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Scale is a fundamental geographic concept, and a substantial literature exists discussing the various roles that
scale plays in different geographical contexts. Relatively little work exists, though, that provides a means of
measuring the geographic scale over which different processes operate. Here we demonstrate how geographi-
cally weighted regression (GWR) can be adapted to provide such measures. GWR explores the potential spatial
nonstationarity of relationships and provides a measure of the spatial scale at which processes operate through
the determination of an optimal bandwidth. Classical GWR assumes that all of the processes being modeled
operate at the same spatial scale, however. The work here relaxes this assumption by allowing different processes
to operate at different spatial scales. This is achieved by deriving an optimal bandwidth vector in which each
element indicates the spatial scale at which a particular process takes place. This new version of GWR is termed
multiscale geographically weighted regression (MGWR), which is similar in intent to Bayesian nonseparable
spatially varying coefficients (SVC) models, although potentially providing a more flexible and scalable frame-
work in which to examine multiscale processes. Model calibration and bandwidth vector selection in MGWR
are conducted using a back-fitting algorithm. We compare the performance of GWR and MGWR by applying
both frameworks to two simulated data sets with known properties and to an empirical data set on Irish famine.
Results indicate that MGWR not only is superior in replicating parameter surfaces with different levels of spatial
heterogeneity but provides valuable information on the scale at which different processes operate. Key Words:
geographically weighted regression, multiscale, spatially varying coefficients, spatial nonstationarity.

尺度根本上是个地理的概念, 且有众多的既有文献, 探讨尺度在不同地理脉络中扮演的各种角色。但相

对而言, 少有研究提供不同过程操作的地理尺度之测量工具。我们于此展现如何採用地理加权迴归

(GWR) 提供此般测量。GWR 透过决定最适宽带, 探讨各种关系的潜在空间非静止性, 并提供各种过程

操作的空间尺度测量。但古典的 GWR, 却预设所有进行模式化的过程, 皆在相同的空间尺度中操作。本

研究工作透果考量不同过程在不同空间尺度操作, 为此一预设鬆绑。上述工作藉由导出最适宽带向量达

成, 其中各元素表明特定过程发生的空间尺度。此一崭新的 GWR 版本称为多重尺度地理加权迴归

(MGWR), 其目的与贝叶斯不可分割的空间变异系数 (SVC) 模型相似, 尽管可能提供了检视多重尺度过

程的更为弹性且可进行尺度化的架构。本研究运用向后演算法, 进行 MGWR 中的模式校正和宽带向量

选择。我们将 GWR和 MGWR 架构运用至两组具有已知属性的虚拟数据集和爱尔兰大飢荒的经验数据

集, 从而比较两者的表现。研究结果指出, MGWR 不仅在复製具有不同层级空间变异性的参数表面上表

现较佳, 更提供了有关不同过程所进行的尺度的宝贵信息。 关键词： 地理加权迴归, 多重尺度, 空间变

异系数,空间非静止性。

La escala es un concepto geogr�afico fundamental, y existe una literatura sustancial que discute los diversos roles
que aquella juega en diferentes contextos geogr�aficos. Con todo, es relativamente escaso el trabajo que sumi-
nistre un medio para medir la escala geogr�afica a la cual operan diferentes procesos. Aqu�ı demostramos c�omo la
regresi�on geogr�aficamente ponderada (RGP) puede adaptarse para proveer tales medidas. La RGP explora el
car�acter espacial no estacionario de las relaciones y suministra una medida de la escala espacial a la cual operan
los procesos mediante la determinaci�on de un ancho de banda �optimo. Sin embargo, la RGP cl�asica asume que
todos los procesos en proceso de modelaci�on operan a la misma escala espacial. El trabajo desarrollado aqu�ı flex-
ibiliza esta suposici�on permitiendo que diferentes procesos operen a diferentes escalas espaciales. Esto se logra
derivando un vector de ancho de banda �optimo en el que cada elemento indica la escala espacial a la que un
proceso particular tiene lugar. Esta nueva versi�on de la RGP es denominada regresi�on geogr�aficamente ponder-
ada a multiescala (RGPM), la cual es de intento similar a los modelos bayesianos inseparables de coeficientes
espacialmente variados (SVC), aunque potencialmente de lugar a un marco m�as flexible y escalable en el cual
examinar procesos multiescalares. La calibraci�on del modelo y la selecci�on del vector del ancho de banda en la
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RGPM se efect�uan usando un algoritmo adaptado. Comparamos el desempe~no de la RGP y la RGPM aplicando
los dos marcos a dos conjuntos de datos simulados de propiedades conocidas y a un conjunto de datos emp�ıricos
de la hambruna irlandesa. Los resultados indican que la RGPM no solo es superior en replicar las superficies
par�ametro con diferentes niveles de heterogeneidad espacial, sino que provee informaci�on valiosa sobre la
escala a la que operan diferentes procesos. Palabras clave: regresi�on geogr�aficamente ponderada, multiescala, coefi-
cientes espacialmente variados, espacialidad no estacionaria.

S
cale is a fundamental geographic concept and
is the focus of a huge and diverse literature
that discusses the various roles that scale plays

in different geographical contexts (e.g., Harvey
1968; Moellering and Tobler 1972; Brenner 2001;
Tate and Atkinson 2001; Liverman 2004; Paasi
2004; Sheppard and McMaster 2004). Goodchild
(2001) claimed, “Scale is perhaps the most impor-
tant topic of geographical information science” (10),
and McMaster and Sheppard (2004) stated, “Scale is
intrinsic to nearly all geographical enquiry” (1). It is
generally recognized that different processes can
operate at different spatial scales and we often dis-
tinguish between micro- and macroprocesses or
between local and global processes. We know that
the weather and tides are determined by a multitude
of processes operating at vastly different spatial
scales. We talk about international, national, and
local processes affecting our salaries and how much
we pay for goods and services. We recognize that
declining densities of some fish species might be a
function of both global climate change and also
local overfishing and that the impact of a disease on
societies may be determined not only by interna-
tional and national movement patterns but also by
local supplies of medicines. Despite “geography” and
“scale” being virtually synonymous, however, surpris-
ingly little work exists that actually provides a
means of measuring the geographic scale over which
different processes operate.1 Such information would
be useful to better understand both the nature of
geographic processes and our observations about the
real world that are a product of these processes. One
exception to this statement is the development of
Bayesian nonseparable spatially varying coefficient
(SVC) models (Gelfand, Kim, et al. 2003; Gelfand,
Schimdt, et al. 2003; Finley 2011) that do identify
the scale of each relationship separately. Further dis-
cussion of such models is left until later; the inten-
tion here is to develop the equivalent potential
within a geographically weighted regression (GWR)
framework, which is potentially more flexible and
scalable.

GWR is one of the most widely applied methods for
exploring the potential spatial nonstationarity of rela-
tionships (Fotheringham, Charlton, and Brunsdon
1996; Fotheringham, Brunsdon, and Charlton 2002;
Atkinson et al. 2003; Foody 2003; Lloyd 2010, 2011;
Fotheringham and Oshan 2016). Instead of producing
an “average” global estimate of each relationship in
the model, GWR allows that these relationships
between the response variable and predictor variables
might vary across space. To calibrate a GWR model at
any one location, data are “borrowed” from nearby
locations and weighted according to the distance each
nearby location is from the regression point. This is in
accordance with Tobler’s first law of geography that
“everything is related to everything else, but near
things are more related than distant things” (Tobler
1970). Hence, not only does GWR identify spatial
heterogeneity in processes but it also takes advantage
of the spatial dependence in data—so tying together
the two main distinguishing features of spatial analysis.

In an early recognition that GWR could be made
more flexible in terms of the spatial processes being
investigated, semiparametric GWR (SGWR) was
developed, extending the traditional GWR framework
by allowing a subset of the parameters to be fixed over
space and a subset to vary over space (Brunsdon,
Fotheringham, and Charlton 1999; Fotheringham,
Brundson, and Charlton 2002). SGWR still has the
limitation, though, that all of the spatially varying
parameters are assumed to arise from processes operat-
ing at the same spatial scale. This does not allow, for
example, one process to operate over a local scale and
another to operate over a broader, regional scale. It
seems quite reasonable to imagine, however, that
some relationships, such as the effect of rainfall on
vegetation density, operate at one spatial scale,
whereas others, such as competition from surrounding
plants, operate at different spatial scales. By relaxing
the assumption that all the spatially varying processes
in a model operate at the same spatial scale, we gener-
ate the potential to produce a more powerful spatial
model. This is the essence of multiscale geographically
weighted regression (MGWR).
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The remainder of the article is organized as follows.
We first introduce the MGWR model formulation and
expand on the methodological issues involved in
model calibration and bandwidth selection. We then
describe two simulated data set designs that are used to
compare the performance of GWR and MGWR. Next
an empirical application of MGWR is given in using a
data set on the determinants of population decline
during the Irish famine. We close the article with a
summary of the key findings and thoughts on direc-
tions for future research.

MGWR

Model Formulations

GWR

Traditional or global regression assumes that the
relationships being examined through the model’s
parameters are constant over space. This assumption is
relaxed in GWR by allowing the parameters to vary
spatially. The GWR model formulation can be
described as follows. Assuming that there are n obser-
vations, for the observation i 2 1; 2; : : : ; nf g at loca-
tion ui; við Þ, the linear regression model is

yiD
Xm
jD 0

bj ui; við Þxij C ei; (1)

where xij is the jth predictor variable, bj ui; við Þ is
the jth coefficient, ei is the error term, and yi is the
response variable.

SGWR

SGWR is an extension of GWR that allows for the
coexistence of local and global relationships. It can be
considered as a special case of MGWR. For the obser-
vation i 2 1; 2; : : : ; nf g at location ui; við Þ, the lin-
ear regression model is

yi D
Xka
jD 1

ajxij að Þ C
Xkb
lD 1

bl ui; við Þxil bð Þ C ei; (2)

where ka is the number of global predictor variables, kb
is the number of local predictor variables, xij að Þ is the
jth global predictor variable, xil bð Þ is the lth local pre-
dictor variable, aj is the jth global coefficient, bl ui; við Þ

is the lth local coefficient, ei is the error term, and yi is
the response variable.

MGWR

Whereas both GWR and SGWR constrain the
local relationships within each model to vary at the
same spatial scale, MGWR allows the conditional
relationships between the response variable and the
different predictor variables to vary at different spatial
scales (Yang 2014). That is, the bandwidths indicating
the data-borrowing range can vary across parameter
surfaces.

yi D
Xm
jD 0

bbwj ui; við Þxij C ei; (3)

where bwj in bbwj indicates the bandwidth used for
calibration of the jth conditional relationship.

Operationalizing MGWR

Bandwidth Selection

Bandwidth selection is relatively straightforward in
GWR and SGWR because only a single bandwidth is
required. The optimal bandwidth is selected through
trials: In each trial, a bandwidth is selected, then
either GWR or SGWR is fitted using the bandwidth,
then a goodness-of-fit measure such as AICc is calcu-
lated where AICc is defined by

AICc D 2nln ŝð Þ C n ln 2pð Þ C n
n C tr Sð Þ

n¡ 2¡ tr Sð Þ ; (4)

where ŝ is the estimated standard deviation of the
error term and tr Sð Þ is the trace of the hat matrix S.
The optimal bandwidth is that which minimizes
AICc. It is impracticable to use the same process for
the bandwidth selection in MGWR, however, because
the number of potential combinations of bandwidths
for the different processes will often be very large. A
different procedure is hence needed.

Model Calibration

Model calibration for a Gaussian GWR can be con-
ducted using weighted least squares. The estimator
for the coefficients at location ui; við Þ is shown in
Equation (5) where X is the design matrix and W
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ui; við Þ is the spatial weighting matrix for location
ui; við Þ. W ui; við Þ is the same for each relationship due
to the same bandwidth being used for all the relation-
ships in the model.

b̂ ui; við Þ D [.XTW ui; við ÞX ]¡ 1
XTW ui; við Þy: (5)

Thus, each row of the hat matrix SGWR for a basic
Gaussian GWR calibration is defined as in Equation
(6) where Xi is the i th row of the design matrix X :

ri D Xi[.X
TW ui; við ÞX ]¡ 1

XTW ui; við Þ: (6)

The calibration for a Gaussian SGWR is less straight-
forward, involving ka C 2 basic GWR calibrations and
1 ordinary least squares (OLS) calibration (Fothering-
ham, Brundson, and Charlton 2002). The procedures
could be described as follows:

1. Regress each global predictor variable xj að Þ
jD 1; : : : ; kað Þ against the local predictor varia-
bles X bð Þ using basic GWR and obtain the resid-
uals eX að Þ. Similarly, regress the response variable
y against local predictor variables X bð Þ using
basic GWR and obtain the residuals ey.

2. Obtain the global coefficient vector estimate â

by regressing ey against eX að Þ using OLS.
3. Obtain the local coefficient matrix estimate b̂ by

regressing y¡X að Þâ against X bð Þ using basic
GWR.

The hat matrix for the SGWR calibration can be
derived as shown in Equation (7):

SSGWR D X að Þ X að ÞWX að Þð Þ¡ 1
X að ÞTW C S�

GWR;

(7)

where W D I ¡ S�
GWR

� �T
I ¡ S�

GWR

� �
and S�

GWR is the
hat matrix for the last step.

In MGWR, however, different bandwidths imply
that each relationship at the same location will have a
different spatial weighting matrix. Thus, the GWR
estimator is not applicable in MGWR.

Calibration of MGWRModels: A Back-Fitting
Algorithm

Back-fitting algorithms, which maximize the expected
log likelihood, are commonly used for the calibration of

generalized additive models (GAMs; Hastie and Tibshir-
ani 1986; Buja, Hastie, and Tibshirani 1989; Everitt
2005) and provide the means of calibrating an MGWR
model. Following the logic of GAM, bbwj xj in MGWR
is defined as the jth additive term f j, resulting in the
GAM-style MGWR:

y D
Xm
jD 0

f j C e: (8)

The basic idea of back-fitting is to calibrate each term
in the model with a smoother assuming that all the
other terms are known. In the case of the Gaussian
MGWR model, the smoother is the GWR estimator
defined in Equation (5). The back-fitting algorithm
for the calibration of an MGWR model is thus defined
as shown in Figure 1.

First, all of the additive terms need to be initialized,
which means that all of the local coefficients need to
be assigned initial estimates. Using these initial values,
an initial set of estimates of y is obtained and a set of
residuals is calculated. These residuals plus the
“current” value of the first term f 0 are then regressed
on x0 using GWR, which produces an optimal band-
width bw0 for the relationship between y and x0 and
also a new set of local estimates for the relationship

Figure 1. Back-fitting algorithm for a multiscale geographically
weighted regression model calibration.
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between y and x0 that are used to update the value of
the first term f 0. The process then moves on to the
second variable x1 following the same procedure (a
new set of residuals is computed using the updated f 0
and these plus the value of f 1 are regressed on x1 with
GWR to create an optimal bandwidth bw1, etc.) and
continues in this manner until the local parameters
associated with the last variable xm are estimated,
which completes the first iteration. The iterations con-
tinue until the changes of all the terms on successive
iterations are sufficiently small to declare that conver-
gence is reached.

Two decisions from the user are involved in the
algorithm. The first concerns initializing the local
coefficient estimates. Three options seem most
obvious:

1. All of the estimates are set to zero.
2. Initial coefficient estimates are taken from the

outcome of a global model.
3. Initial coefficient estimates are taken from the

calibration of the model by GWR.

The choice of the initial guesses should not influ-
ence the selected optimal bandwidth vector but
might affect the number of iterations needed to
reach convergence. Here, we use the GWR esti-
mates as the initial MGWR estimates; the justifica-
tion for this is given next.

The second decision that the user needs to make is
the choice of termination criterion—the value of the
differential between successive iterations (score of
change [SOC]) by which the process is deemed to
have converged. Two types of SOC could be used:

1. SOC-RSS: proportional change in the residual
sum of squares (RSS):

SOCRSS D jRSSnew ¡RSSold j
RSSnew

: (9)

2. SOC-f: change in the GWR smoother:

SOCf D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
jD1

Pn

iD1
f̂
new

ij ¡ f̂
old

ij

� �2

nPn
iD1

Pp
jD1 f̂

new

ij

� �2

vuuuut : (10)

Both SOC-RSS and SOC-f are scale-free, although
the latter has the advantage of being focused on the
relative changes of the additive terms rather than on
overall model fit. Consequently, in what follows we
use SOC-f as the termination criterion.

One further issue in the operation of MGWR mod-
els is that the interpretation and comparison of the
individual bandwidths is facilitated by standardizing
all of the variables in the model to have mean D 0 and
standard deviation D 1. This standardization allows
the bandwidths to be direct indicators of the spatial
scale at which the conditional relationship between y

and each predictor variable varies. Without standardi-
zation, the bandwidths will also reflect the scale and
variation in each predictor variable.

Implementation in Python

The back-fitting algorithm for MGWR just
described was programmed in the Python environ-
ment.2 MGWR is organized as a Python class. Class
attributes, including the starting values of the local
parameter estimates and the convergence criterion,
can be assigned by users.

Simulation Design

To demonstrate the performance of MGWR and to
compare it with GWR, several questions need to be
addressed:

1. Does MGWR produce reliable estimates of scale
through the independent bandwidths for each
covariate and how do these compare to the sin-
gle optimized bandwidth for GWR?

2. Does MGWR produce more accurate estimates
of local parameter surfaces than GWR?

3. Does MGWR produce more accurate estimates
of the response variable than GWR?

4. MGWR is a big model—how much longer does
it take to run than GWR?

These questions are examined by applying MGWR and
GWR to a series of simulated data sets with known prop-
erties and varying levels of spatial heterogeneity across
local parameter surfaces. To construct these simulated
databases, the basis for the data generating process
(DGP) is the GWR-like linear model in Equation (1).
The spatial layout consists of a regular 25 £ 25 lattice.3
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We produced m parameter surfaces of different levels of
spatial heterogeneity, generated normally distributed
predictor variables x as well as a normally distributed
error term e, and then computed the response variable y
based on the DGP. Because we have complete control
over the DGP, the evaluation and comparison of the
model calibration results is straightforward.

Simulation Design 1

This simulated data set is used to examine the relative
performances of GWR and MGWR when the DGP is
such that the local parameter surfaces exhibit varying
degrees of spatial heterogeneity. Specifically, the DGP is

yi D b0 ui; við Þ C b1 ui; við Þxi1 C b2 ui; við Þxi2 C ei: (11)

We designed three different parameter surfaces for
each of the covariates with zero, medium, and high
spatial heterogeneity based on the following rules:

bzero D 3 (12)

blow D 1 C 1

12
u C vð Þ (13)

bhigh D 1 C 1

324
36 ¡ 6 ¡ u

2

� �2
� �

36¡ 6¡ v

2

� �2
� �

;

(14)

where v is the value of the vertical coordinate (with
values increasing from north to south with an incre-
ment of 1) and u being the value of the horizontal
coordinate (with values increasing from west to east
with an increment of 1). Each of these parameter sur-
faces is visualized in Figure 2.

We assigned each of the three parameter surfaces to
the coefficients of the three predictor variables as fol-
lows: b0Dbzero, b1Dblow, and b2Dbhigh. The values of
x1 and x2 were generated randomly from a normal dis-
tribution N 0; 1ð Þ and the error term was generated

from a normal distributed e»N.0; 0:52/. The response
variable y was then computed based on Equation (11).
We generated 100 different data sets in this way to
examine the robustness of the results to the random
nature of the DGP.

Simulation Design 2

In Simulation Design 1, the parameter surfaces
are generated in a manner such that they have
unequal degrees of spatial heterogeneity and are
used here to examine the relative performances of
GWR and MGWR with the expectation that
MGWR should provide more accurate information
on the processes being modeled. To check that
MGWR does not provide spurious results when the
processes modeled have the same degree of spatial
heterogeneity, we develop a second simulation. In
this case, the DGP is

yi D b0 ui; við Þ C b1 ui; við Þxi1 C ei (15)

and the two local parameter surfaces have the same
degree of spatial heterogeneity as shown in
Figure 3. To achieve this, we use the same surface
for b0 as that derived in Simulation Design 1 in Equa-
tion (13) and then we rotate this surface 90 degrees
to obtain the local values for b1. This procedure
ensures that the two surfaces have equal degrees of
spatial heterogeneity but are uncorrelated. In this
case n is again 625.

The values of x1 were generated from the standard
normal distribution N 0; 1ð Þ and the error term was
simulated from a normal distribution with
e»N.0; 0:52/. The response variable y was computed
from Equation (11) with known values for each of
the local parameters and for each of the covariates.
Again, 100 different data sets were generated to
examine the consistency of the results and to

Figure 2. Simulation 1: True parameter surfaces of zero, low, and high heterogeneity. (Color figure available online.)
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safeguard against the results being specific to one par-
ticular data set.

Evaluation Methods

Several evaluation methods were employed to
address the questions listed earlier regarding the rela-
tive performance of both MGWR and GWR using the
data sets drawn from both simulation designs.

Bandwidth Comparison

Because MGWR relaxes the assumption of a single
bandwidth for all the relationships being modeled, we
expect MGWR to be able to differentiate between rela-
tionships that are relatively homogeneous and those
that are relatively heterogeneous and to be able to dif-
ferentiate between processes that operate at a local
scale and those that operate at a more regional scale.
Also of interest is to see to what extent the single band-
width from GWR is an average of the individual band-
widths associated with each of the covariates in the
model. To aid these comparisons, we adopt an adaptive
bandwidth for all calibrations that is based on the opti-
mal number of nearest neighbors (Fotheringham,
Brundson, and Charlton 2002). This generates an intu-
itive optimal bandwidth that is the number of nearest
neighbors that contribute to the regression results at i.
For example, if the optimal bandwidth were 100, this
indicates that the model weights the closest 100 data
points around i between 1 and 0 with higher weights
assigned to closer data points and the weight of the
100th furthest data point being zero. The adaptive

bisquare kernel is defined for this purpose as follows:

wijD 1¡ dij
Gi

� �2" #2

;

0; otherwise

if dij<Gi;

8><
>: (16)

where dij is the distance between point i and j, andGi is
the distance from focal point i to its Mth nearest
neighbor. M is the optimal number of nearest neigh-
bors, determined by multiple AICc comparisons.

Local Parameter Estimation Accuracy

The ability of both GWR and MGWR to replicate
the known parameter surfaces is measured by the root
mean squared error (RMSE) of the coefficient bj:

RMSEjD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
iD1

bj ui; við Þ¡ b̂j ui; við Þ� �2s
; (17)

where b̂j.ui; vi) is the estimated coefficient for location
i from either GWR or MGWR. A smaller RMSEj value
indicates a more accurate replication of the known set
of local parameters bj ui; við Þ; i 2 1; 2; : : : ; nf g.

Goodness of Fit

The RSS, as shown in Equation (18), is used to eval-
uate the goodness of fit of both models to the known set
of yi values (with ŷi being the estimated response vari-
able). Although RSS is not a perfect indicator of good-
ness of fit in that it is neither unit-free nor takes model
complexity into account, it serves to gives insight into
the relative performances of the two local modeling

Figure 3. Simulation 2: True parameter surfaces of equal heterogeneity. (Color figure available online.)
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approaches. Although we would have preferred to use
a goodness-of-fit criterion such as AICc that accounts
for model complexity, the calculation of AICc remains
a research challenge for MGWR because of the sepa-
rate weight matrices used for each covariate.

RSSD
Xn
iD 1

yi ¡ ŷið Þ2: (18)

Computational Efficiency

Computational efficiency is measured by the time
required for one model calibration run. As the back-
fitting algorithm for MGWR is an iterative procedure,
it is expected that the time cost in calibrating MGWR
will be significantly higher than that for GWR,
although if convergence can be reached quite quickly,
run times might be tolerable.

Results

Initialization and Convergence Criteria

To compare the relative performances of GWR and
MGWRwe first established viable values for the stopping
criterion (SOC-f) and the starting values of the local
parameter estimates in the MGWR routine. Table 1
presents typical evidence from across the 100 calibrations
of the MGWR model using the sets of simulated data in
Design 1. The results are drawn from one of the 100 cali-
brations (data set 4 was selected arbitrarily as being repre-
sentative of the results across all 100 simulations).
Table 1 shows the individual AICc values and the opti-
mized bandwidths at each iteration using zeros as the ini-
tial guesses for all local parameter estimates. The results
converge after five iterations, suggesting a viable stopping
point of 10¡ 5 using the SOC-f criterion. Consequently,
this value is used to derive all subsequent results.

The second decision to be made in the implementa-
tion of the MGWR algorithm is the choice of starting
values for the local parameter estimates. Table 2
shows the representative results again for Simulation
Design 1 where three options for the starting values of
the local parameter estimates are explored: using zeros
for all estimates, using the GWR estimates, and using
the OLS estimates. For this particular data set, the
optimized bandwidth values converge at 536, 62, and
44 for the local intercept, the local relationship
between y and x1, and the local relationship between y
and x2, respectively. This indicates that the local
intercept varies at a much broader spatial scale than
do the other two local parameters. There is little to
choose among the three different sets of starting values
as they lead to the same result, although the use of
zeros and OLS estimates as starting values takes one
iteration longer to converge. Henceforth, we use the
GWR local estimates as the starting values of the
MGWR.

Simulation Design 1

We now describe the results of calibrating the
model in Equation (11) by OLS, GWR, and MGWR
using the 100 random data sets resulting from applying
the DGP described in Simulation Design 1 where the
parameter surfaces have unequal degrees of spatial het-
erogeneity. In each case we use SOC-f � 10¡ 5 as the
termination criterion and we use the GWR estimates
as the starting point of the iterative optimal band-
width calibration routine.

Optimal Bandwidth Vector

Figure 4 shows the resulting bandwidths from the
calibration of a GWR model and an equivalent
MGWR model on the 100 simulated data sets for
Design Process 1. In Figure 4, b� is the single optimal

Table 1. Bandwidth vector selection process for Simulation 1 data set 4 (initial guesses: zeros)

Iterations AICc0 AICc1 AICc2 b0 b1 b2 SOC_f

1 3,544.475178 3,107.084069 1,223.544247 622 310 46 0.039566412
2 1,118.033996 966.721046 984.2842977 444 62 44 0.002339227
3 904.1492707 954.050443 984.5833555 524 62 44 0.000155162
4 902.270467 953.5527079 984.7089459 536 62 44 1.70£ 10¡ 5

5 902.1610436 953.4854188 984.7075472 536 62 44 2.03£ 10¡ 6

6 902.1504341 953.4776078 984.7065979 536 62 44 3.29£ 10¡ 7

7 902.148657 953.4763536 984.7063954 536 62 44 5.60£ 10¡ 8
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bandwidth obtained from the GWR calibration and b�0,
b�1, and b�2 are the optimal bandwidths for each of the
three relationships obtained in MGWR. To see more
clearly the differences between the estimates of the sin-
gle bandwidth in GWR and the two separate band-
widths for b�1 and b�2 in MGWR, the three sets of
optimal bandwidths are presented in Figure 5 without
that for the intercept being displayed. From both
Figure 4 and Figure 5 it is clear that MGWR correctly
identifies the three different scales at which the local
parameters vary. The optimal bandwidth for the local
intercept is very large with the median being close to
625, the maximum value, indicating a global process,
whereas the optimal bandwidths for the relationship
between y and x1 and between y and x2 are relatively
small, indicating more local processes. The optimal

bandwidth for the relationship between y and x2 is con-
sistently smaller than that between y and x1, indicating
that the former process is slightly more localized—as
evidenced in Figure 2. The single optimal bandwidth
obtained in the GWR calibration can be seen as a
weighted average of the different levels of spatial het-
erogeneity exhibited by the three separate processes
with the weighting being a function of the explanatory
power of each relationship in the local model.

Local Parameter Estimation Accuracy

The accuracy with which both MGWR and GWR
replicate the three known parameter surfaces, b0, b1,
and b2, for each of the 100 simulations is shown by
the boxplots of RMSE values in Figure 6. Each RMSE
value represents the average error in the ability of a
model to replicate a known parameter surface. It is
clear that, overall, MGWR replicates the three surfa-
ces more accurately than does GWR, an assertion
reinforced by the visualization of the actual and
predicted surfaces for one representative simulation in
Figure 7.

The results from Figures 6 and 7, however, show that
the improvement in the replication of the parameter
surfaces when using MGWR compared to GWR is not
the same for the three surfaces. GWR replicates the sur-
face for both b1 and b2 accurately but does a relatively
poor job of replicating the surface for b0. MGWR,
because of its relationship-specific bandwidth estima-
tion, replicates all three surfaces accurately. The reason

Figure 5. Simulation 1: Optimal bandwidth b� from geographically
weighted regression and optimal bandwidths b�1 and b�2 from multi-
scale geographically weighted regression.

Figure 4. Simulation 1: Optimal bandwidth b� from geographi-
cally weighted regression and optimal bandwidth vector [b�0,
b�1; b�2] from multiscale geographically weighted regression.

Table 2. Impact of initial guesses on Simulation 1 data set
4 (SOC-f �10¡ 5)

Zeros GWR OLS

Iterations b0 b1 b2 b0 b1 b2 b0 b1 b2

1 622 310 46 260 62 44 413 146 46
2 444 62 44 524 62 44 512 62 44
3 524 62 44 536 62 44 536 62 44
4 536 62 44 536 62 44 536 62 44
5 536 62 44 536 62 44

Note: GWR D geographically weighted regression; OLS D ordinary least
squares.
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that GWR is able to provide accurate estimates of the
surfaces of b1 and b2 is that the “average” bandwidth
obtained in the GWR calibration is similar to the rela-
tionship-specific bandwidths obtained for both b1 and
b2 in MGWR. The appropriate bandwidth for b0 is
much larger than the average bandwidth obtained in
GWR. Had the surfaces been assigned differently with
b2, say, exhibiting a broad regional trend, then GWR
would have yielded a poor replication of this surface.

Goodness of Fit

Figure 8 displays the values of the RSS for the
OLS, GWR, and MGWR models using each of the
100 simulated data sets. Also included are the val-
ues of the noise introduced into each data set
(
P

e2i ). It is clear that OLS is a relatively poor model
to apply to these data because of the inherent spatial
nonstationarity but that both GWR and MGWR
replicate the data accurately. To see the comparison
between the GWR and MGWR results more clearly,

Figure 7. Simulation 1 data set 4, from left to right: true parameter surface, estimated surface from geographically weighted regression, and
estimated surface from multiscale geographically weighted regression. GWR D geographically weighted regression; MGWR D multiscale
geographically weighted regression. (Color figure available online.)

Figure 6. Simulation 1: Comparison of root mean squared error
from geographically weighted regression and multiscale geographi-
cally weighted regression for each parameter surface. RMSE D root
mean square error; GWR D geographically weighted regression;
MGWR D multiscale geographically weighted regression.

1256 Fotheringham, Yang, and Kang



the RSS values are repeated in Figure 9 omitting the
OLS results. Although both models replicate the
known y values accurately, it is interesting to note
that the GWR results appear to be slightly superior to
those of MGWR. The reason for this is presumably
that in GWR the local intercept varies over space

and “captures” some of the residual effect in the
model, whereas in MGWR, the local intercept is
essentially constant over space. In essence, the
slightly better replication of the y variable from
GWR is because of overfitting and not due to any bet-
ter insights into the processes generating the data.

Computational Efficiency

MGWR is clearly a more complex model than
GWR, and one element of comparison that is useful to
note is the computational resources needed to fit both
models. We show the time taken for each of the 100
runs for both models in Figure 10. Using the GWR
estimates as the initial values of the local parameters
and a convergence criterion of SOC-f � 10¡ 5, the
average time needed for an MGWR calibration on
data sets generated from Simulation 1 is about
0.08 hour or 4.8 minutes, which is not intolerable,
although it is about eight times that needed for a
GWR calibration.4

Simulation Design 2

We now describe the results of calibrating the
model by OLS, GWR, and MGWR using the 100 ran-
dom data sets resulting from applying the DGP
described in Simulation Design 2 where the parameter
surfaces have equal spatial heterogeneity. We again

Figure 10. Simulation 1: Time for each of the 100 runs for geo-
graphically weighted regression and multiscale geographically
weighted regressionmodels. GWRD geographically weighted regres-
sion;MGWRDmultiscale geographically weighted regression.

Figure 9. Simulation 1: Sum of squared random errors and residual
sum of squares for the geographically weighted regression and mul-
tiscale geographically weighted regression models. RSS D residual
sum of squares; GWR D geographically weighted regression;
MGWR D multiscale geographically weighted regression.

Figure 8. Simulation 1: Sum of squared random errors and residual
sum of squares for the ordinary least squares, geographically
weighted regression, and multiscale geographically weighted
regression models. RSS D residual sum of squares; OLS D ordinary
least squares; GWR D geographically weighted regression;
MGWR D multiscale geographically weighted regression.
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use SOC-f �10¡ 5 as the termination criterion and the
GWR estimates as the starting point of the iterative
optimal bandwidth calibration routine.

Optimal Bandwidth Vector

Figure 11 displays the single optimal bandwidth for
GWR and the two separate optimal bandwidths gener-
ated by MGWR for each of the 100 simulated data sets
produced from Simulated Design 2. In this case, because

the two parameter surfaces have the same degree of spa-
tial heterogeneity, the single bandwidths from GWR
and the two separate bandwidths from MGWR are very
similar with medians of seventy nearest neighbors.
There is slightly more variability in the two separate
bandwidths produced by MGWR across the 100 simula-
tions probably because the GWR bandwidths are the
average of the two MGWR bandwidths. The similarity
in the results is borne out by a comparison of the known
parameter surfaces and the predicted surfaces for one
representative data set shown in Figure 12.

Local Parameter Estimation Accuracy

The ability of GWR andMGWR to replicate each of
the two known parameter surfaces is shown in
Figure 13, which depicts the RMSE values for both
parameter surfaces for each of the 100 simulations. As
expected, given the equal degree of heterogeneity in the
two surfaces, the twomodels produce very similar results
in terms of replicating the known surfaces of b0 and b1.
This is reinforced by the maps of the actual surfaces of
the two sets of local parameters and their estimated val-
ues from both GWR and MGWR shown in Figure 12.

Goodness of Fit

Figure 14 shows the RSS values for the OLS, GWR,
and MGWR calibrations against the sum of squared
error terms added to the model. The results are very

Figure 12. Simulation 2 data set 4, from left to right: true parameter surface, estimated surface from geographically weighted regression, and
estimated surface from multiscale geographically weighted regression. GWR D geographically weighted regression; MGWR D multiscale
geographically weighted regression. (Color figure available online.)

Figure 11. Simulation 2: Optimal bandwidth b� from geographi-
cally weighted regression and optimal bandwidth vector [b�0, b

�
1]

from multiscale geographically weighted regression.
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similar to those described for the earlier experiment—
OLS is relatively poor at replicating the values of the
dependent variable when those values are generated
from a spatially varying process, whereas both GWR and
MGWR replicate the surfaces with a very high degree of
accuracy.

Computational Efficiency

Figure 15 shows the run time for each of the 100
model calibrations for both GWR and MGWR.
Because the model is very simple, the run times are
lower than in the previous experiment. The median
run time for the GWR calibrations is 0.6 minutes,
whereas the median of the MGWR run times is around
3.15 minutes.

An Empirical Example of the Irish Famine

To provide an empirical application of MGWR to
real data, we used data on population change between
1841 and 1851 for 2,317 electoral divisions (EDs) in
the Republic of Ireland, which covers the period of
the Great Famine (1845–1850), during which there
was a large but spatially uneven decline in the popu-
lation of Ireland due to death and emigration. To
examine the spatial variation in population loss, for
each ED we have data on eight predictor variables
shown to be significantly related to population
change in an earlier study by Fotheringham, Kelly,
and Charlton (2013) and described in Table 3.5 An
adaptive bandwidth was used for both the GWR and
MGWR calibrations. The GWR calibration yielded
an optimal bandwidth of 136 nearest neighbors,
implying fairly localized processes. The MGWR
model calibration converged after forty iterations and

Figure 14. Simulation 2: Sum of squared random errors and resid-
ual sum of squares for the ordinary least squares, geographically
weighted regression, and multiscale geographically weighted
regression models. RSS D residual sum of squares; OLS D ordinary
least squares; GWR D geographically weighted regression;
MGWR D multiscale geographically weighted regression.

Figure 15. Simulation 2: Time for each of the 100 runs for geo-
graphically weighted regression and multiscale geographically
weighted regression models. GWR D geographically weighted
regression; MGWR D multiscale geographically weighted
regression.

Figure 13. Simulation 2: Comparison of root mean squared error
from geographically weighted regression and multiscale geographi-
cally weighted regression for each parameter surface. RMSE D root
mean square error; GWR D geographically weighted regression;
MGWR D multiscale geographically weighted regression.
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a run time of fifty-one hours. The individual optimal
bandwidths specific to each parameter in the MGWR
model are given in Table 4, where it can be seen that
the processes being modeled operate at different spa-
tial scales. The parameter estimates associated with
the variables percentage of each ED under grain culti-
vation and distance to the coast are global: The opti-
mal bandwidth in each case is as large as it could be
(2,316 nearest neighbors). The relationships between
population change and average holding size and
workhouse proximity exhibit spatial nonstationarity
but the processes vary at a broad regional scale (opti-
mal bandwidths of 365 and 210 nearest neighbors,
respectively). The other variables in the model have
impacts on population change that vary over rela-
tively short distances, with the optimal bandwidths

for mean elevation being eighty-one nearest neigh-
bors; land under potato cultivation being eighty-six
nearest neighbors; urban proximity being sixty-six
nearest neighbors; and the percentage of cropped
land being ninety-one nearest neighbors.

To see the variations in the spatial scales at which
the different processes operate more clearly, in
Figures 16 to 18 we present the local parameter
estimates both from GWR and MGWR for three
representative surfaces: the local parameter estimates
associated with the variables “distance to the coast”
(no variation), “workhouse proximity” (regional

Figure 16. Geographically weighted regression and multiscale geographically weighted regression local estimates for distance to coast.
GWR D geographically weighted regression; MGWR D multiscale geographically weighted regression. (Color figure available online.)

Table 4. Optimal bandwidth for each parameter surface
obtained from geographically weighted regression and mul-

tiscale geographically weighted regression

Bandwidth

Variable GWR MGWR

Grain cultivation 136 2,316
Mean elevation 136 81
Average holding size 136 365
Potato cultivation 136 86
Urban proximity 136 66
Workhouse proximity 136 210
Population density on cropped land 136 91
Distance to coast 136 2,316

Note: GWR D geographically weighted regression; MGWR D multiscale
geographically weighted regression.

Table 3. List of eight predictor variables for Irish famine
case study

Index Predictor variable

1 Ln population density on cropped land
2 % land under grain cultivation
3 Ln average holding size
4 Ln workhouse proximity
5 Ln urban proximity
6 Ln potato cultivation
7 Ln distance to coast
8 Mean elevation
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variation), and “mean elevation” (local variation),
respectively. In Figure 16 it can be seen that the local
parameter estimates for the variable “distance to the
coast” derived from the MGWR model are uniformly
negative across the country and are close to zero, indi-
cating that proximity to the coast had little or no
effect on population decline throughout the whole of
the country. In contrast, the GWR estimates suggest
that there is some spatial variation in the effect of dis-
tance to the coast, with it being positive in some parts
of the country and negative in others. This is clearly
the result of a single “average” bandwidth being
derived in the GWR calibration, which for this
relationship is a gross underestimate (136 nearest
neighbors instead of 2,316).

In Figure 17, the local parameter estimates for the
“workhouse proximity” variable are broadly similar
from both the GWR and the MGWR calibrations
because the bandwidth for the relationship between
population decline and proximity to workhouses in
the MGWR calibration is fairly close to that of the
“average” bandwidth obtained in GWR (210 nearest
neighbors for MGWR and 136 for GWR). The
MGWR results, however, suggest a slightly more
regional and weaker trend in the relationship with
many of the local estimates being close to zero. There
is some evidence, though, that workhouses had an
ameliorating influence on population decline in parts
of the west and the southwest but in the remainder of

the country the impact of workhouse proximity was
either weakly negative or largely nonexistent.

Finally, Figure 18 describes the spatial variation in
the local parameter estimates formean elevation derived
from bothGWR andMGWR.The two patterns are sim-
ilar because the MGWR bandwidth for this variable is
close to that of the average GWR bandwidth (81 com-
pared to 136) but there is a slightly clearer local effect in
the MGWR parameter estimates. The general pattern is
one where along the west coast, population decline was
less severe at higher elevations, whereas in much of the
rest of the country the effect was negligible or negative,
the latter implying that population loss was more severe
on relatively higher ground. The differential impact of
elevation on population loss is most clearly seen in
Roscommon, where in the far north of the county the
relationship is strongly positive and in the rest of the
county it is strongly negative. The positive relationships,
mainly down the west of the country, tally with areas of
generally higher relief and where the higher ground was
less populated and more devoted to grazing rather than
potato cultivation (Whelan 1997). Consequently, as
the potato crop failed, causing massive levels of starva-
tion and disease, the communities at higher elevations
were somewhat more immune to the disaster. In the rest
of the country where relief is generally lower, slightly
higher ground might have had the advantage of better
drainage for potato cultivation so that these areas were
the hardest hit when the potato blight occurred.

Figure 17. Geographically weighted regression and multiscale geographically weighted regression local estimates for workhouse proximity.
GWR D geographically weighted regression; MGWR D multiscale geographically weighted regression. (Color figure available online.)
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Discussion and Conclusions

GWR allows the investigation of spatial nonsta-
tionarity in spatial processes by relaxing the assump-
tion that the parameters of a model are constant
across space. The calibration of GWR also provides
an optimized bandwidth that describes the spatial
scale over which the processes being modeled vary.
As only one bandwidth is used in the weighting
function for GWR, however, an implicit assumption
in the model is that the different processes being
investigated vary at the same spatial scale. This pro-
hibits, for example, the accurate interpretation of a
situation where two processes exist, one operating at
a regional scale and the other operating at a more
local scale. Here we propose an extension to GWR,
MGWR, to relax the implicit assumption within
basic GWR that all the relationships operate at the
same scale. A back-fitting algorithm is adopted for
the model calibration and is implemented in a
Python environment. This is demonstrated to be sta-
ble over different randomizations and the results do
not appear to depend on the initial conditions. Cali-
bration by MGWR produces a separate optimized
bandwidth for each relationship in the model, thus
indicating how different relationships operate over
different spatial scales, and produces more accurate
local parameter estimates. The separate bandwidths
produced by MGWR have an intuitive interpreta-
tion in terms of geographical scale.

Using two different sets of simulated data with
known properties, MGWR is shown to (1) accurately
discriminate parameter surfaces with high spatial het-
erogeneity from those with low spatial heterogeneity
and (2) produce similar bandwidths for processes that
operate at the same spatial scale. Hence, the optimized
bandwidths from MGWR provide valuable informa-
tion on the scale at which different processes operate.
As such, it provides an alternative to the nonseparable
Bayesian SVC model in a model form that is arguably
computationally less demanding, scales more easily,
and, to some, is more intuitive. As Finley (2011) noted
of SVC models: “By far the greatest challenge to wide-
spread adoption of these models is computational”
(153). Now that MGWR has been shown to be a via-
ble model form that will generate different measure-
ments of scale for different processes, the next step
will be to compare its performance along a series of
metrics with SVC models. Wheeler and P�aez (2010)
and Wheeler and Waller (2009) both compared GWR
and SVC models but only as single-process models.
Finley (2011) made a start in the direction of multi-
process models, but his comparisons were limited to a
single-process GWR with both a single and multiproc-
ess SVC model. Now that MGWR has been estab-
lished as a multiprocess model, a more meaningful
comparison can now be made with multiprocess SVC
models.

Researchers interested in understanding the pro-
cesses that generate the associations between data we

Figure 18. Geographically weighted regression and multiscale geographically weighted regression local estimates for mean elevation.
GWR D geographically weighted regression; MGWR D multiscale geographically weighted regression. (Color figure available online.)
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observe in the real world within the GWR framework
now have four choices:

1. The standard modeling approach is that of global
regression in which the implicit assumption is
that the processes generating the associations
being modeled do not vary over space and in
which a single parameter is estimated for each
relationship specified in the model.

2. GWR, which relaxes the assumption of spatial
stationarity in the global model by allowing the
parameters in the model to vary over space. The
implicit assumption in this model is that all the
local parameters in the model vary at the same
spatial scale.

3. Semiparametric GWR (SGWR), which allows a
subset of the relationships being modeled to be
fixed over space and a subset to vary spatially.
The implicit assumption in this model is that the
subset of parameters that vary over space do so at
the same spatial scale.

4. MGWR, which not only allows parameter esti-
mates to vary over space but also allows the scale
of this variation to vary across parameter surfaces.

Consequently, MGWR represents a significant advance
in non-Bayesian regression modeling with spatial data.
Not only can we investigate spatial heterogeneity in spa-
tial processes, but we can identify the spatial scale over
which different processes operate in an intuitive man-
ner. Further research is now needed, though. In particu-
lar, it remains to be determined whether a goodness-of-
fit statistic similar to AICc can be derived for a local
model such as MGWR where there is no single weight-
ing matrix. Allowing different bandwidths for each rela-
tionship in the model means that the nature of the
weighting matrix varies across each set of local parame-
ter estimates and hence the usual form of AICc is mean-
ingless. Equivalently, the calculation of the equivalent
number of independent parameters in the model, as is
done, for example, in GWR, is challenging because
there is no single hat matrix of which to take the trace.
Future research will be focused on these issues and the
construction of equivalents to the local R2, local stan-
dard errors, and local t statistics that need to be imple-
mented within the algorithm. Three further directions
for future research include increasing the efficiency of
the code to reduce run times, undertaking a comparison
of the performance of MGWR and SVC models along a
series of metrics, and developing an inferential frame-
work for MGWR. The latter can be developed in a fairly

straightforward manner via bootstrapping or Monte
Carlo procedures, but this will add significantly to com-
puting time. Consequently, research also needs to be
directed to developing a more formal inferential proce-
dure possibly through the established general additive
modeling framework (Hastie and Tibshirani 1990).

This article establishes the merits of MGWR and
demonstrates how it can be used to identify and mea-
sure the different spatial scales over which different
processes operate. In doing so, it opens up many new
possibilities for further empirical investigations into
the role of multiscale processes. Geographers and other
spatial scientists now have an alternative methodology
to nonseparable Bayesian SVC models that provides
an arguably more intuitive measure of the spatial scale
over which different processes operate. An important
question can now be investigated: How common are
multiscale processes in generating the observations we
measure in both our social and physical environments?

Notes
1. There is a considerable volume of research devoted to

measuring the geographic scale over which data vary
(e.g., spatial variograms and correlograms) and some
has been extended to the spatial variability of joint rela-
tionships between variables, but the concentration in
this article is on identifying the geographic scale at
which processes occur.

2. See https://www.python.org/.
3. Both sets of simulated data employed in this analysis

contain locations on a regular 25 £ 25 grid for conve-
nience. To check that the results were not an artefact of
the regular design of locations, we repeated the experi-
ments with a data set of locations drawn randomly from
the grid. The results were virtually identical to those
reported and so are not repeated here but are available
from the authors. This finding that the results of the
simulation studies are not dependent on the regularity
of the sample design is in line with Haining (1986) and
Anselin and Rey (1991).

4. The computer used throughout this research has dual
2.6 Ghz 8-core CPUs and 64 GB of memory.

5. The empirical application reported here differs from that
reported by Fotheringham, Kelly, and Charlton (2013)
in three ways. First, the original study included data from
what is now Northern Ireland and hence had a larger
sample size of 3,098 EDs rather than the 2,317 used here.
Second, the original study employed nine predictor vari-
ables rather than the eight used here because one of the
original variables, the proportion of population classed
as urban, was zero for the vast majority of the reduced
2,317 ED data set. Third, here both the response variable
and the set of predictor variables were standardized to
have mean of 0 and variance of 1, which facilitates both
the interpretation of the optimal bandwidths and the
comparison of the local parameter estimates.
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