created the observed values denoted by Yi. Even though this simulated data set is not

based upon either GWR or SFLR, it is impossible to know if the data may favor one of the

specifications over the other. Therefore, a second set of simulated data is generated that is in

accordance with the SFLR methodology, and is, therefore, certainly not biased against the

SFLR methodology. This removes any potential ambiguity from whether or not the observed

results are due to the methodology or from an unfavorable data-generating process.

Figure 1. Simulated coefficient surfaces generated using normally distributed random varia-

bles for process I (left) and process II (right). b0 represents the coefficients associated with

the intercept, while b1 and b2 represent the coefficients associated with the simulated

explanatory variables X1 and X2, respectively. Low coefficient values are shaded lighter

while high values are shaded darker.
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SFLR-based simulated data—process II

The same 50 by 50 tessellation was used to derive a first order binary contiguity spatial weight

matrix, which was then transformed according to equation (5) and subsequently decomposed

into eigenvalues and corresponding eigenvectors. Observations were then generated using a

simplified version of equation (8) where one eigenvector was selected to interact with each of

the variables. This yields the following formula

Yi5b01X1ib11X2ib21E2ibE2
1ðX1iE3iÞbE1;3

1ðX2iE10iÞbE2;10
1ei (11)

where X1, X2, and ei are as defined in process I, E2i; E3i, and E10i are the eigenvectors associ-

ated with eigenvalues 2, 3, and 10, and b0, b1, b2, bE2
; bE1;3

; bE2;10
are scalar coefficients given

by 10, 0.5, 0.6, 2200.0, 210.0, and 10.0, respectively. The first three terms of equation (11)

are the main effects that form a basic global regression, while the second three terms are inter-

action terms that allow spatially local deviations from the global model. Summing the global

coefficients from each of the main effects with any associated coefficients from an interaction

term multiplied by its corresponding eigenvectors yields local coefficient surfaces (Fig. 1).

Coefficient values and eigenvectors were chosen by trial and error in order to create surfaces

which were similar in their general pattern and magnitude to those from process I. It should be

noted that these coefficient surfaces for process II are smooth by nature, unlike those from pro-

cess I, which is evident in their higher MC values of 1.016, 1.013, and 1.003 for b0, b1, and b2,

respectively. Since the coefficients are derived from eigenvectors that are orthogonal, it follows

that there is no correlation between any of the three coefficient surfaces for process II.

Exploring the spatial-filter-based local regression framework

Since there is no existing software for carrying out the SFLR method, custom code was devel-

oped.3 SFLR models were then calibrated using data from process I and process II, where the

candidate eigenvector terms were limited to the first 750 eigenvectors and their interaction

with each of the explanatory variables, X1 and X2, for a total set of 2, 225 synthetic variable

candidates. A cut-off of the first 750 eigenvectors was chosen because these eigenvectors

showed moderate to high levels of positive spatial autocorrelation (MC greater than 0.25),

which approximately corresponds to the original methodology (Griffith 2008). A subset of the

candidates was selected using Griffith’s (2008) forward stepwise routine, whereby model fit

statistics (adjusted R2 and AIC) and accuracy statistics (MSE of b̂1 and b̂2 ) were collected at

each iteration of the algorithm.

Overall, the SFLR results for process I and process II (Fig. 2) show similar trends where

model fit increases with more iterations. More specifically, the model fit in terms of both

adjusted R2 and AIC for both sets of variables increases rapidly at first, as the number of itera-

tions increases, but then levels off, showing only modest gains for additional iterations. Inter-

estingly, the MSE associated with the local estimated coefficient surfaces quickly reaches a

minimum before increasing as more model terms are selected at higher iterations. This trend is

less apparent for process II where the minimum MSE is reached within the first few iterations,

though in both cases this implies that as model fit increases the accuracy of the coefficients

decreases. It should be noted that while the SLFR model for process II terminated after 350

iterations (315 selected candidates, implying 37 selected terms were removed from the model

after becoming insignificant), the SFLR model for process I did not terminate naturally.
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Instead, the routine stopped after 405 iterations (355 selected candidates with 50 being

removed for insignificance) due to the inability of the regression calibration to converge to a

solution for the coefficient estimates.4

The local b1 and b2 coefficients estimated for both process I and process II (Fig. 3) display

similar spatial distributions in which the overall patterns of the known coefficients are discern-

ible, though they are obfuscated by what appears to be random perturbations. This is especially

striking for the coefficient estimates from process II because the true coefficients are known to

be smooth. An important effect of this is that the local coefficient estimate distributions are all

wider than the corresponding known coefficients, often with negative coefficient estimates

where none should exist. This signals that the noisy pattern that is observed is likely due to

overfitting. Essentially, the model fit is increased at the expense of coefficient accuracy and

considerable computation time.

Figure 2. Adjusted R-squared, AIC, and MSE for b̂1 and b̂2 estimated via SFLR for various

numbers of stepwise regression iterations for both process I and process II.
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Comparing geographically weighted regression and spatial-filter-based
local regression

Griffith (2008, 2,768) claims that the SFLR framework is superior to GWR because the esti-

mated coefficients from SFLR “remain unbiased, yield a better global model fit, are polluted

with considerably lower levels of spatial autocorrelation, and, for the most part, display little

relationship to the GWR coefficients.” Of note is that these conclusions are reached without

using known coefficients to assess the results and are drawn based on only a single example.

That means that it is simply not possible to comment on the appropriate level of spatial auto-

correlation to expect in the coefficient estimates, on whether or not the coefficient estimates are

unbiased, or on which of the methods produces more accurate coefficient estimates. Therefore,

we provide a comparison of the ability of SLFR and GWR frameworks to replicate local

parameters, where the true values are known.

A GWR model was calibrated using a bi-square nearest neighbor bandwidth by minimiz-

ing the AICc measure given in (4) for both process I and process II. The resulting coefficient

estimates are presented in Fig. 4. It is apparent that the surfaces of GWR coefficient estimates

are similar to those of the known coefficients. This is further demonstrated in Fig. 5, which

shows a strong linear correlation between the GWR coefficient estimates and the known values

for both processes showing that GWR satisfactorily replicates the known local coefficients. Of

course, the GWR model results are not perfect. The coefficient estimate surfaces for process I

are more smooth than the known coefficients while the coefficient estimates for process II are

slightly less smooth than the known coefficients. Despite this, the GWR coefficient estimates

(Fig. 5) for both processes show stronger linear relationships with the known coefficients than

the SFLR coefficient estimates.

Figure 3. Known coefficients and estimated coefficients using SFLR for process I and

process II. Low coefficient values are shaded lighter while high values are shaded darker.
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The GWR coefficient estimates and the SFLR coefficient estimates from the previous sec-

tion are compared in Fig. 6, whereby Griffith’s postulation that the two methods produce differ-

ent results is not supported. The local coefficient estimates for b1 and b2 from both methods

are clearly positively correlated for both process I and process II. The b0 estimates have much

less of a trend for both processes, but this is expected since the error structure for GWR and

SFLR are inherently different. A similar conclusion is reached by comparing the MSE values

of the estimated coefficient surfaces (Table 1), where GWR consistently achieves more accu-

rate coefficient estimates (i.e., lower MSE values) than SFLR for both process I and process II.

The SFLR methodology does produce lower levels of spatial autocorrelation among the esti-

mated parameter surfaces and better model fit, as Griffith (2008) claimed, though this is

because of overfitting and should be seen as undesirable properties of the model. Clearly, these

lower levels of spatial autocorrelation are departures from the known coefficients. The spatial

autocorrelation as indicated by the MC values for the GWR estimates are consistently closer to

the known values than for the SFLR estimates.

One final observation is the Pearson’s correlation coefficients between coefficient estimate

surfaces (Table 1). For GWR, these are all as expected with strong correlation between b0 and

b1 for process I and very low correlation between all other coefficient surfaces. For SFLR, the

correlation coefficients are all as expected, except rðb̂0; b̂1Þ50:14 for process I, which is sub-

stantially lower than its true value of 0.88. This indicates that it may not necessarily be desir-

able to always have coefficient surfaces that display less correlation between themselves and is

a potential drawback to SFLR. In practical applications, it is possible to employ local correla-

tion coefficients to explore potential spatial variation of correlation between coefficient esti-

mates (Wheeler 2007), though this does not necessarily indicate whether variation is naturally

occurring or due to other factors.

Figure 4. Known coefficients and estimated coefficients using GWR for process I and pro-

cess II. Low coefficient values are shaded lighter while high values are shaded darker.
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Optimal stepwise routines for spatial-filter-based local regressions

Given the results showing that the original SFLR routine hits minimum MSE values well

before the significance-based stepwise routine terminates, two new stepwise routines which

incorporate a MSE-minimization criterion are now introduced to explore what the results

would look like if the SFLR methodology was accurately replicating the coefficient surfaces.

In the first routine (A), the variable that achieves the lowest additive MSE between b̂1 and b̂2

Figure 5. Scatter plots of GWR and SFLR coefficient estimates for process I and process II

against corresponding known coefficient values.
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is selected at each iteration. The algorithm continues until no further reduction in MSE can be

achieved5. In contrast, the second routine (B) selects the variable with the lowest P-value, simi-

lar to the original routine, though the algorithm is terminated when new variables no longer

decrease the MSE, similarly to algorithm one. In both new algorithms, variables that become

insignificant (i.e., P-value greater than 0.1001) at each iteration are still removed.

Each algorithm was used to carry out the estimation of a model for process I and process II

to assess the results and compare them to GWR. Figs. 7 and 8 provide the resulting estimated

coefficient surfaces alongside their respective known coefficient surfaces. It is clear that these

surfaces are much more representative of the spatial patterns associated with the known coeffi-

cient surfaces than those from the original SFLR routine. Unsurprisingly, the MSE-minimizing

SFLR algorithms almost perfectly reproduce the known coefficients for process II, which are

generated using an SFLR specification. The only exception is a small amount of noise in algo-

rithm A where it appears that the spatially patterned b2 has been confounded with the random

error inherent in the data. This may occur because in SFLR the error term is specified globally

in conjunction with the mean effect of each explanatory variable. In contrast, a GWR model

assumes a global error term, although in practice it utilizes an independent error term for each

estimation location. The superiority of the MSE-minimizing algorithms are supported in Fig. 9,

which indicates a stronger linear trend between the estimated coefficients from both new algo-

rithms and the known coefficients than there is between the estimated coefficients from the

original SFLR algorithm and the known coefficients (Fig. 5). Again, it is not surprising that

there is a perfect linear trend for the majority of the scatter plots for the MSE-minimized SFLR

coefficient estimates and similar results would be expected for GWR if the data were simulated

Figure 6. Scatter plots of SFLR coefficient estimates against the GWR coefficient estimates

for process I and process II.
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Figure 7. Known coefficients and coefficients estimated using MSE-minimizing SFLR

algorithm A for process I and process II. Low coefficient values are shaded lighter while

high values are shaded darker.

Figure 8. Known coefficients and coefficients estimated using MSE-minimizing SFLR

algorithm B for process I and process II. Low coefficient values are shaded lighter while

high values are shaded darker.
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Figure 9. Scatter plots of MSE-minimized SFLR coefficient estimates against known

coefficients for algorithm A and B on process I and process II.
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using an explicit GWR specification. Interestingly, both SFLR-A and SFLR-B create “ribbons”

in the coefficient estimated for b0, which is theorized to be a problematic feature of GWR

indicative of multicollinearity issues by Wheeler and Tiefelsdorf (2005). In contrast, Fothering-

ham and Oshan (2016) suggest these patterns are due to spatial patterns inherent in the true

coefficients and this study provides additional evidence toward this hypothesis and extends it

to show that it is can occur irrespective of the local modeling method being used.

Another unexpected outcome is that the new MSE-minimizing algorithms produce coeffi-

cient estimate surfaces that are smoother than the originally proposed SFLR algorithm. The

coefficient estimate surfaces for process II are generally as smooth as the known coefficient

surfaces, while the coefficient estimate surface for process I are more smooth than the known

coefficient surfaces, which is similar to the results from GWR (Fig. 4). This is corroborated by

the linear trends between the MSE-minimized SFLR coefficient estimates and the GWR coeffi-

cient estimates (Fig. 10). The only exception to this pattern of smooth surfaces is the coefficient

estimate surface for b2 for process II using SFLR-A, though this textured pattern indicates a

deviation from the known coefficients and is, therefore, undesirable.

Overall, the model fit, coefficient accuracy, and spatial autocorrelation statistics (Table 2)

from the SFLR coefficients using the MSE-minimized stepwise selection routines are all simi-

lar to those produced by GWR. The optimal values for these metrics are varied across different

models, data sets, and selection routines. Therefore, it is likely that when an MSE-minimizing

algorithm, or one that approximates it, is used, then SFLR and GWR produce similar results.

Finally, according to Table 2, both GWR and MSE-minimizing SFLR yield coefficient esti-

mate surfaces with similar levels of between-set correlation. For process I, little to no correla-

tion exists between the estimated coefficient surfaces between b0 and b2 and b1 and b2 for any

of the models. In addition, high correlation is maintained between b0 and b1 across the models,

though the correlation is generally underestimated rather than overestimated. For process II,

the estimated coefficient surfaces for all of the models maintain that there is virtually no corre-

lation between any of the coefficient estimate surfaces.

Issues with the spatial-filter-based methodology

These new results strongly indicate that the original SFLR method is prone to overfitting. This

observation mirrors additional results where the SFLR method was tested using an AIC selec-

tion criterion within a genetic algorithm optimization framework (Helbich and Griffith 2016).

Though SFLR achieved a very low in-sample prediction error in this study, its out-of-sample

prediction error was very high, which is another indicator of overfitting. Therefore, overfitting

appears to be a general problem of the SFLR method that is not particular to the simulated data

used here and raises the important question, “why is the spatial-filter-based regression method

prone to overfitting?”.

Adding interaction terms to a linear model, as in SFLR, and local regression, such as

GWR, are both more flexible than a basic linear model because they can approximate more

complex relationships. More flexible models are known to be more susceptible to overfitting,

especially for higher dimensional model data sets (i.e., when there are a large number of varia-

bles). Increasing the dimensionality typically increases the chance of overfitting because there

are more opportunities for one or more of the dimensions to be statistically significant by ran-

dom chance even though they may actually just be “noise” (Gareth et al. 2013). For example, if

an additional interaction term increases the model fit even slightly, then the SFLR method may
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select it despite the errors that could be induced in the local coefficients. Therefore, a solution

to the overfitting issue might be obtained by either reducing the dimensionality or restricting

the structure of the model to be less flexible.

A simple method for decreasing the dimensionality might be to decrease the number of

interaction terms. The SFLR method only arbitrarily filters the interaction terms to include

those eigenvectors that have moderate-to-high spatial autocorrelation. The cut-off for

Figure 10. Scatter plots of MSE-minimized SFLR coefficient estimates against GWR

coefficient estimates for algorithm A and B on process I and process II.
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eigenvector selection used in this research was a Moran’s I correlation coefficient value of 0.25

or greater, which roughly corresponds to the value used in the initial SFLR application (Griffith

2008). Certainly, a different cut-off could be used, though if this is an important aspect of the

SFLR method, it will likely vary for different spatial systems because each system will yield a

different set of eigenvectors. For instance, as the number of spatial units, n increases, so does

the number of eigenvectors and hence, so does the number of interaction terms, p. This is prob-

lematic because when there is more than one explanatory variable, p will always grow faster

than n, guaranteeing very high dimensionality, unless a substantially reduced set of the eigen-

vectors are selected. However, it seems unwarranted that SFLR essentially filters the data

twice. First to subset the pool of eigenvectors and then subsequently to select an even smaller

subset of interaction terms. Rather, an alternative method for reducing dimensionality may be

to employ a method that progressively narrows the entire candidate pool of interaction terms

based on an exogenous factor. For example, restricted regression, which limits new variables to

those that are orthogonal to previously included explanatory variables (Hodges and Reich

2010), may offer an efficient strategy for reducing the dimensionality.

SFLR could also potentially be made less prone to overfitting by enforcing a “strong hier-

archy” structure. The interaction terms in SFLR have a hierarchical structure where the interac-

tion effects are interpreted as local deviations from main effects. Despite this, SFLR currently

requires that only the explanatory variables be forced into the model as main effects and not

the corresponding eigenvectors. It is well known that interaction terms should be based on

main effects, therefore, a method that enforces this hierarchy, which has been developed in a

LASSO framework, could be useful for the SFLR methodology (Bien, Taylor, and Tibshirani

2013).

Using a selection criterion that can better balance model fit and model complexity would

certainly be beneficial for the SFLR method. One way of doing this has been demonstrated that

considers the mean square error of the local coefficients. However, this method is not practical

for applied work, since we generally do not know what the true coefficients are and therefore

cannot compute the mean square error between the true coefficients and the coefficient esti-

mates. In GWR there is the AICc, which penalizes the fit statistic based on the effective

degrees of freedom and is expected to be larger than the degrees of freedom for a correspond-

ing global model. SFLR may benefit from a similar correction.

Another serious issue of the SFLR framework is that of replicability. Since eigenvectors

are not necessarily unique to eigenvalues, different algorithms may produce different eigenvec-

tors so it is necessary to be aware of which software was employed for a given study. One

example of this limitation was discovered first hand when trying to validate the SFLR method-

ology. Two different algorithms for extracting eigenvectors produced eigenvectors with oppo-

site signs. While these are equivalent and do not effect the stepwise regression routine, it may

affect future researchers’ ability to reproduce results if they are unaware of this issue. More

seriously, when testing the methodology on another data set not reported here, some of the

eigenvectors were completely different depending on whether R or Python code was used,

which can lead to different results.

Finally, there is the issue of regression diagnostics and hypothesis testing. While GWR

extends diagnostics found in global models, no such extensions have yet been produced for the

SFLR method. In particular, it is unclear how a significance test for a local parameter estimate

from SFLR may be computed or how one can deal with the issue of multiple hypothesis testing,

which has been addressed in GWR (da Silva and Fotheringham 2015). A significance test
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customized for the SFLR method will be necessary in order to evaluate the robustness of the

estimated coefficients produced by the method.

Conclusion

In its original conception, SFLR does not appear to produce superior results to GWR. Using

Griffith’s (2008) stepwise selection routine results in overfitted models where there is a severe

loss of estimated coefficient accuracy in return for modest gains in model fit and inaccurately

low levels of spatial autocorrelation. For the simulated data presented in this research, GWR is

able to better capture the non-stationarity in local parameter estimates, and more accurately

replicate the known coefficients when compared to Griffith’s SFLR framework. Furthermore,

GWR does so in a fraction of the time. Despite, Griffith’s claim that SFLR and GWR produce

substantially different outputs, the two sets of local parameter estimates are generally similar,

albeit that the SFLR ones are generally not as accurate. This discrepancy seems to be due to an

inherent flaw in the original SFLR methodology that causes overfitting and can require lengthy

compute times of up to several days on a standard notebook computer.

It turns out that the SFLR framework can be approximately equivalent to GWR, however,

when a MSE-minimizing stepwise selection routine is employed to select a subset of candidate

synthetic variables. By doing so, the SFLR framework then produces local coefficient estimates

that are similar to those from GWR in magnitude, overall accuracy, spatial autocorrelation, and

that yield a similar model fit. The computing time is also drastically reduced from days to only

minutes, which is comparable to GWR. It seems then that the SFLR framework can provide a

sort of discrete spatial weighting mechanism in the form of a subset of eigenvectors and inter-

action terms, somewhat akin to GWR’s continuously defined spatial weighting mechanism.

However, GWR’s spatial weighting mechanism produces a parameter representative of the

scale at which processes occur and no such feature is available through the SFLR method.

Given the potential of both GWR and SFLR to produce such similar results, this provides

strong evidence that there is no a priori disadvantage to displaying spatial autocorrelation

within a local coefficient surface or multicollinearity between surfaces. Even where local coef-

ficient estimates may be artificially smoothed, such as in GWR, it does not necessarily greatly

impact their accuracy. Further explorations of these conclusions are needed using simulated

coefficients from different types of local processes that arise from more complex spatial

relationships.

The analysis in this article has demonstrated the importance of differentiating between dif-

ferent types and sources of collinearity. In the case of SFLR, a narrow view of collinearity

made it difficult to notice that the method could be severely susceptible to overfitting. Future

investigations of local modeling techniques should be sure to more clearly define collinearity,

why it arises, and how it effects different aspects of the modeling framework. It is possible that

SFLR may be useful when the sample size is small and there is very high multicollinearity or

there are very influential outliers. However, this will remain unknown unless the issue of over-

fitting can be remedied, perhaps with some of the suggestions proposed in this article. Despite

the encouraging results using the MSE minimization criterion, we typically do not have access

to the true coefficients that are needed to compute the MSE, so this criterion is only useful for

theoretical work. Therefore, until SFLR can be specified with a feasible selection criterion that

is robust to overfitting, it is not a viable framework for applied research, whereas GWR remains

an effective method for capturing nonstationarity.
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Notes

1 While equation (5) is the most commonly found transformed connectivity matrix, others have been

defined (Tiefelsdorf and Griffith 2007) and employed (Chun 2008). In addition, C may be standardized

using coding schemes, such as the W-coding scheme, which is also known as the row-sum standardiza-

tion (Boots 1999).

2 For all MC values reported throughout this article, the null hypothesis that there is no spatial autocorre-

lation could be rejected based on significance tests using random permutations. The resulting z-scores

were always greater than 50.

3 Validation of the routine was carried out by replicating the results presented in Griffith (2008) using the

Georiga data set originally described by Fotheringham, Brunsdon, and Charlton (2002). Code was writ-

ten in the Python programming language (version 2.7) using the numerical computation libraries,

numpy (version 1.11.1) and scipy (0.18.0).

4 To be exact, it was the singular value decomposition operation that could not converge, which underlies

the ordinary least squares solver in the statsmodels package of the Python programming language.

5 The algorithm terminates after two iterations without a reduction in the MSE, which helps reduce the

chance of getting stuck in a local minimum, but does not guarantee a global minimum.
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