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Both space and time are fundamental in human activities as well as in various physical

processes. Spatiotemporal analysis and modeling has long been a major concern of geo-

graphical information science (GIScience), environmental science, hydrology, epidemiol-

ogy, and other research areas. Although the importance of incorporating the temporal

dimension into spatial analysis and modeling has been well recognized, challenges still

exist given the complexity of spatiotemporal models. Of particular interest in this article is

the spatiotemporal modeling of local nonstationary processes. Specifically, an extension of

geographically weighted regression (GWR), geographical and temporal weighted regres-

sion (GTWR), is developed in order to account for local effects in both space and time. An

efficient model calibration approach is proposed for this statistical technique. Using a

19-year set of house price data in London from 1980 to 1998, empirical results from the

application of GTWR to hedonic house price modeling demonstrate the effectiveness of

the proposed method and its superiority to the traditional GWR approach, highlighting the

importance of temporally explicit spatial modeling.

Introduction

Space and time are two fundamental dimensions providing the framework for all human activi-

ties, social events, and environmental processes. Spatiotemporal modeling has long been an

important research focus in the field of geographical information science (GIScience) (Cressie

1993; Cressie and Wilkie 2011). An early example is the theoretical framework of time geogra-

phy proposed by Hägerstrand (1970). With increasingly abundant spatiotemporal data becoming

available, such as the trajectories collected by global positioning systems (GPS) and snapshots of

remote-sensing images, there is an increasing interest in spatiotemporal modeling. Examples

include exploring spatiotemporal patterns of human behavior (Chen et al. 2011; Kwan 2000,

2004), crime activities (Brunsdon, Corcoran, and Higgs 2007; Nakaya and Yano 2010), and
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disease outbreaks (Takahashi et al. 2008), as well as new methods to analyze and visualize

space–time data (Andrienko et al. 2010; Demšar and Virrantaus 2010; Rey and Janikas 2010).

However, enhancing the capability of spatiotemporal analysis and modeling in the current GIS

environment still remains a major challenge, particularly in the era of big data (Goodchild 2013).

Therefore, new methodologies need to be developed to encourage space–time thinking, to

discover useful spatiotemporal information and knowledge in space–time data, and thereby better

understand social and environmental dynamics. To this end, this article approaches the problem

of spatiotemporal modeling from a local perspective by extending geographically weighted

regression (GWR) to a temporal dimension.

GWR is a spatial statistical method for modeling spatially heterogeneous processes that

allows the relationships between a response and a set of covariates to vary across geographic

space (Brunsdon, Fotheringham, and Charlton 1996, 1998; Fotheringham, Brunsdon, and

Charlton 1996, 2002; Fotheringham, Charlton, and Brunsdon 1997). Since its introduction, GWR

has been a popular tool and widely applied in a variety of disciplines and areas, such as geology

(Atkinson et al. 2003), environment science (Mennis and Jordan 2005; Harris, Fotheringham, and

Juggins 2010), hedonic house price modeling (Bitter, Mulligan, and Dall’erba 2007; Huang, Wu,

and Barry 2010), landscape ecology (Buyantuyev and Wu 2010), health research (Nakaya et al.

2005; Comber, Brunsdon, and Radburn 2011), and crime studies (Malczewskia and Poetzb 2005;

Wheeler and Waller 2009). A fundamental component of GWR is the spatial weight matrix by

which the local spatial relationships are constructed. Usually spatial weights are defined by

spatial kernel functions such as Gaussian or bi-square functions (Fotheringham, Brunsdon, and

Charlton 2002) in which larger weights are assigned to closer observations according to the

well-known Tobler’s First Law of Geography: “everything is related to everything else, but near

things are more related than distant things” (Tobler 1970, p. 236). Thus, localized regression

models are fitted and calibrated by incorporating distance-decay effects in space: in essence

GWR is a method of “borrowing” data from surrounding locations.

Beyond space, however, time is also an essential dimension pertaining to social activities and

environmental processes as mentioned previously. Many variables of interest in geosciences are

observed not only across space, but also over time. Temporal data can provide valuable infor-

mation on the dynamics of the underlying spatial process and enable the forecasting of relevant

variables, which is of interest in research areas such as the diffusion of contagious diseases, the

spread of air or water pollution, and the expansion of urban sprawl. Not surprisingly, extensive

efforts have been devoted to incorporating the temporal dimension into spatial regression (Pace

et al. 1998, 2000; Anselin 1999; Elhorst 2003; Gelfand et al. 2004; Giacinto 2006; Crespo,

Fotheringham, and Charlton 2007; Cressie and Wilkie 2011). Most of these, however, approach

the problem from a global modeling perspective where temporal effects are assumed to be

constant over space. For example, Pace et al. (2000) propose a spatiotemporal autoregressive

model, and account for spatial and temporal dependence in the error terms in particular.

Exceptions are the work of Elhorst (2003) and Giacinto (2006) where parameter estimates

are allowed to drift over space although these techniques are preferably utilized to model

processes at an aggregated level such as states, counties or regions of a country. Crespo,

Fotheringham, and Charlton (2007) extended GWR by developing spatiotemporal bandwidths

that accounts for varying local spatial effects across time. Subsequently, Huang, Wu, and Barry

(2010) attempt to incorporate temporal effects into GWR by integrating both temporal and spatial

information in the weighting matrices, which has been improved and integrated with a spatial

autogressive (SAR) model by Wu, Li, and Huang (2014). A similar concept was also proposed by
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Yu (2014). A spatiotemporal weight matrix was constructed using spatiotemporal distances

between observations. In other words, spacetime distance-decay functions were employed to

measure spatiotemporal relationships among observations. Although addressed in the literature to

some extent (Wu et al. 2013; Wrenn and Sam 2014), calculating distance in three dimensions for

this method remains a challenge because a sole measure integrating spatial and temporal dis-

tances can be misleading as location and time are usually measured at different scales. Another

issue is that it is unclear how to adjust bandwidths to account for variations in spatiotemporal

processes over space and time. This article will therefore contribute to the spatiotemporal

extension of GWR through developing the bandwidth concept in GWR by including a temporal

dimension. Specifically, a spatiotemporal kernel function is proposed and a procedure for choos-

ing the optimal spatiotemporal bandwidth is developed.

The remainder of the article is organized as follows. A temporal extension of GWR (geo-

graphical and temporal weighted regression, GTWR1) involving a spatiotemporal bandwidth is

presented in the next section. Both the model formulation and the estimation of GTWR are

detailed, focusing on spatiotemporal kernel function definition and spatiotemporal bandwidth

optimization. This is followed by an empirical study of hedonic house price modeling in London

from 1980 to 1998 using GTWR. Further, the performance of GTWR is examined by comparison

with basic GWR models. The article ends with discussion and conclusions, highlighting the

effectiveness and potential superiority of GTWR in local spatiotemporal modeling.

GTWR

Model formulation

To define GTWR, it is helpful to give the generic GWR formulation first, which is illustrated by

equation (1) (Fotheringham, Brunsdon, and Charlton 2002).

y u v u v xi i i k i i ik

k

i= ( ) + ( ) +∑β β ε0 , , (1)

where i is the index of a spatial point with (ui, vi) denoting its coordinates. Accordingly, yi, xik, εi

are dependent variable, kth independent variable and error term for the ith observation (point),

respectively. The distinct character of GWR is that the parameters βk(ui, vi) are allowed to vary

across space to measure spatially nonstationary relationships. If using matrix representation, the

estimated parameters can be expressed by equation (2):

ˆ , , ,b u v u v u vi i
T

i i
T

i i( ) = ( )( ) ( )−
X W X X W y

1
(2)

where W is a diagonal matrix with elements representing the geographical weights of each

observation of the ith point.

When the data points are collected across time and space at a set of locations

S s s st nt
= …[ ]1 2, , , , where nt is the number of locations where the data are observed at time period

t, the GWR model in equation (1) can still be used to derive local estimates, but in this case by

incorporating the data measured at prior time periods t − 1, t − 2, . . .. t − q, with q being the

number of time lags in addition to those from the same time period. The parameter estimation still

can be obtained by equation (2).

The distinction, however, lies in the weight matrix W, which is constructed in a different way

in order to capture both spatial and temporal effects from observations nearby both in space and
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time. Fig. 1 summarizes the general routine to estimate local parameters using equation (2) for

GTWR. First, a traditional GWR model is specified using the input data according to equation

(1). Then an optimal spatial bandwidth is specified for each time period based on a goodness-

of-fit criterion such as cross-validation (CV) or Akaike information criterion (AIC). Using the

optimal spatial bandwidth, the optimal temporal bandwidth is determined, again based on CV or

AIC. Once both optimal spatial and temporal bandwidths are derived, they can be used to

construct the spatiotemporal weight matrix W, which allows local parameters to be estimated

using equation (2). It should be noted that both spatial and temporal bandwidth optimization

involves heavy computation as those steps require repeated temporary model calibrations. The

remainder of this section will focus on the structure of the spatiotemporal weight matrix W and

the section entitled Bandwith optimization will detail the procedures for optimally selecting

spatial and temporal bandwidths.

As mentioned, to solve equation (2), it is essential to define a kernel function to obtain a

geographical weight matrix W for each observation. Of course, traditional kernel functions can

still be employed to spatially weight data points from previous time periods, but in this way,

temporal relationships among points are assumed to be spatially stationary, which is not neces-

sarily true. Thus, new kernel functions are needed to account for both spatial and temporal

relationships among observations. In this study, a spatiotemporal kernel function is proposed,

which consists of mixed spatial and time-decay bandwidths. In this type of mixed kernel function,

weights given to data points are calculated not only based on the distance between the regression

point2 and each data point, but also based on the separation in time between them. The use of a

temporal bandwidth assumes that local estimates are not constant over time at a given location i

because if they were, local estimates could be derived using only a spatial bandwidth in the

traditional way to calibrate a model by GWR without the inclusion of a temporal bandwidth. As

Input Data

Model Specification

Optimal Spatial 
Bandwidth Selection

End

Optimal Temporal 
Bandwidth Selection

Model Calibration

Model Calibration

Model Calibration

Spatiotemporal Weight 
Construction

Figure 1. Scheme of geographical and temporal weighted regression (GTWR) model.
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a result, a spatiotemporal bandwidth can be thought as an extension of the traditional GWR
method for exploring spatial and temporal nonstationary relationships.

Equation (3) shows an example of a spatiotemporal weighting function ( wij
t

S T,
) specific for

data points located at time t according to a general form of a spatiotemporal kernel function
where weights are given by a spatial kernel function (kS) with dsij being the Euclidean distance
between the regression point i and a data point j. Note that the data point j can be located at any
set St, St−1, . . . , St−q. The spatial bandwidth is given by bS while the temporal kernel is given by
kT where dtij is the distance in time between the regression point i and the data point j with bT

being the temporal bandwidth. In this study, a time-decay temporal bandwidth is proposed, that
is a temporal bandwidth in which data points located closer in time to the regression point have
more influence on local estimates at the regression point i than those located farther away in time.
A description of a possible time-decay spatiotemporal bandwidth is given by Fig. 2, where the
regression time period is T and a temporal bandwidth 3 is considered (T − 1, T − 2, and T − 3).
As can be seen, the spatial bandwidth becomes smaller as the observations are further away from
the regression point in time. In this way, the temporal bandwidth operates in a similar way to the
spatial bandwidth in the sense that bT provides some control on the range of the “circle of
influence”3 in the geographical data over time.

w k d b k d bij
t

S s S T t TS T ij ij,
, ,= ( ) × ( ) (3)

From this weighting scheme, a spatiotemporal version of the W diagonal weight matrix used for the
GWR calibration can be generated. In this case W will be a ( n nT TΣ Σ× ) diagonal matrix whose
elements are given by equation (3), and where n TΣ is the total number of data points from time
periods t, . . .. , t − q used to calibrate the model. Once the weight matrix is obtained, local estimates
at the regression point i are derived using the traditional method specified in equation (2).

In equation (3), it is assumed that a unique spatial bandwidth bS is derived and applied to all
data points in the data set. However, there is no reason to assume a priori a constant spatial
bandwidth over time. In fact, other arrangements of spatial bandwidth are also possible to fit the
data. For example, it seems reasonable to assume that spatial bandwidths become smaller as data
points are located farther away in time from the regression point because such data points would
induce greater bias into the model, as the case shown in Fig. 2. Alternatively, it can be though that

Figure 2. An example of time-decay spatiotemporal bandwidth.
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spatial bandwidths become larger as data points are located farther away in time to the regression

point in order to compensate for the lower temporal weight given to data points by the time-decay

bandwidth. A next step in the model definition is therefore to use a set of segregated spatial

bandwidths over time which must be estimated along with the temporal bandwidth to fit the data.

Thus, equation (3) is extended to equation (4), in which different bandwidths for each time period

are possible.

w k d b k d bij
t

S s St T t TS T ij ij,
, ,= ×( ) ( ) (4)

where terms are defined as earlier and bSt is the spatial bandwidth specific to time t. Under this

weighting scheme, the n
TΣ elements of the diagonal weight matrix are obtained using a different

spatial bandwidth (bSt) according to the time when the data points are collected. The n
TΣ diagonal

elements can be arranged into q + 1 sets of nt, nt−1, . . .. nt−q elements where nt corresponds to the

number of data points for time t. Thus, the elements of the first set, which make up the first nt

elements of the diagonal, are derived from equation (4) using a spatial bandwidth bSt and a

temporal bandwidth bT. Similarly, the elements of the second set, which make up the second nt−1

elements of the diagonal, are derived from equation (4) using a spatial bandwidth bS(t−1) and the

same temporal bandwidth bT. This process is repeated in this same way to derive the elements of

the other q − 1 sets. Thus the weight matrix for the case of the segregated spatial bandwidths over

time is represented as expressed in equation (5):
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(5)

where w wi
t

in
t

S T tS T1 , ,
, ,… are the weights given to nt data points located at time t using a spatial

bandwidth bSt and a temporal bandwidth bT in the estimation.

Bandwidth optimization

As with the traditional GWR mechanism, the optimal spatial bandwidth ( bS
*) as well as the

optimal temporal bandwidth ( bT
*) can be calculated by minimizing either the CV or the AIC

function of the model in order to obtain a set of local estimates with optimal bias-variance

trade-off. For example, the CV4 function in equation (6) can be used to obtain bS
* and bT

*:
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CV b b y y b b nS T i i S T

i

n

, ,
2

1

( ) = − ( )( )−
=
∑ ˆ (6)

where ŷ i− is the fitted value for yi with point i excluded from the calibration process. To account

for the various spatial bandwidths used in different time periods, equation (6) can be further

rewritten as in equation (7) in which the q + 1 spatial bandwidths and the temporal bandwidth

must be estimated simultaneously in order to minimize the CV function.

CV b b b b y y b b bSt S t S t q t i i St S t S t q, , , , , , , ,1 1−( ) −( ) − −( ) −( )…( ) = − …ˆ bb nT

i

n

( )( )
=
∑ 2

1

(7)

The remainder of this section will detail the procedure of selecting the optimal spatial/temporal

bandwidth. A Gaussian spatiotemporal kernel function is taken as an example here. Accordingly,

the weight can be defined as shown in equation (8).

w exp
d

b
exp

d

b
ij
t s

St

t

T
S T

ij ij

,
= −

⎛
⎝⎜

⎞
⎠⎟

∗ −
⎛
⎝⎜

⎞
⎠⎟

2

2

2

2
(8)

Time period t is used as an example to show by means of the nine steps listed later how to derive

optimal temporal and spatial bandwidths, though the mechanism can be extended to all possible

time periods in the regression model.

(1) Suppose the temporal bandwidth bT is set to 1 (e.g. year, month or day) temporal unit;

(2) The spatial bandwidth for time period t (bSt) is calculated using data points only from time

t. In this case, dtij

2 is zero and the spatiotemporal Gaussian kernel becomes

w exp
d

b
ij
t s

St
S T

ij

,
= −

⎛
⎝⎜

⎞
⎠⎟

2

2
. Next, using this weighting scheme GWR is utilized to calibrate the

regression model on data points from time t. By minimizing the CV function, the optimal

spatial bandwidth bSt
* is obtained for the first nt diagonal elements of the weight matrix in

equation (5) according to equation (8).

(3) To obtain the second set of elements for the diagonal weight matrix, data points from time

(t – 1) are incorporated into the model. Thus, GWR is used to calibrate the regression model

using data from t and t − 1 for the regression points at time t. Data points from t are weighted

according to the first set of elements of the diagonal matrix obtained in equation (2), that is

bSt
* is kept fixed. Data points from (t − 1) are weighted using the Gaussian spatiotemporal

kernel defined by equation (8) from which the optimal spatial bandwidth bS t−( )1
* is to be

estimated. As for time (t − 1), dtij

2 1= , the Gaussian spatiotemporal kernel used for data

points from (t − 1) becomes w exp
d

b
expij

t s

S t
S T

ij

,

−

−( )
= −

⎛
⎝⎜

⎞
⎠⎟

∗ −⎛
⎝⎜

⎞
⎠⎟

1

2

1
2

1

1
. As with point 2), the optimal

spatial bandwidth bS t−( )1
* is derived by minimizing the CV function for data from time t.

Thus, the second set of nt−1 diagonal elements of the weight matrix in equation (5) are

derived by inputting bS t−( )1
* in equation (8) with t = t − 1.

(4) Similarly, the third set of elements of the diagonal weight matrix is obtained by incorpo-

rating data points from t − 2. In this case, data points from t and t − 1 are weighted using

the optimal spatial bandwidths bS t−( )1
* and bSt

* as specified in equations (2)–(3), that is

these spatial bandwidths are kept constant. The weighting scheme used for data points
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from t − 2 is derived from the equation (8) where bS t−( )2
* is to be estimated. As for time

t − 2, dtij

2 2= , the spatiotemporal Gaussian kernel for time t − 2 becomes

w exp
d

b
expij

t s

S t
S T

ij

,

−

−( )
= −

⎛
⎝⎜

⎞
⎠⎟

∗ −⎛
⎝⎜

⎞
⎠⎟

2

2

2
2

2

1
. Again, the optimal spatial bandwidth bS t−( )2

* is derived by

minimizing the CV function for data from time t. Finally, once the optimal bandwidth for

t − 2 is obtained, the third set of the diagonal weight matrix is derived from equation (8) with

t = t − 2.

(5) The process described earlier is repeated incorporating one-by-one data points from time

t − 3, t − 4, . . . , t − q to derive optimal spatial bandwidths for these time periods along with

the corresponding sets of diagonal elements of the weight matrix.

(6) Once the diagonal matrix for data points from t to t − q is obtained, GWR is used to calibrate

the regression model at points from time t using the weighting scheme given by the diagonal

weight matrix from equation (5). From this GWR calibration, a CV score is obtained which

will be specific to the temporal bandwidth assumed to be 1 temporal unit in equation (1).

This CV score is to be referred to as CVbT =1.

(7) The process described from points (2) to (6) is repeated for the other q − 1 possible temporal

bandwidths according to the number of time lags in the model, that is for bT equal to 2, 3,

4, . . . , or q temporal unit in the past. Thus, for each temporal bandwidth used to calibrate

the model, a CV score is obtained, say, CVbT =1, CVbT =2, CVbT =3, . . . , and CVb qT = .

(8) The optimal temporal bandwidth ( bT
*) is the one for which the minimum CV score is

obtained. The selection of an optimal temporal bandwidth yields the final set of optimal

spatial bandwidths: [ *, * , * , , * ] *b b b bSt S t S t S t q bT
−( ) −( ) −( )…1 2 .

(9) Finally, local estimates for points located at time t are estimated using equation (2) in which

the diagonal elements of W are derived using the weighting scheme given by the optimal

temporal and spatial bandwidth from point (8).

Application of GTWR

In this section, the spatiotemporal GWR approach described earlier is employed to calibrate local

hedonic price models in London using data from 1980 to 1998. First, the data and study area is

presented. This is followed by a formal expression of the hedonic house price model. Further, the

selection of optimal spatial and temporal bandwidths is detailed. Finally, model calibration

including local parameter estimation and residual analysis is provided.

Data and study area

The data selected for this study consist of a set of annual house prices and their determinants in

London covering the time period from 1980 to 1998 obtained through the Nationwide Building

Society. A sample of approximately 17,433 observations is utilized to develop and to calibrate a

hedonic price model by a spatiotemporal GWR. To facilitate computation of this complex model,

1,000 observations were randomly selected from the original sample for each year (the only

exception being in 1995 when only 433 observations exist).

In order to make the GWR/GTWR results comparable across time, house prices in each year

are inflated to 1998 prices using the consumer price index in the U.K. obtained through the Office

for National Statistics. Table 1 summarizes for each year the number of observations available,

the sample size, and average of house prices and inflated house prices. The evolution of house

prices in London over time can be observed in Fig. 3. As can be noticed, an increasing trend in
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Table 1. Sample Size, and House Prices in London, 1980–1998

Year Number of

observations

Sample

size

House price

average (£)

Inflated house price

average (£)

1980 14,233 1,000 30,475 58,896

1981 14,216 1,000 30,244 53,671

1982 17,728 1,000 30,194 49,023

1983 17,417 1,000 35,112 53,730

1984 18,803 1,000 40,490 59,520

1985 16,342 1,000 47,346 67,115

1986 19,990 1,000 55,526 76,345

1987 8,768 1,000 71,871 96,691

1988 13,617 1,000 79,226 103,581

1989 4,738 1,000 80,160 101,356

1990 4,844 1,000 93,453 113,730

1991 5,964 1,000 85,390 100,016

1992 5,545 1,000 77,028 87,255

1993 3,470 1,000 63,779 70,692

1994 3,901 1,000 62,070 66,988

1995 433 433 80,022 84,587

1996 11,365 1,000 87,159 90,236

1997 11,947 1,000 98,827 100,507

1998 11,282 1,000 119,703 119,703

12
0,

00
0

10
0,

00
0

80
,0

00
60

,0
00

40
,0

00

1980 1983 1986 1989 1992 1995 1998

Inflated house prices
House prices

Figure 3. Time series of average house prices in London, 1980–1998.
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house price from 1980 to 1990 is followed by a 4-year crash in the housing market. From 1994

house prices recovered reaching in the next 4 years approximately the same level as before the

crash.

Model specification

In this study we follow the hedonic price model described in Fotheringham, Brunsdon, and

Charlton (2002), in which house prices in London are regressed on three groups of explanatory

variables: (1) structural attributes: floor area, type of the property, date of construction, number

of bathrooms, provision of garage, and central heating; (2) neighborhood attributes: proportion

of workforce in professional or managerial occupations and rate of unemployment at the census

output area5 where the property is located; and (3) locational attributes: distance to city centre.

The functional form of the model is represented as:
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where Pi is the price in pounds sterling of the property; FLRAREA is the floor area of the property

in m2; BLDxxx is a set of dummy or indicator variables that depict the age of the property as

follows:

BLDPWW1 is 1 if the property was built prior to 1914, 0 otherwise;

BLDPOSTW is 1 if the property was built between 1940 and 1959, 0 otherwise

BLD60S is 1 if the property was built between 1960 and 1969, 0 otherwise

BLD70S is 1 if the property was built between 1970 and 1979, 0 otherwise

BLD80S is 1 if the property was built between 1980 and 1989, 0 otherwise

BLD90S is 1 if the property was built between 1990 and 1999, 0 otherwise

TYPxxx is a set of dummy variables that depict the type of house as follows:

TYPDETCH is 1 if the property is detached (i.e. it is a stand-alone house), 0 otherwise;

TYPTRRD is 1 if the property is in a terrace of similar houses (commonly referred to

as a “row house” in the USA), 0 otherwise;

TYPBNGLW is 1 if the property is a bungalow (i.e. it has only one floor), 0 otherwise;

TYPFLAT is 1 if the property is a flat (or “apartment” in USA), 0 otherwise;

GARAGE is 1 if the house has a garage, 0 otherwise;

CENTHEAT is 1 if the house has a central heating, 0 otherwise;

BATH2 is 1 if the house has two or more bathrooms, 0 otherwise;

PROF6 is the proportion of the workforce in professional or managerial occupations in

the census output area in which the house is located;

UNEMPLOY is the rate of unemployment in the census output area in which the house

is located; and FLRxxx is a set of interaction terms where;

FLRDETCH = FLRAREA × TYPDETCH

FLRFLAT = FLRAREA × TYPFLAT

FLRBNGLW = FLRAREA × TYPBNGLW

FLRTRRD = FLRAREA × TYPTRRD
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DISTCL is the straight-line distance from the property to the center of London (taken here

to be Nelson’s column in Trafalgar Square) measured in m; loge denotes a natural logarithm; and

β denotes a parameter to be estimated.

Bandwidth selection

For the spatiotemporal version of GWR, adaptive spatial bandwidths are used in this study,

with values ranging between 0 and 1 which specify the proportion of data points to be included

in the local model calibration. The spatiotemporal weights are defined using a Gaussian kernel

function as shown in (8). As mentioned, the data set contains a 19-year set of house price in

London from 1980 to 1998. Thus, if the spatiotemporal GWR is to be used to calibrate the

model at a regression point i located in year 1998, the CV function from equation (7) will

consist of a set of 20 variables: [bS1998, bS1997, . . . , bS1980, bT] corresponding to the 19-year

specific spatial bandwidths and the temporal bandwidth. However, the complexity of a

20-variable objective function makes the minimization process extremely computationally

demanding because of the large number of possible combinations of the 19 spatial bandwidths

and the temporal bandwidth to be inputted in the CV function. For example, if an adaptive type

of bandwidth is to be used, each spatial bandwidth may take values between 0 and 1, i.e., the

proportion of points to be included in the model calibration. Assuming, for simplification, that

the spatial bandwidths may take values from the series [0.05, 0.1, 0.15, 0.20, 0.25, . . .. . . ,

0.90, 0.95, 1], this yields 20 possible values for each spatial bandwidth in the model, which

leads to 1920 combinations of possible spatial bandwidth to be tested in the CV function. Also,

as there are 18 possible values for the temporal bandwidth (one for each time lag) the total

amount of possible values of the CV function to be computed amounts at 18*1920; therefore

the model must be constrained.

One way to constrain the model is by reducing the number of time lags. In this study, the

number of time lags will be reduced from 18 to 5 years. Because of the data availability (from

1980 to 1998), local estimates for regression points located at years 1984, 1983, 1982, and

1981 are estimated using only 4, 3, 2, and 1 time lag periods respectively. This reduction

in the time lags is based on the assumption that data points located more than five years away

from the regression year7 would have little or negligible influence on the estimation of local

parameters at the regression point. The number of possible values of the CV function therefore

drops to 5*620. Nevertheless, this number of possible values for the CV function is still high

enough to make the minimization process extremely computationally demanding. To cope with

this, the estimation mechanism proposed in the section entitled Bandwith optimization is

employed in which the optimal spatial bandwidths are derived one-by-one instead of simulta-

neously. For a given temporal bandwidth bT, this mechanism firstly estimates the optimal

spatial bandwidth bSt
* for the regression year t using data points from the same year t. Next,

by keeping bSt
* constant, data points from the first time lag period t-1 are incorporated into the

model. Weights for data points from year t-1 are given by Equation (4) in which the optimal

spatial bandwidth bS t−( )1
* is to be derived. This procedure is repeated to estimate bS t−( )2

* , bS t−( )3
* ,

bS t−( )4
* and bS t−( )5

* by progressively incorporating data points from the corresponding time lag

periods.

The above process is repeated for different values of the temporal bandwidth that is for bT

equals 1, 2, 3, 4 or 5 years so that a specific set of optimal spatial bandwidths is obtained for each

possible value of the temporal bandwidth, say, [ *, * , * , , * ]b b b bSt S t S t S t q bT−( ) −( ) −( )…1 2 . Thus, a CV score

for the model calibration at the regression year t can be obtained for each set of optimal spatial
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bandwidths specific to each bT. An obvious selection of the optimal temporal bandwidth bT
* is the

value of bT for which the minimum CV score of the model is obtained.

Selection of the temporal bandwidth

The optimal temporal bandwidth for each year is given in Table 2. A temporal bandwidth of value

0 would mean only a spatial bandwidth is used. As with the spatiotemporal approach, data points

from the regression year along with data points from the five time lag periods are used to calibrate

the model for each regression year according to equation (8). When no temporal bandwidth is

used to weight data points, dtij
= 0 in equation (8) and thus the term exp d bt Stij

−( )2 2 becomes one.

That is, data points are only weighted according to the distance from the regression point and a

unique spatial bandwidth bS will be used to compute the weights from equation (8). It should be

noted that in this case, the CV function would be evaluated at points located only at the regression

year although data points from previous years are incorporated in the model.

With regard to the optimal temporal bandwidth, by a visual examination of Table 2, it can be

observed that for all years apart from 1986, 1987, and 1995 the CV function is minimized with

a temporal bandwidth equal to 1 year. For 1986 and 1987, the optimal temporal bandwidths is 2

years and for 1995 it is 3 years. Following the characteristics of temporal kernels described in the

section entitled GTWR, a temporal bandwidth equal to 1 for a regressionyear t yields a temporal

weighting gradient in which data points located at year t − 1 have significantly more influence on

the regression points than data points located further away in time. Similarly, temporal band-

widths equal to 2 for years 1986 and 1987 indicate that the “circle of influence” is extended in

time to data points located at year t − 2. Such temporal bandwidths are reasonable as in the

housing market, appraisers pay more attention to recent trends in the overall market to set house

prices (Pace et al. 1998). Thus, data points located 1 or 2 years earlier than the regression year

will have more influence on the house pricing process at the regression year than those located

more distance in time. The only case in which a temporal bandwidth exceeds 2 years is year 1995

for which a temporal bandwidth equal to 3 years was obtained. However, it is worth noting that

only 433 observations of house prices (Table 1) and their determinants are available for 1995 in

contrast to the other years for which samples of 1,000 observations were selected. A larger

temporal bandwidth for this year is thereby understandable as the inclusion of more data points

with higher weights will likely yield a reduction in the variance of local estimates.

Selection of the spatial bandwidth

Table 2 summarize for each regression year the set of optimal spatial bandwidths specific to each

optimal temporal bandwidth. As mentioned, once the optimal temporal bandwidth is obtained

for a regression year t, the set of optimal spatial bandwidths [ *, * , * , * , * , * ]b b b b b bSt S t S t S t S t S t−( ) −( ) −( ) −( ) −( )1 2 3 4 5

is simultaneously derived according to equations (1)–(9) provided in the section entitled

Bandwith optimization. Adaptive spatial bandwidths are used here as a measurement of the

proportion (between 0 and 1) of data points from years t, t − 1, t − 2, t − 3, t − 4, or t − 5 used

to calibrate GWR at a regression point i located at the regression year t. In general, the set of

optimal spatial bandwidths for each regression year t in Table 2 exhibits a decreasing trend as

data points are located farther away in time from the regression year, that is,

b b b b b bSt S t S t S t S t S t
* * * * * *> > > > >−( ) −( ) −( ) −( ) −( )1 2 3 4 5 . This trend can probably be caused by the bias intro-

duced to local estimates at a given location i (located at the regression year t) by data points located

at years t − 1, t − 2, . . . , t − 5 as the house pricing process may differ from year to year. As a result,

it is expected that a data point located at the regression year t and at a distance, say, d from the
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regression point i will have more influence on the estimation of local parameter at location i than

does a data point at year t − 1 and located at the same distance d from the regression point i.

However, there are three cases for which the decreasing trend of the optimal spatial band-

widths is interrupted. The first case corresponds to the optimal bandwidths bS1993
* and bS1992

* for

the regression year 1995. As can be seen in Table 2, b bS S1993 1992
* *< , where the opposite order,

b bS S1993 1992
* *> is expected. This change suggests that the bias introduced to the model calibration

for year 1995 by data points located at year 1992 and at a distance, say, d from the regression

point i is lower than the bias introduced by data points located at year 1993 and at the same

distance from the regression point. As a consequence, it can be inferred that there are more

similarities in the house pricing process between years 1995 and 1992 than that between years

1995 and 1993. Such inference can be reinforced by examining the time series plot of average

house prices in Fig. 3 where average house prices for years 1992 and 1995 are more similar to

each other than those for years 1995 and 1993 are. The other two cases with regard to the

interruption of the decreasing trend in the optimal spatial bandwidths are years 1991 and 1983.

Specifically, for year 1991, b bS S1990 1989
* *< (Table 2), and for year 1983, b bS S1982 1981

* *< (Table 2),

while the opposite order in the inequality is expected as with the case for year 1995. Again, the

explanation for these two cases can also be found in the similarities of the house pricing process

between the corresponding years. For example, Fig. 3 suggests that the average house prices for

years 1991 and 1989 are more similar than those for years 1991 and 1990 are.

Model calibration

Estimation of local parameters

As described in the section entitled Model formulation, a set of GTWR local estimates at

regression point i in regression year t is derived according to equation (2) where the weight matrix

W is obtained by equation (5) using the set of optimal temporal and spatial bandwidths specific

for each regression year t. As GTWR is used to calibrate the London hedonic house price, matrix

X in equation (2) represents house determinants, while y is a vector of house prices. As there are

more than 20 parameters in the model, the results for the FLRAREA semi-detached parameter,

which measures the relationship between house prices and the floor area for semi-detached

properties, is selected as an example to explore the temporal and spatial variability of local

parameters estimated by GTWR.

Fig. 4 depicts a time series plot for the FLRAREA semi-detached parameter estimated by

GTWR. For comparison, the time series plot for the same parameter, but estimated by cross-

sectional GWR is also added to Fig. 4. The GTWR time series plot closely follows the trend of

the cross-sectional GWR plot. For some years such as 1982, 1988, and 1995 the value of the

parameter from GTWR exceeds the value given by the cross-sectional GWR, while the opposite

occurs for years such as 1985, 1989, 1991, and 1998. This is possibly attributed to the effects of

earlier data points from years t − 1, . . . , t − q, where q is the number of effective lag years used

in the calibration of GTWR, on the parameter estimation at a regression year t. While for some

years earlier data points down-weight the value of the parameter estimate at a regression year t,

for others the effect is the opposite.

In addition, the nonstationarity of the parameter estimates can be assessed by comparing

twice the standard errors of the global ordinary least squares (OLS) estimates with the inter-

quartile of local estimates from GTWR, with larger values of the latter indicating significant

spatial nonstationarity (Fotheringham, Brunsdon, and Charlton 2002). Although other techniques

can be employed to assess nonstationarity, such as the Monte Carlo simulation, this method is
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adopted here because it requires minimal computation effort. As an example, the results for the

year 1998 are summarized in Table 3, from which it can be seen that all the parameter estimates

exhibit extra variations beyond that expected from purely sampling.

Again, using the FLRAREA semi-detached parameter estimates as an example, the spatial

variations in the local estimates can be examined through surface maps. Fig. 5 shows for a sample

of years (1981, 1986, 1991, 1996, 1997, and 1998) the spatial distribution of local estimates of

the FLRAREA semi-detached parameter obtained from GTWR. As the temporal weights

assigned to data points in the regression year equal to 1, varying weights to such points are mainly

derived by the spatial bandwidth for the regression year. Thus, spatial patterns of local estimates

by GTWR are mostly controlled by the value of the spatial bandwidths for each regression year.

It is thereby unlikely that there is any large spatial variation in years in which the spatial

bandwidth is relatively large (1983, 1984, 1986, 1992, 1993, 1994 and 1995). Likewise, in the

years when the spatial bandwidth is relatively small (1982, 1990, 1991, 1997, and 1998), a more

spatially diverse set of local estimates of the parameter is observed.

Further, the spatial variation of local estimates over time is also driven by the temporal trend

in house prices as depicted in Fig. 4. For example, the spatial distribution of the local estimates

of the FLRAREA semi-detached parameter expands from 1997 to 1998 as the average value of

semi-detached properties increased dramatically during this period. The increasing prominence

of housing in central London, north of Thames, is clearly marked in these signs, which show the

value/m2 of semi-detached properties, holding all other factors constant.

Analysis of residuals

The selection of the temporal bandwidth that minimizes the CV score results from a bias-variance

trade-off of local estimates. In order to examine the extent to which the drop in the CV score is

due to a reduction in the bias or a reduction in the variance of the estimates, the boxplot of
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Figure 4. Temporal variation of FLRAREA Semi-detached estimate: cross-sectional geographi-

cally weighted regression (GWR) and geographical and temporal weighted regression (GTWR).
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residuals from GTWR is displayed in Fig. 6. In addition, two features are included in Fig. 6: (1)

a point inside the rectangle indicating the mean of residuals, and (2) a line indicating the zero

value for the residuals in each time period. As can be seen, the mean of the residuals from GTWR

is approximately zero for all regression years. Also, greater variation in the residuals for the years

1988 and 1989 is evident, which might be caused by instability in the housing market prior to the

crash in the early 1990s. In contrast, there is less variation in the residuals for the years 1993 and

1994, which might be relevant to the lower house prices for semi-detached properties during

those years (see Fig. 5). The subsequent residuals kept increasing toward 1998, which preceded

another crash in 2001.

Comparison with basic GWR

As GTWR is an extension of traditional GWR into a temporal dimension, it might be of interest

to know “is it statistically necessary to include data points from previous years t − 1, . . . t − q to

calibrate GWR at a regression point i located at year t?” It is thereby worth comparing the

statistical performance of GTWR against the cross-sectional GWR approach, that is when local

parameters are estimated at each year by GWR using data exclusively from the year at which the

model is being calibrated. Fig. 7 depicts for each year the CV score of the hedonic price model

calibrated by the cross-sectional GWR and GTWR.8 Three features of this plot are worth noting.

Table 3. Spatial Nonstationarity Tests of Variables for Year 1998

Variable Interquartile (GTWR) 2 × SE (OLS) Extra local variation

FLRAREA 697.44 53.68 YES

BLDPWW1 17,364.90 2,047.14 YES

BLDPOSTW 9,990.00 3,152.00 YES

BLD60S 12,350.00 3,388.32 YES

BLD70S 11,528.00 3,500.88 YES

BLD80S 15,473.00 3,922.90 YES

BLD90S 28,299.00 4,670.82 YES

TYPDETCH 85,806.00 14,459.62 YES

TYPTRRD 38,443.00 7,658.54 YES

TYPBNGLW 115,704.00 23,330.38 YES

TYPFLAT 39,220.00 7,339.86 YES

GARAGE 5,870.00 1,854.24 YES

CENTHEAT 8,030.00 2,576.52 YES

BATH2 15,735.00 2,832.46 YES

PROF 74,190.00 7,977.50 YES

UNEMPLOY 92,541.00 24,655.34 YES

FLRDETCH 701.82 96.86 YES

FLRFLAT 400.70 72.00 YES

FLRBNGLW 363.53 230.88 YES

FLRTRRD 363.53 66.34 YES

LOGDIST 67,202.00 1,980.88 YES

GTWR, geographical and temporal weighted regression; OLS, ordinary least squares; SE, stan-

dard error.
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Figure 5. Spatial variation of local parameter estimate for FLRAREA Semi-detached from

geographical and temporal weighted regression (GTWR): 1981–1998.
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One is the similarity between the trend of the CV score of both techniques, and the time series
plot of the average house prices shown in Fig. 3. The goodness-of-fit of the GTWR and the
cross-sectional GWR approach decreases (i.e., the CV score becomes larger) as house prices rise.
This would indicate that for periods of rapid acceleration in the housing market, for example
between 1982 and 1989 and between 1995 and 1998, important changes in the housing pricing

Figure 6. Boxplot of residuals from geographical and temporal weighted regression (GTWR).
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Figure 7. Cross-validation (CV) score from cross-sectional geographically weighted regression
(GWR) and geographical and temporal weighted regression (GTWR): 1980–1998.
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dynamics occur which might be modeled by the inclusion of additional variables in the hedonic

price model. Another point to highlight is that the goodness-of-fit of GTWR is superior to the

goodness-of-fit of the cross-sectional GWR for all years of the study, although for some years

such as 1991, 1992, 1993, and 1994, the difference in the CV score between both techniques

appears to be negligible.

Finally, it is worth noting that the goodness-of-fit of GTWR compared with the goodness-

of-fit of the cross-sectional GWR is more superior during the 1980s than during the 1990s. In

spite of a temporal bandwidth larger than zero being found for all years, the time series plots in

Fig. 7 suggests that the influence of data points from earlier years contributed more to the

calibration of the model in regression year t during the 1980s than during the 1990s. This finding

implies that during the 1980s appraisals paid more attention to house prices from previous years

than they did during the 1990s.

Discussion and conclusions

As the importance of the time dimension in spatial phenomena and processes is increasingly

recognized, spatiotemporal modeling has attracted extensive research interests in recent years in

the field of GIS and analysis. The focus in this article is on local spatiotemporal modeling, that

is a spatiotemporal version of GWR, accounting for the nonstationary processes in both space and

time. A spatiotemporal extension of GWR, GTWR, is proposed, along with a method for optimal

spatiotemporal bandwidth selection. The application of GTWR in hedonic price models using a

19-year data set in London, as well as the comparison with the traditional GWR approach,

demonstrates the effectiveness and efficiency of the proposed model and calibration method.

One important characteristic of GTWR is the spatiotemporal kernel function, through which

data points of interest are both spatially and temporally weighted. Further, the spatiotemporal

bandwidth used by spatiotemporal kernel functions consists of the estimation of segregated

bandwidths for each time period, allowing the size of individual bandwidths to vary over time.

When compared with the cross-sectional GWR approach using the house price data in London,

GTWR produced local parameter estimates with a better bias-variance trade-off, particularly for

the house prices data from the 1980s, implying the significance of incorporating time dimension

in local model calibration.

Closely related to the spatiotemporal bandwidth is the procedure through which the optimal

spatial and temporal bandwidths are derived. In this study, spatial bandwidths are estimated

one-by-one, which effectively addressed the computational infeasibility of deriving the spatial

bandwidths simultaneously. However, although the CV score of the model estimated by GTWR

in this way is smaller than that given by the cross-sectional GWR approach (see Fig. 7), there is

no evidence that the one-by-one procedure yields a global minimum of the CV function. In other

words, lower scores of the CV function might be obtained from other combinations of spatial

bandwidths. Thus, the CV score given by the proposed procedure can be regarded as a particular

solution for the minimization process of the CV score.

When compared with other local models dealing with space and time, the major difference

in the operation of GTWR is the definition of the spatiotemporal bandwidth. Unlike the spa-

tiotemporal distance proposed by Huang, Wu, and Barry (2010) and Yu (2014), which has the

issue of dimensionality reduction, in GTWR proposed here the spatial and temporal distances are

calculated separately while integrated through spatiotemporal kernel functions. In this way, such

distances measured according to the underlying spatiotemporal scale can better reflect the
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spatiotemporal relationships among observations. However, GTWR has an increased computa-

tional complexity with the iterative optimal spatial and temporal bandwidth selection procedure

given in the section entitled GTWR. Therefore, the choice of appropriate models is largely a

function of the underlying data or problem of interest (Artelaris 2014).

As GWR is an important approach for local spatial modeling, the spatiotemporal version of

GWR (GTWR) proposed in this study extends its capability in modeling spatiotemporal nonsta-

tionary processes. The application results have demonstrated that GTWR might be a useful and

promising technique to calibrate spatiotemporal local models as well as to forecast future events.

In terms of future research, it might be of interest to develop more efficient and sophisticated

computational algorithms to derive the optimal spatial bandwidths simultaneously. Also, addi-

tional research can be conducted to investigate the statistical robustness of local estimates by

GTWR, possibly by resampling methods such as bootstraping.

Another interesting avenue of research would be to explore the relationship between spatial

and temporal kernels in GTWR and the use of separable space–time covariance structure in

kriging. In summary, space–time modeling is complex and space–time local modeling is even

more complex, but the increasing prevalence of large spatiotemporal data sets combined with

ever more efficient algorithm development and faster computing resources, mean that models

such as GTWR and subsequent development are now becoming practical to provide ever more

details spatial and temporal processes.

Notes

1 From this point onward, for simplification purposes, the version of GWR when data points are spatially

and temporally weighted will be referred to as GTWR.

2 In GWR, a regression point corresponds to the point at which parameters are being estimated.

3 Brunsdon, Fotheringham, and Charlton (1998) claim that the spatial bandwidth bS provides some control

on the range of the “circle of influence” in the geographical data.

4 In this study, the root mean square form of the CV function defined is used as a way of providing a more

intuitive interpretation of the magnitude of the average error regardless of the error is either positive or

negative.

5 Each census output area has an approximate population of 150 households.

6 PROF and UNEMPLOY variables were created using the information provided by the U.K. Census of

Population held in April 2001.

7 The term regression year is used to refer to the year in which the regression point is located.

8 The CV score of GTWR for year 1980 is the same as the one of the cross-sectional GWR as no data points

are available from previous years.
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