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Principal components analysis (PCA) is a widely used technique in the social and
physical sciences. However in spatial applications, standard PCA is frequently applied
without any adaptation that accounts for important spatial effects. Such a naive applica-
tion can be problematic as such effects often provide a more complete understanding of
a given process. In this respect, standard PCA can be (a) replaced with a geographically
weighted PCA (GWPCA), when we want to account for a certain spatial heterogeneity;
(b) adapted to account for spatial autocorrelation in the spatial process; or (c) adapted
with a specification that represents a mixture of both (a) and (b). In this article, we focus
on implementation issues concerning the calibration, testing, interpretation and visual-
isation of the location-specific principal components from GWPCA. Here we initially
consider the basics of (global) principal components, then consider the development
of a locally weighted PCA (for the exploration of local subsets in attribute-space) and
finally GWPCA. As an illustration of the use of GWPCA (with respect to the imple-
mentation issues we investigate), we apply this technique to a study of social structure
in Greater Dublin, Ireland.
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1. Introduction

Principal components analysis (PCA) is a widely used technique in the social and physical
sciences. Originally developed by Pearson (1901), the details of extracting components for
a data matrix and their interpretation were presented in Hotelling (1933). Of the many uses
and applications of PCA, the following list of eight by Jeffers (1967) illustrates some of
the more common ones:

(1) examination of the correlations between variables of a selected set;
(2) elimination of variables that contribute relatively little information;
(3) examination of the grouping of individuals in n-dimensional space;
(4) determination of the weighting of variables in the construction of indices;
(5) allocation of individuals to previously demarcated groups;
(6) recognition of misidentified individuals;
(7) orthogonalisation of regression calculations; and
(8) reduction of the basic dimensions of variability in the measured set.
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With respect to (7), principal components provide variables that do not exhibit
collinearity, and variable-specific regression parameter estimates may be obtained from
the component-specific estimates and the inverse of the associated loadings (Joliffe 1982).
With respect to (8), the analyst may retain components accounting for, perhaps, 75% of the
original variance or only those components with an eigenvalue greater than unity. In many
areas of the social sciences, some interpretation of the components is frequently attempted
as they can be thought of as new variables or indices, whose character reflects those of the
constituent variables with the highest loadings. This usually begins with the component
with the largest eigenvalue and is not attempted for any component with an eigenvalue
less than unity. Component scores have been used in demographic classification systems
(Charlton et al. 1985) or as the basis for measures of deprivation (Kelly and Teljeur 2007).

In this study, we are concerned with spatial applications where a standard PCA is
replaced with a spatial variant. For spatial problems, there are a host of applications; and
according to Gould (1967) these include

(a) measures of terrain roughness;
(b) the varying spatial nature in the connectivity of towns;
(c) orientations of physical features and transport networks;
(d) characteristics of mean information fields (Hägerstrand 1967);
(e) classification;
(f) homogeneity of architectural features;
(g) measures of residential desirability; and
(h) the interpretation of mental maps.

Applications of PCA to ever more diverse geographical problems is somewhat typified
by the recent work of Reades et al. (2009), where the space-time structure of a mobile
phone network is modelled.

Many applications ignore any spatial characteristics in the data and simply apply a
standard (aspatial) PCA. However, such effects are often vital to a more complete under-
standing of a given process and here PCA can be replaced with geographically weighted
PCA (GWPCA) (Fotheringham et al. 2002, pp. 196–202) when we want to account for a
certain spatial heterogeneity. Alternatively, PCA can be adapted to account for spatial auto-
correlation in the spatial process (Jombart et al. 2008); and a natural extension would be to
adapt this spatial PCA technique locally to provide a local spatial autocorrelation GWPCA
hybrid. In this article, we focus on the former variant, where we examine some problems
concerning the specification and interpretation of a GWPCA. We first consider the basics
of (global or standard) principal components, the development of locally weighted PCA
(LWPCA) in the exploration of local subsets in attribute-space and finally GWPCA in the
exploration of local subsets in geographic-space. As an illustration of the use and interpre-
tation of GWPCA, we use as a case study a data set containing some indicators of social
structure in Greater Dublin, Ireland.

The only known application of GWPCA beyond the original work of Fotheringham
et al. (2002) is provided by Lloyd’s (2010) study of population characteristics in Northern
Ireland, where a call is made for more research into the visualisation of the output of
GWPCA, so that the merits of the technique can be more fully realised. We examine the
ways of addressing this and other aspects of the GWPCA methodology and, in doing so,
provide an introduction to a more extensive body of work on this subject. In particular,
we investigate GWPCA issues of (1) calibration, (2) testing, (3) interpretation and (4)
visualisation. In addition, we consider the potential use of GWPCA with respect to an
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investigation of collinearity in the geographically weighted regression (GWR) model. All
study algorithms were developed within the R statistical computing environment (Ihaka
and Gentleman 1996).

2. Methods: from PCA to LWPCA to GWPCA

2.1. Principal components analysis

Given a data matrix X with n rows representing the observations and m columns repre-
senting the variables, the variance–covariance matrix � is m × m with the variances in
the leading diagonal and the covariances in the off-diagonal elements. The trace of � is
the total variance in the data. If the columns in X are standardised with zero mean and
unit variance, the values in � will be those in the correlation matrix for X with its trace
equivalent to the number of columns in X. A standard result in linear algebra states that

LVLT = R (1)

where V is a diagonal matrix of eigenvalues, L is a matrix of eigenvectors and the matrix
R is symmetric and positive definite. If R is a correlation or variance–covariance matrix
denoted by �, then the eigenvalues in V will represent the variances of the correspond-
ing principal components. The eigenvectors in L are column vectors and represent the
loadings of each variable on the corresponding principal component. It is usual to report
the results for the components in decreasing order of eigenvalue; the component with the
largest eigenvalue is that which has the largest variance. On dividing by tr(V), the eigen-
values can be reported as the proportion of variance accounted for by the corresponding
components. Component scores are found by post-multiplying the original data values X
by L; the correlation matrix for XL is an identity matrix. Component scores are thus a
linear combination of the original data values, and given the values of the scores and the
loadings, the original data values can be recovered by an inverse transformation.

We can conceive of the data matrix and its eigen-decomposition as representing a
global model of the covariance structure of the matrix. In spatial settings, the covariance
structure of the data is assumed to be constant across the spatial extent of the study area.
Thus, although the component scores may be mapped, the eigenvectors and their associ-
ated eigenvalues are spatially stationary or whole-map statistics in Openshaw et al.’s (1987)
terminology.

2.2. Locally weighted PCA

LWPCA provides a natural progression towards GWPCA as they are both similar in design.
The similarity is analogous to the association between locally weighted regression in
attribute-space (Cleveland 1979) and GWR (Brunsdon et al. 1996). Furthermore, just as
locally weighted regression can be used for geographical problems when the coordinate
data are used as attributes (or covariates), LWPCA, similarly calibrated with coordinate
data, also has numerous applications. For example, LWPCA can be used to detect edges and
other geometric features in LiDAR point clouds, where the weighting is applied directly to
the three-dimensional coordinate data.

For LWPCA, the homogeneity of the covariance (or correlation) structure is assumed
for those observations that are close to one another in attribute-space. Due to the effect of
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inter-variable correlation on the orthogonality of the raw data, inter-observation distances
may be measured using Mahalanobis distance DM, as follows:

DM (x1, x2) =
√

(x1 − x2)
T �−1 (x1 − x2) (2)

where x1 and x2 are multivariate vectors for two observations and � is the variance–
covariance matrix. A set of (local) principal components can be extracted for each
observation in X using either (i) the nearest observations within some Mahalanobis dis-
tance τ or (ii) the nearest k observations, as the (local) calibration data set. Here the
bandwidth (or controlling parameter), τ or k, is commonly referred to as fixed (by distance)
or adaptive (varying distance), respectively. In either form, the bandwidth may be (a) sup-
plied exogenously by the analyst or (b) estimated from the data through a minimisation of
the size of the scores of those components corresponding to lower eigenvalues, using either
a leave-one-out or a computationally simpler holdback (set-aside) method (analogous to
the GWPCA approach described in Section 4.1). Regardless of the form of bandwidth
specified, the local eigen-structure is

LiViL
T
i = �i (3)

with respect to the local subregion of the ith observation, and there will be n sets of
eigenvectors and their associated eigenvalues. The scores for the ith observation on the
m variables are those for the ith row in the matrix XiLi.

We have described LWPCA in its simplest form, where only a box-car kernel weighting
function is specified (for an adaptive bandwidth, the attribute-space weights wij accord
to wij = 1 if DMij ≤ τv and wij = 0 if DMij > τv, where DMij is the Mahalanobis distance
between observations at i and j; and where the Mahalanobis distance τv varies accordingly
to the bandwidth k). A more generalised description of LWPCA is possible when any kernel
function is specified, such as the distance-decay function specified with GWPCA in Section
2.3. Furthermore, LWPCA has the useful property that the eigenvalues and eigenvectors
can be estimated at unobserved data locations and not just the observed (sample) locations.
As with GWPCA, LWPCA defaults to the global PCA model, if a suitably large bandwidth
is specified (i.e. if k = n in this simple case).

2.3. Geographically weighted PCA

At some scale an assumption of multivariate normality is required for PCA, LWPCA and
GWPCA. For PCA this operational scale is global; for LWPCA it is local in attribute-
space; and for GWPCA it is local in geographic-space. Thus for GWPCA, a vector of
observed variables xi at spatial location i is assumed to have a multivariate normal dis-
tribution with mean vector μ and variance–covariance matrix �, that is, xi∼N(μ, �).
Furthermore, if spatial location i has coordinates (u, v), then PCA with local geographi-
cal effects involves regarding xi as conditional on u and v, and making μ and � functions
of u and v; thus xi |( u, v) ∼N (μ( u, v), �( u, v)). As μ and � are functions of u and v, this
implies that each element of μ(u, v) and �(u, v) is also a function of u and v. Therefore the
moments μ(u, v) and �(u, v) are the geographically weighted (GW) mean vector and the
GW variance–covariance matrix, respectively. To obtain the GW principal components,
the decomposition of the GW variance–covariance matrix provides the GW eigenval-
ues and GW eigenvectors. The product of the ith row of the data matrix with the GW
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eigenvectors for the ith location provides the ith row of GW component scores. The GW
variance–covariance matrix is

�(u, v) = XTW(u, v)X (4)

where W(u, v) is a diagonal matrix of geographic weights that can be generated using some
kernel function. In the case study, we use a bi-square function:

wij = (1 − (dij

/
r)2)2 if dij ≤ r ; wij = 0 otherwise (5)

where the bandwidth is the geographic distance r and dij is the distance between spatial
locations of the ith and jth rows in the data matrix x. As with any GW model, other kernel
shapes are also possible. The GW principal components for the location (ui, vi) can be
written as

LVLT |(ui, vi) = �(ui, vi) (6)

where �(ui, vi) is the GW variance–covariance matrix for location (ui, vi). In the remainder
of this article we refer to GWPCA as local PCA.

3. Case study: Greater Dublin social structure

The data set used in this empirical example is composed of eight variables that measure
characteristics of social structure in the 322 electoral divisions (EDs) forming Greater
Dublin, Ireland. These variables have previously been used in a study of voter turnout (VT)
in the Irish 2004 Dáil elections (Kavanagh 2006) in which the results from a GWR analysis
(with VT the dependent variable) suggested that there are distinct spatial variations in the
social structure of the population of Greater Dublin. GWPCA is used to further uncover
and interpret this spatial variation with respect to the independent variables of the same
regression study. The variables of interest are the percentage of the population in each ED
who are

(a) one-year migrants (i.e. moved to a different address 1 year ago) (Diff.Add);
(b) local authority renters (LA.Rent);
(c) social class one (high social class) (SC.1);
(d) unemployed (Unemp);
(e) without any formal education (Low.Edu);
(f) age group 18–24 (AGE.18.24);
(g) age group 25–44 (AGE.25.44); and
(h) age group 45–64 (AGE.45.64).

Observe that none of the case study variables constitute a closed system (i.e. the full
array of values sum to 100) and as such, we do not need to transform the data before the
calibration of our PCA models; Lloyd (2010) presented an instance when this is necessary.

As is common practice, we standardise the data and specify the global PCA with the
covariance matrix. The effect of this is to make the eight study variables have equal impor-
tance (Chatfield and Collins 1980, p. 62). The same (globally) standardised data are also
used in the GWPCA calibrations, which are similarly specified with (local) covariance
matrices. Further work will investigate the use unstandardised data, or the use of locally

fanqmn
高亮



1722 P. Harris et al.

standardised data with GWPCA. Results will almost certainly differ, as all PCA techniques
are not scale invariant. For the data of this study, although measured on the same scale,
variables are not of a similar magnitude.

The global PCA (Table 1) reveals that the first three components have eigenvalues
greater than or very close to unity and that they collectively account for 73.6% of the vari-
ation in the data. Component one would appear to represent older residents, component
two affluent residents and component three young working residents with lower educa-
tional attainment. These are whole-map statistics and interpretations. Whilst representing
a Dublin-wide average, they may not represent local social structure particularly reliably.
A map of the study area is given in Figure 1 depicting the scores on the first component,
where their spatial trend tends to confirm that larger values of the component scores are

Table 1. Summary of global PCA.

PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 PC-8

Eigenvalues 2.878 2.041 0.951 0.840 0.550 0.293 0.248 0.175
Percentage of total variation 36.08 25.59 11.92 10.53 6.89 3.68 3.11 2.20
Loadings

Diff.Add −0.389 −0.444 −0.004 −0.149 0.123 0.293 0.445 0.575
LA.Rent −0.441 0.226 0.144 0.172 0.612 0.149 −0.539 0.132
SC.1 0.130 −0.576 −0.030 −0.135 0.590 −0.343 0.076 −0.401
Unemp −0.361 0.462 0.022 0.189 0.197 −0.085 0.670 −0.355
Low.Edu −0.131 0.308 −0.362 −0.861 0.079 −0.062 −0.065 −0.011
AGE.18.24 −0.237 −0.080 0.845 −0.359 −0.224 −0.051 −0.045 −0.200
AGE.25.44 −0.436 −0.302 −0.317 0.053 −0.291 0.448 −0.177 −0.546
AGE.45.64 0.493 0.118 0.179 −0.144 0.289 0.748 0.142 −0.164

Scores
under −1.12

−1.12 to −0.04
−0.04 to 0.62

0.62 to 1.37
over 1.37

0 2 4 6 8
km

NORTH

Figure 1. Study area (Greater Dublin) and component one scores from global PCA.
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Table 2. Global correlation matrix (Correlations below −0.5 and above +0.5 in bold).

Diff.Add LA.Rent SC.1 Unemp Low.Edu AGE.18.24 AGE.25.44 AGE.45.64

Diff.Add 1 0.28 0.37 0.01 −0.03 0.34 0.70 −0.56
LA.Rent 1 −0.29 0.67 0.17 0.25 0.31 −0.46
SC.1 1 −0.59 −0.27 −0.03 0.09 0.09
Unemp 1 0.28 0.11 0.13 −0.37
Low.Edu 1 0.00 0.03 −0.07
AGE.18.24 1 0.13 −0.21
AGE.25.44 1 −0.69
AGE.45.64 1

associated with greater proportions of older residents. The global correlation matrix is also
given (Table 2). High levels of collinearity amongst the eight variables are evident and this
knowledge can help in our interpretation of the PCA (and GWPCA) results.

4. GWPCA: issues and uses

GWPCA brings a set of interesting opportunities and poses a number of challenges. The
m variables of a PCA yield m components, m eigenvalues, m sets of component loadings
and m sets of component scores. Furthermore, it is conventional to consider a subset of the
components with larger eigenvalues as these contribute to the greatest part of data variance.
The component loadings can be subject to some interpretation as a composite variable,
although this can be difficult. Furthermore, the component scores can be mapped to gain
some insights into the spatial distribution of each composite variable (i.e. see Figure 1).
For GWPCA, these investigations and interpretations all take place locally; that is, there
are m components, m eigenvalues, m sets of component loadings and m sets of component
scores at each data location in the study area. Furthermore, we can also obtain eigenvalues
and their associated eigenvectors at unobserved locations, although as no data exist for
these locations, we cannot obtain scores. This permits the generation of spatial surfaces of
eigenvalues and eigenvector loadings.

4.1. Calibration: automatic bandwidth selection

A major challenge in GWPCA (and LWPCA) is in the estimation of the bandwidth.
If there are m variables in the data matrix, so that each observation is a vector in
m-dimensional space, the scores corresponding to components q + 1 to m from PCA rep-
resent the Euclidean distances along the axes of the corresponding orthogonal vectors to
a q-dimensional linear sub-space. In PCA, the q-dimensional sub-space is spanned by the
first q loadings (viewed as m-dimensional vectors) and is the sub-space that maximised the
variance of the data points projected on to that sub-space. Here, q is commonly chosen so
that this sub-space contains a reasonably high proportion of the total variance, and thus
components q + 1 to m represent the deviation from this sub-space.

Suppose that Mq denotes the matrix M with all but the first q columns removed and
M(−q) denotes the matrix M with the first q columns removed. Based on Section 2, the
first q components are described by XLq and the remaining components by XL(−q). It is
possible to show that the best (least squares) rank q approximation to X is XLqLT

q and
that the residual matrix from this S, given by S = X − XLqLT

q can also be written as
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S = XL(−q)LT
(−q) (Joliffe 2002). In effect, through principal components, we find the mini-

mum of the expression
∑
ij

( [X]ij − [S]ij)2 with respect to S where S is a rank q matrix. The

problem is solved with the expression above. The variance levels of the components of the
matrix S therefore measure the ‘goodness of fit’ (GOF) of the projected sub-planes and as
such:

GOFi =
j=m∑

j=q+1

s2
ij (7)

is the GOF for the ith observation and sij is the jth component score for observation i, that
is, the ijth element of S. The total GOF for the entire data set is

GOF =
i=n∑
i=1

GOFi (8)

For GWPCA, the local principal components for the ith location represent a similar pro-
jection, but with the corresponding loadings defined locally. That is, in this case we find
S to minimise

∑
ij

wi([X]ij − [S]ij)2 where wi is a locally defined weight for location i. The

GOF statistic is defined in an analogous fashion as for global PCA; with the exception
that in each locality, S is defined using local weights, as above. The GOF statistic provides
the means of finding an optimal bandwidth for GWPCA by using either a leave-one-out
method or a holdback sample when computing the terms of the statistic.

Using the study data, we demonstrate the calibration of a GWPCA using both fixed
and adaptive bi-square kernels, where optimal bandwidths are found using a leave-one-out
method. The difficulty now lies in that, unlike the global PCA case, we need to decide
a priori upon the number of components to retain (i.e. the value of q). Furthermore, we
cannot find an optimal bandwidth if we wish to retain all eight components and in this
case the bandwidth would need to be user specified. Thus in the spirit of exploration, we
find the GOF results with q = 1, . . . , 7 and the two different kernel forms. The resultant
bandwidth functions are given in Figure 2, where in many cases an optimal bandwidth is
not clearly defined; this is especially so for the fixed bandwidth kernels. Furthermore, there
is no pattern to indicate the number of components that should be retained (and there is
no reason why there should be one). This behaviour may be in part due to the particular
properties of our chosen data set. However, we would recommend a similarly detailed
calibration study in all applications of GWPCA.

For our data, a GWPCA with three retained components (q = 3) specified with an
adaptive bandwidth of k = 223 observations would be a natural starting point if we wanted
to compare a GWPCA with the global PCA discussed in Section 3(that similarly retains
three components). The bandwidth for this particular case suggests a broad but significant
spatial nonstationarity in the components (i.e. clear variation in social structure), where
approximately two thirds of the study data are used to calibrate each local PCA. If we wish
to conduct a GWPCA using all eight components, then all of the results of this investiga-
tion can guide the choice of a user-specified bandwidth. As an optimal bandwidth (fixed
or adaptive) is fairly clearly defined for seven retained components, then this may be a
reasonable starting point.
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Figure 2. Fixed and adaptive bandwidth functions for different values of q (number of retained
components). The study area is approximately 28 km east to west and 44 km north to south.

4.2. Randomisation tests for significance of eigenvalue variability

Monte Carlo tests can be used to evaluate whether local eigenvalues from GWPCA vary
significantly across space and so justify the use of GWPCA in the first place. Here the
(paired) sample locations are successively randomised amongst the variable data set and
after each randomisation, GWPCA is applied and the standard deviation (SD) of a given
local eigenvalue is calculated. The actual or true SD of the same local eigenvalue is then
included in a ranked distribution of SDs. Its position in this ranked distribution relates to
whether there is significant (spatial) variation in the chosen local eigenvalue. A similar
procedure has been used in the GWR model to test whether each of its local regression
parameters vary significantly across space (Brunsdon et al. 1998).

As an example of this test, the resultant distribution of local eigenvalue SDs for the first
eigenvalue for the study data is given in Figure 3a. The adaptive bandwidth is re-estimated
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Figure 3. (a) Randomisation test for eigenvalue nonstationarity (case study data); (b) bias and
(c) standard error of eigenvalue estimates with increasing sample size (simulation study data).

for each randomised data set and in this case, three components are retained in the GWPCA
for bandwidth estimation using the leave-one-out method. As the p-value for the true SD is
very small (p = 0.002), then the null hypothesis of local eigenvalue stationarity is rejected.
This test can be simplified by simulating always using the same (user-specified) bandwidth.
This less realistic test would be appropriate if we were interested in a GWPCA that retains
all (eight) components.

4.3. Interpretation challenges: experiments with simulated data

It is important to have some handle on the extent that GWPCA can recover local spatial
structures in a given data set. In this respect, we briefly report on experiments in which
a known spatial structure is imposed on the component eigenvectors and eigenvalues, for
some simulated data with a multivariate Gaussian distribution. The results demonstrate
that GWPCA is able to recover the known structures reliably, which gives some confidence
that the local eigen-structures we observe are not the result of random variation. A set of
spatially varying eigenvalues was defined by

Eigenvalue(u) =
(

u2
1 + 0.1, (1 − u2)2 + 0.1,

1

2
|u1 − u2| + 0.1

)
(9)

and the corresponding eigenvectors by

Eigenvector(u) = (u1I + (1 − u2)Q)⊥ (10)

where u is a location in space; M⊥ denotes the application of the Gram–Schmidt
orthonormalisation procedure to any matrix M; and Q is

Q =
⎡
⎢⎣

0 4√
3

− 1√
3

− 1√
2

− 1√
6

− 1√
3

− 1√
2

1√
6

1√
3

⎤
⎥⎦ (11)

The Gram–Schmidt procedure ensures that the eigenvectors are orthogonal. In this case,
several data sets with increasing size n were generated and the estimates of the local eigen-
values λ1, λ2 and λ3 at location u = 0 were generated. The plots in Figure 3b and c show
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how the bias and standard error of the estimates vary with sample size. Each of these quan-
tities tends to 0, suggesting that as sample size increases, the mean squared error of the
estimates (equal to the sum of the squares of bias and standard error) also tends to 0.

4.4. Visualisation

For visualising the output from GWPCA, we may begin by mapping the spatial distribu-
tion of the local eigenvalues; there will be m maps, one for each component. The largest
value possible for an eigenvalue will be m and it will always be on the first component,
so it may help to map the percentage of the total variance that each component accounts
for, rather than the raw value. For the study data, Figures 4 and 5 show the spatial dis-
tribution of the first and the first three local components combined, respectively. Now all
eight components (q = 8) need to be retained in our GWPCA model and as such, a user-
specified bandwidth (taken at k = 122 observations) is also necessary. In both maps, there
is clear spatial variation in the local PCA results. A higher percentage of the total variance
is generally accounted for in the first component in the local case than in the global case
(Figure 4). This is also a characteristic of the first three components combined (Figure 5).
The spatial patterns in both plots are similar – much of the local variance is accounted
for by the first local component in the centre of Dublin and the surrounding northern and
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Figure 4. GWPCA (k = 122 and q = 8) output: percentage of total variation for local component
one (at each of 322 EDs). Globally with PCA, this percentage is 36.1%.
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Figure 5. GWPCA (k = 122 and q = 8) output: percentage of total variation for first three local
components (at each of 322 EDs). Globally with PCA, this percentage is 73.6%.

south-western extremities. The inner suburbs, by contrast, would appear to be more diverse
in their structures.

In exploring the output from this particular GWPCA model further, we can also map
the ‘winning’ variable in each local component (i.e. the one with the highest absolute local
loading). This visualisation is suggested in Fotheringham et al. (2002) and the ‘winning’
variable for the first component is shown in Figure 6. Comparing this with the pattern in
Figure 4, the local-authority renting variable appears to play an important part in defining
the local structure in central Dublin and educational attainment would appear to dominate
in the northern and south-western EDs. However, these are single indicators and perhaps
only tell a partial story. GWPCA shows very clearly that different social structure vari-
ables dominate in different areas of Greater Dublin. In addition to analysing the dominant
terms, it is useful to look at the sign of each local loading (on each local component). This
identifies which variables are contrasted locally with each other in the analysis. As eigen-
vectors are unique only up to a multiplier of ±1, the convention that the first loading is
positive is adopted. If this is the case, 35 patterns of signs (out of a possible 256) appear
in all 322 EDs, for the first component. An example map depicting 12 of the 35 different
sign patterns is given in Figure 7. As example, pattern 1 (dark red) contrasts the oldest age
group (negative) with the remaining seven variables (all positive); and this pattern domi-
nates western areas of central Dublin. As example, pattern 3 (grey) contrasts social class
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Figure 6. GWPCA (k = 122 and q = 8) output: winning variable on local component one (at each
of 322 EDs).

one and the oldest age group (both negative) with the remaining six variables (all positive);
and this pattern is prevalent in eastern areas of central Dublin (and some outer western
areas).

Finally, it is useful to look at all eight local loadings together at each of the 322 EDs.
In this respect, we use a multivariate glyph with spokes around a central hub in which
the length of the spoke corresponds to the magnitude of the local loading, and its colour
corresponds to the sign (in this case, red signifies negative and blue signifies positive).
The glyph is scaled relative to the spoke with the largest absolute loading. The variable
corresponding to each local loading is always in the same place on the glyph, as follows:
Diff.Add is at 0 degrees (North); LA.Rent is 45 degrees (North East); SC.1 is 90 degrees
(East); Unemp is 135 degrees (South East), Low.Edu is 180 degrees (South), AGE.18.24 is
225 degrees (South West), AGE.25.44 is 270 degrees (West) and AGE.45.64 is 315 degrees
(North East). Figure 8 presents such a multivariate glyph map for our chosen GWPCA
model (and again for the first component), where a spatial preponderance of glyphs of one
colour or another, or larger spokes on the same variables provide a general indication of
the structures being represented at each of the 322 ED locations. Clearly, we are presented
with a difficult visualisation issue, as for the smaller EDs in central Dublin, it is hard to
interpret the behaviour of numerous glyph plots. As such, a cartogram in which each zone
is distorted to give each the same area (e.g. Tobler 2004) is used to represent the 322 EDs of
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Figure 7. GWPCA (k = 122 and q = 8) output: unique combination of signs on the variables
for local component one (variable order: Diff.Add, LA.Rent, SC.1, Unemp, Low.Edu, AGE.18.24,
AGE.25.44 and AGE.45.64). Map only depicts 12 of the 35 different sign pattern types found; these
are located at 263 of the 322 EDs.

our study area in Figure 9, where now the overall picture is much clearer. There are distinct
spatial clusters of the same glyph forms. For example, many local glyphs in the south west
of Greater Dublin have long blue spokes (positive loadings) in the 180 degree direction
indicating a dominance of the variable measuring low education. Alternative cartograms
may be useful here and as such, this is an area for further research.

4.5. Investigating collinearity in the GWR model

As PCA can be used to address collinearity in the independent data of a global regression
model, similarly GWPCA should be useful in addressing collinearity in GWR, a subject
that has created much debate with respect to the value of GWR as an inferential model
(Wheeler 2007, 2009). We map the condition number (kappa) of our local data matrices
from the same GWPCA model (Figure 10). Condition numbers above 30 are commonly
used to indicate a significant collinear effect and in our local case, possible adverse effects
on model inference if such data were used in a GWR fit (i.e. to explain VT, see Section 3).
Clearly, many areas outside of central Dublin exhibit a high degree of collinearity and the
parameters, standard errors and prediction errors from a corresponding GWR fit should
be viewed with caution. We can also use GWPCA more directly by mapping the percent-
age of the total variance that the first (Figure 4) and last (Figure 11) components account
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Figure 8. GWPCA (k = 122 and q = 8) output: multivariate glyphs of loadings for local compo-
nent one.

for. Intuitively, the larger the first component is, the stronger the collinearity. Similarly, the
smaller the last component is, the stronger the collinearity. Both effects are clearly present
when such GWPCA maps are compared with the condition number map in Figure 10.
This use of GWPCA appears to hold promise. Here for example, by interactively investi-
gating the multivariate glyph cartogram maps for the first (Figure 9) and last (Figure 12)
components we can locally identify the particular variables that appear to be the major
causes of local collinearity.

5. Next steps

5.1. Simplification: the value of approximate forms of PCA

Principal components can be difficult to interpret at times, and the outputs of PCA may be
difficult to explain to non-experts in the area. However, recent work on simplified forms of
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NORTH

Figure 9. GWPCA (k = 122 and q = 8) output: multivariate glyphs of loadings for local compo-
nent one using an equal area cartogram.

PCA has been carried out. The aim here is to constrain the values of the principal compo-
nent loadings to low-valued integers. Vines (2000) presented an algorithm for this kind of
analysis. GWPCA adds another dimension of complexity to the already complex task of
interpreting PCA output. For this reason, attempts at simplifying PCA in a GW context will
be of great use. The results of adapting Vines’ approach to a GW context will be reported
in a separate article.

5.2. Further extensions and uses

Just as PCA/GWPCA can be adapted or extended for a particular use, such as addressing
collinearity in regression modelling, there are numerous other instances where GWPCA
can replace (or complement) a standard PCA. For example, robust PCA (Rousseeuw
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Figure 11. GWPCA (k = 122 and q = 8) output: percentage of total variation for local component
eight (at each of 322 EDs). Gloabally with PCA, this percentage is 2.2%.

et al. 2006, Filzmoser et al. 2008) is a useful technique for detecting outliers in multi-
variate data sets, and a robust form of GWPCA may well help in identifying observations
that are locally and spatially outlying rather than those that are globally and aspatially
outlying. For example, PCA can be useful in the optimisation of sample re-design prob-
lems that need to consider both attribute- and geographic-space (Hengl et al. 2003) and
as such, incorporating GWPCA within the same re-design algorithm may provide an
improvement for a multivariate spatial process that has clear nonstationary relationship
properties.

6. Conclusions

The application of a standard or global PCA presents only a partial picture in terms of vari-
ance decomposition for spatial data sets. PCA can be locally adapted to form a GWPCA
technique, which whilst offering some distinct improvements presents many challenges in
its specification and in the interpretation of its copious outputs. In this article, we have
investigated particular issues of GWPCA calibration, testing, interpretation and visualisa-
tion, where many useful advances to the technique have been demonstrated. In addition,
we have investigated a potential use of GWPCA with respect to addressing collinearity in
the GWR model.
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Figure 12. GWPCA (k = 122 and q = 8) output: multivariate glyphs of loadings for local
component eight using an equal area cartogram.
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