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A B S T R A C T

Space-time modelling has been successfully applied in numerous research projects and has been studied ex-
tensively in the field of geographical information science. However, the cyclical or seasonal variations in the
temporal dimension of most spatiotemporal processes are rarely considered along with spatiotemporal non-
stationarity. Seasonal variations are widespread and typical in marine environmental processes, and addressing
both spatiotemporal heterogeneity and seasonal variations is particularly difficult in the turbid and optically
complex coastal seas. By incorporating seasonal periodic effects into a geographically and temporally weighted
regression (GTWR) model, we proposed a geographically and cycle-temporally weighted regression (GcTWR)
model. To test its performance, modelling of chlorophyll-a, known as an important indicator of the coastal
environment, is performed using the in situ data collected from 2012 to 2016 in the coastal sea of Zhejiang
Province, China. GcTWR is compared with global ordinary least squares (OLS), geographically weighted re-
gression (GWR), cycle-temporally weighted regression (cTWR), and GTWR models. In the results, the GcTWR
model decreases absolute errors by 89.74%, 79.77%, 76.60% and 29.83% relative to the OLS, GWR, cTWR, and
GTWR models, and presents a higher R2 (0.9274) than the GWR (0.5911), cTWR (0.6465), and GTWR (0.8721)
models. The estimation results further confirm that the seasonal influences in coastal areas are much more
significant than the interannual effects, which accordingly demonstrates that extending the GTWR model to
handle both spatiotemporal heterogeneity and seasonal variations are meaningful. In addition, a novel 3D vi-
sualization method is proposed to explore the spatiotemporal heterogeneity of the estimation results.

1. Introduction

Space and time are two fundamental dimensions pertaining to all
geographic processes. Space-time analysis and modelling of geographic
parameters has long been one of the main focuses of geographical in-
formation science (GIScience). Examples include investigating the
spatiotemporal patterns of real estate prices (Fotheringham et al., 2015;
Huang et al., 2010; Lu et al., 2014; Wu et al., 2014), environmental
issues (Bai et al., 2016; Chu et al., 2015), land use (Wrenn and Sam,
2014), marine processes (Alam et al., 2016; Terry et al., 2013; Wang
et al., 2015) etc. Although the temporal dimension has been in-
corporated into spatial analysis and modelling successfully in many
research projects, cyclical or seasonal variations are rarely managed
with spatiotemporal nonstationarity in most geographic processes.

Seasonal variations in marine environmental processes are widespread
and typical, and require further exploration and researches (Dango, 2015;

Khodse et al., 2007; Niu et al., 2015). Coastal seas are the richest marine
regions in the world, and are the interfacial areas among the marine, ter-
restrial and aerial environments (Chen and Liu, 2015). Considering the key
role of phytoplankton in biogeochemical cycles, phytoplankton biomass in
terms of chlorophyll-a (Chl-a) is considered as the biological indicator of
coastal environments and the most important element in coastal ecosystems
(Paudel et al., 2016; Su and Weng, 1994). Therefore, investigating the
spatiotemporal variations of Chl-a and understanding the interactions be-
tween Chl-a and other environmental factors are of great significance to
recognize the ecological state of the coastal areas.

However, the variations of Chl-a are difficult to analyse and interpret
due to the complicated interrelationships between phytoplankton and
marine environmental factors (suspended matter, dissolved oxygen, nu-
trients, organic solute, etc.). Previous studies have established several global
regression models to predict Chl-a concentrations. Celik (2006) used a
multiple regression model to explore the relations between Chl-a and other
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water quality parameters (ammonium (NO4), nitrate (NO3) and phosphate
(PO4)). Partial least-squares regression (PLSR) was also employed to address
the optimal count of factors that were suitable for estimating Chl-a, which
was capable to account for 80% of the observed Chl-a variations (Ryan and
Ali, 2016).

The hypothesis of space-time stationarity in global models is usually
impractical since parameters tend to change across the research regions and
over time. Therefore, some local models have been put forward to capture
spatial variability in marine environmental processes (Freedman and Sen
Roy, 2012; Keith et al., 2013). For instance, geographically weighted re-
gression (GWR) model was formulated and fitted by Keith et al. (2013) to
investigate the variations in the relations between macroalgae richness and
environmental conditions over geographical regions. Furthermore, re-
searches have been conducted to integrate temporal impacts into the GWR
model to account for both spatial and temporal heterogeneities in recent
years (Crespo, 2009; Fotheringham et al., 2015; Huang et al., 2010). For
example, by extending the spatial distance to a spatiotemporal distance, a
geographically and temporally weighted regression (GTWR) model was
developed by Huang et al. (2010), which has been applied in various fields
and has achieved significant performance. In 2015, Fotheringham et al.
(2015) also proposed a new GTWR model to deal with local effects in both
space and time, which was confirmed to be effective in the modelling of
hedonic price.

However, few researches have been carried out on the quantitative
effect of marine environmental processes in coastal seas on both spatial
and temporal scales. Due to the complex optical and turbid character-
istics of coastal regions, managing spatiotemporal nonstationarity in
these areas is considerably difficult and challenging. Moreover, studies
have shown that seasonal variations are quite significant in the coastal
environment. For example, a long period of remote sensing data was
used by Chen and Liu (2015) to demonstrate the temporal variations of
Chl-a and suspended matter, which indicated significantly seasonal
changes in the China's eastern coastal zones.

Therefore, to better understand the marine environmental processes in
coastal seas, novel approaches should be put forward to deal with the
spatiotemporal nonstationarity and seasonal variations simultaneously. By
dividing temporal distance into seasonal periodic and interannual aperiodic
parts, our study extends the GTWR model of Huang et al. (2010) and
proposes a geographically and cycle-temporally weighted regression
(GcTWR) model to capture cycle-temporal variations and spatiotemporal
heterogeneity. In addition, an innovative 3D visualization method is pro-
posed for presenting the spatiotemporal variations of the estimation results.

Our article is formed as follows. In Section 2, we describe the study area
and data. The widely used GWR model is introduced in Section 3, followed
up by the process of integrating GTWR with cycle-temporal variations to
achieve the GcTWR model. The case study results and discussions of Chl-a
modelling in the coastal sea of Zhejiang, China using GcTWR are presented
in Sections 4 and 5. Furthermore, GcTWR is compared with global and
other GWR-based models for performance examination. Finally, the study
comes to an end with conclusions and summaries in Section 6.

2. Study area and data

2.1. Study area

The study area is situated in the Zhejiang coastal areas (ZCA) of the
East China Sea (ECS), which is abundant in fishery resources and is a
zone of frequent red tide events (Lou and Hu, 2014; Yang et al., 2013)
(Fig. 1). It lies within a typical subtropical monsoon climate with four
distinct seasons and is considerably affected by seasonal precipitation
flows from the Yangtze River (Qiu et al., 2015), which results in strong
seasonal variations in regional marine environmental processes. Every
year, the Yangtze River transports about 240 × 106 t of sediment into
the ECS, approximately 32% of which is stored in the ZCA and Fujian
coastal region (Liu et al., 2006). In addition to the Yangtze River,
several other rivers, including the Qiantang River, directly discharge

large quantities of freshwater with high nutrients and sediments into
the ZCA (Cong et al., 2014; He et al., 2013).

Tidal action in the ZCA is powerful and causes significant resuspension
of sediment, especially in the Hangzhou Bay, one of the strongest tidal bays
in the world. As a result, the ZCA has optically complex water and sig-
nificant seasonal variations, which makes the spatiotemporal hetero-
geneities of its marine processes quite complicated.

2.2. Dataset

In situ data used in this paper were collected by the Marine
Monitoring and Forecasting Center of Zhejiang Province (Hangzhou,
China) through survey cruises and dip samples. The study data covered
time period from 2012 to 2016 and were collected four times each year
in winter (March), spring (May), summer (July–August), and autumn
(October) with exception in 2012 and 2013. The detailed information
of the dataset is shown in Table 1.

The spatial distributions of monitoring stations were different every year
and the number has increased from 214 in 2012 to 309 in 2016. The stations
of 2016 were displayed in Fig. 1 and a total dataset of 4820 observations was
available (Table 1). The dataset provided full water quality parameters, e.g.,
suspended matter (SM), potential of hydrogen (PH), salinity (SAL), chemical
oxygen demand (COD), dissolved oxygen (DO), ammonia nitrogen (NH3),
nitrate nitrogen (NO3), nitrite nitrogen (NO2), silicate (SiO4), phosphate
(PO4), total phosphorus (TP), total carbon (TC), total nitrogen (TN), Chl-a,
etc. Moreover, it also contained geographic coordinates and monitoring date
information to enable our spatiotemporal analysis.

In the analysis process, Chl-a concentrations were used as the dependent
variable while the explanatory variables included a total of 25 variables.
Through correctional and multicollinearity analysis using SPSS 22.0
(Table 2), we found that DO, COD, TN and PO4 were the most strongly
correlated parameters with Chl-a, and had the lowest value of variance
inflation factor (VIF). In addition, DO and COD are known as important
indicators of phytoplankton respiration strength, while TN and PO4 are
fundamental nutrient substances for phytoplankton growth (Cole and
Harmon, 1981; Steingrund and Gaard, 2005). Therefore, DO, COD, TN and
PO4 were chosen as the independent variable in our experiment.

3. Geographically and cycle-temporally weighted regression
modelling

3.1. GWR model

The basis for the GWR methodology is that parameters in each point
are estimated locally ground on distance-weighted subsampling at
neighbouring locations (Brunsdon et al., 1998; Fotheringham et al.,
2002). GWR model that takes the version of the Ordinary Least Squares
(OLS) model is presented as follows:

∑= + +y β u v β u v x ε( , ) ( , )i i i k k i i ik i0 (1)

The index and coordinates of a spatial point are denoted as i and
(ui,vi) in Eq. (1). Accordingly, yi, xik, and εi represent the dependent
variable, the kth independent variable and the error term for the ith
point, respectively. β0(ui,vi) is the intercept term, and βk(ui,vi) stands for
the coefficient of kth independent variable at location i, which are
permitted to vary across space to capture spatial nonstationarity. The
estimator using matrix representation can be expressed as:

 = −β u v X W u v X X W u v y( , ) ( ( , ) ) ( , )i i
T

i i
T

i i
1 (2)

The n × n weights matrix associated with positions is represented
by W(ui,vi), with geographical weights in its leading diagonal and zeros
in its off diagonal elements. A weighting function is established using
the distance vector and a distance decay parameter such that neigh-
bouring sample observations from the spatial data sample are allocated
relatively more weight.
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Gaussian-based, bi-square and tri-cube kernels are three most
commonly used weighting functions, and each of them includes fixed
and adaptive types. The distance in fixed kernel remains constant with
varying quantity of nearest neighbours, while the quantity of neigh-
bours in adaptive kernel is constant but the distance varies.

For example, the fixed Gaussian-based kernel function is form as follows:

= −W exp d b( / )ij ij
2 2 (3)

where b, known as bandwidth, is a nonnegative decay parameter and gen-
erates an attenuation of impact related to the distance dij.

In practice, fixed kernel function is a proper selection for modelling
when the samples are regularly spaced (Gollini et al., 2015). However,
if the samples are dense or sparse, it is desirable to change the kernel
size to fit the irregular patterns. Adaptive kernels with adaptive band-
widths are hence used to insure adequate local information for each
local calibration (Fotheringham et al., 2002).

For instance, the adaptive bi-square weighting function can be ex-
pressed as:

= ⎧
⎨⎩

− <W d b if d b
otherwise

[1 ( / ) ] ,
0,ij

ij i ij i
2 2

(4)

where bi represents the distance from position i to its qth nearest
neighbour, i.e., the bandwidth of position i. Therefore, the calibration
of adaptive kernel involves the estimation of q value (Fotheringham
et al., 2002).

The bandwidth is calculated utilizing a cross-validation (CV) pro-
cedure:

̂∑= − ≠CV b y y b( ) ( ( ))
i i i

2
(5)

In fact, by optimizing Eq. (5) according to the corrected Akaike In-
formation Criterion (AICC), the parameter b or q is automatically fitted.
AICC estimate takes the following form:

̂ ⎜ ⎟= + + ⎛
⎝

+
− −

⎞
⎠

AIC nlog σ nlog π n n tr S
n tr S

( ) (2 ) ( )
2 ( )C e e

2

(6)

where S is the hat matrix. The fitted values y are obtained by pre-
multiplying the observed values y with matrix S:

 =y Sy (7)

3.2. GcTWR model

3.2.1. GTWR model
GWR is essentially an approach of “borrowing” data from ambient

positions for modelling spatial nonstationarity alone. Due to the fact
that time is as well a fundamental attribute belonging to geographic
processes, Huang et al. (2010) produced a GTWR model by constructing
a spatiotemporal weight matrix to account for spatiotemporal non-
stationarity. The GTWR model is presented as:

∑= + +y β u v t β u v t X ε( , , ) ( , , )i i i i k k i i i ik i0 (8)

The estimates of βk(ui,vi, ti) similarly takes the following form:

Fig. 1. Map of the study area in the Zhejiang coastal sea.

Table 1
Summary of the study dataset.

Year Monitoring frequency Stations Observations

2012 2 (spring, summer) 214 428
2013 3 (spring, summer, autumn) 264 792
2014 4 (winter, spring, summer, autumn) 282 1128
2015 4 (winter, spring, summer, autumn) 309 1236
2016 4 (winter, spring, summer, autumn) 309 1236
Total 17 1378 4820

Table 2
Correctional and multicollinearity analysis of parameters.

DO COD TN PO4

R2 (Chl-a) 0.262a 0.282a −0.178a −0.163a

Sig. 0.000 0.000 0.000 0.000
VIF 1.085 1.062 1.005 1.119

a Correlation is significant at the 0.01 level (2-tailed).
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 = −β u v t X W u v t X X W u v t y( , , ) ( ( , , ) ) ( , , )i i i
T

i i i
T

i i i
1 (9)

The spatiotemporal weight matrix is denoted as W(ui,vi, ti), based on
the definition of the spatiotemporal distance and its decay functions.

Considering that location and time usually have different scaling
effects, Huang et al. (2010) combined the spatial distance dS and the
temporal distance dT to form a spatiotemporal distance dST = dS ⊗ dT,
with symbol ⊗ standing for different operators. If operator ‘+’ is ac-
cepted, the spatiotemporal distance dST is a linear combination of dS

and dTas follows:

= +d d μdλST S T (10)

where λ and μ are scale parameters to counterbalance the dissimilar
influences between dS and dT.

3.2.2. Extending GTWR with cycle-temporal variations
Despite the fact that space and time are two fundamental dimen-

sions pertaining to marine environmental processes, seasonal periodi-
city is also a significant attribute in marine environmental processes.
The variations of Chl-a in several typical monitoring stations were de-
picted from 2012 to 2016 (Fig. 2). According to the time-series curves,
Chl-a demonstrated both seasonal and interannual characteristics, but
the former was strong and the latter was not significant.

Considering that Chl-a variations are composed of interannual and
seasonal portions, the time variable T is divided into seasonal periodic
and interannual aperiodic parts:

= +T T Tc nonc (11)

where Tc is the seasonal periodic part, i.e., the period within the year of
the monitoring date; Tnonc is the interannual aperiodic part, i.e., the
year part of the monitoring date.

For example, we have two stations named A and B, and the mon-
itoring date of A is ‘2015/05/15’ while that of B is ‘2016/09/18’.
According to the definition, the Tc of A and B are ‘05/15’ and ‘09/18’,
and the Tnonc of them are ‘2015’ and ‘2016’. Therefore, the temporal
distance dABT, the cyclical temporal distance dABTc, and the noncyclic
temporal distance dABTnonc from A to B can be calculated as follows:

= − = − =d T B T A days( ) ( ) 09/18 05/15 126AB
T

c c
c

= − = − = =d T B T A year days( ) ( ) 2016 2015 1 365AB
T

nonc nonc
nonc

= + =d d d days491AB
T

AB
T

AB
Tc nonc

where ∣ ∣ represents the absolute value. Given that Tc and Tnonc may
have different scaling and intensity effects, a symbol ⊕ is introduced to
structure the temporal distance dT as below:

= ⊕d d dT T Tc nonc (12)

where different operators can be adopted to replace the symbol ⊕.
Therefore, the total spatiotemporal distance dST of GcTWR is expressed as:

= ⊗ = ⊗ ⊕d d d d d d( )ST S T S T Tc nonc (13)

If both the spatiotemporal distance dST and temporal distance dT are
measured by the ‘+’ operator, the Eq. (13) is expressed as follows:

= + +d λd μ φd δd( )ST s T Tc nonc (14)

where λ, μ, φ, and δ are scale parameters to balance the influences
between space and time.

According to Eq. (14), if the Euclidean distance is adopted, the
spatiotemporal distance dijST between point i and point j is calculated as
below:

= − + − + − + −d λ u u v v μ φ t t δ t t[ ( ) ( ) ] ( | | | |)ij
ST

i j i j ci cj nonci noncj
2 2

(15)

where tci and tnonci are the periodic and aperiodic temporal components
at position i while tcj and tnoncj are the same components at position j.

If the Gaussian decline-based function is adopted, a space-time
weight can be structured as follows:

⎜ ⎟

⎜ ⎟= ⎧
⎨⎩

−⎛
⎝

− + − + − + − ⎞
⎠

⎫
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−
+
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Fig. 2. Chl-a trends at selected monitoring stations from 2012 to 2016.
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Afterwards, the weight matrix W(ui,vi, ti) of GcTWR containing the
spatial-temporal weights in its leading diagonal and zeros in its off-
diagonal elements is calculated as follows:

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

×

×

×

×
…

× ×

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

W u v t

w w

w

w w

w

w w w

( , , )

0 0 0

0 0 0

0 0 0
0 0 0

i i i

i
S

i
T

i
T

i
S

i
T

i
T

in
S

in
T

in
T

0 0

0

1 1

1

c

nonc

c

nonc

c nonc (17)

Following Eq. (15), if temporal nonstationarity is out of considera-
tion in the study area, the parameter μ is set as 0, which is equal to the
conventional GWR distance. In contrast, if parameter λ is set as 0,
temporal nonstationarity, including periodic and aperiodic parts, are
taken into consideration. This leads to a cycle-temporally weighted
regression model (cTWR). If both φ and δ are set as 1, a GTWR model
similar to the model proposed by Huang et al. (2010) is achieved.

In practice, however, none of the parameters (λ, μ, φ, δ) equals to
zero in most real situations. In this research, λ and δ are set to 1 to
simplify parameter estimations without losing generalization, so only μ
and φ need to be calibrated and optimised through the CV procedures
according to the AICC.

3.3. Implementation of the proposed method

Monitoring data from 2012 to 2016 in the Zhejiang coastal sea of
China was used in this paper. The original data were transformed from
geographic coordinate system to projected coordinate system of
‘Xian_1980_3_Degree_GK_CM_120E’, and their monitoring dates were
converted to Julian day count. Therefore, the space and time units
adopted in our experiments were meter and day. Considering the nu-
merical ranges of space, cyclic-time, and noncyclic-time distances were
quite difference, we regularized and converted the time distances to the
extent of space distances as follows:

= − × − +d d d d d d( ) ( )convert
T

origin
T

min
T

max
S

min
S

min
S

(18)

where dmin
S and dmax

S are the minimum and maximum values of space
distance. dmin

T, doriginT, and dconvertT are the minimum, original, and
converted time distances. The doriginT can be denoted by cyclic-time,
noncyclic-time and total-time distances.

Six different regression models, namely, the global OLS, two con-
ventional GWR models of adaptive and fixed Gaussian-based kernels
(GWR1 and GWR2), the proposed cTWR, GTWR and GcTWR, were
performed on the dataset for Chl-a prediction. The analysis of variance
(ANOVA) tests suggested by Brunsdon et al. (1999) were adopted here
to compare their estimation results in Table 3.

In the ANOVA table, the residual sums of squares (RSS) of various
models are displayed in the first column and the second column pre-
sents the mean square (MS). The p-values and the pseudo-F estimates
are shown in the third and fourth columns, along with R2 and adjusted
R2 in the fifth and sixth columns. In addition, the AIC and bandwidth
(fixed kernel) or q (adaptive kernel) values are presented in the next

two columns. The last two columns are the ratios of space-time (μ/λ)
and cyclic-noncyclic temporal (φ/δ) scale parameters, respectively.

3.4. Parameter selection

Considering that location and time usually have different scaling
effects, similar to Tc and Tnonc, we introduced parameters λ, μ, φ, and δ
to balance the differences between spatial and temporal units. Then, we
reduced the count of parameters in practice by setting λ = δ = 1 such
that just μ and φ have to be estimated.

In our study, a validation procedure is used to optimize the μ and φ
values according to R2 and AIC. The optimization of validation proce-
dure includes three steps:

(1) Firstly, minimize the AIC value to achieve the optimal bandwidth b
and return Rb

2 for all fixed μ and φ values;
(2) Then, vary the φ value and repeat step (1) to maximize the Rφ

2 for
all fixed μ value;

(3) At last, vary the μ value and repeat step (2) to maximize the Rμ
2.

The optimization process can also be displayed as follows:

=F μ φ b max R max R min AIC( , , ) ( ( ))μ φ b
2 2

(19)

where maxXα and minXα means maximizing or minimizing the X value
by optimizing the value of α.

The validation procedure is implemented in Matlab 2013a and a
one-dimensional minimizer function fminbnd that finds the minimum is
used to solve the scalar problem and conduct the optimization.
Considering that maxR2 ≡ min (1 − R2), Eq. (19) is realized in Matlab
as below:

= − −F μ φ b fminbnd R fminbnd R fminbnd AIC( , , ) (1 )( (1 )( ( )))μ φ b
2 2

(20)

The results of parameters μ and φ against R2 acquired by validation
procedures are represented by Fig. 3. We notice that the maximal
R2 = 0.9274 is attained when μ = 3.286 and φ= 24.286.

To compare the periodic and aperiodic time effects more intuitively,
we set μ= 3.286 and vary the value of φ to observe the change of R2

using CV procedures. Selection details of parameter φ are presented in
Fig. 4. When φ is smaller than the optimal value (24.286), R2 increases
with the growth of φ; after the optimal value, it decreases smoothly. In
addition, the result also shows that when choosing an ineffective φ
parameter, the explanatory power of the GcTWR model could be poorer
than GTWR. For example, when μ= 3.286, if φ > 45, the R2 of
GcTWR is less than that of optimal GTWR, where R2 = 0.8721.

4. Results

4.1. Global OLS model

We implemented the global OLS model on the collected dataset to
investigate the average relationships between Chl-a concentrations and
the selected factors (Table 4). The results show that only 29.42% of the

Table 3
ANOVA comparison between GWR-based and global regression models.

Models RSS MS F p-Value R2 Adjusted R2 AIC Bandwidth or q value μ/λ φ/δ

OLS 215,830.00 43,166.00 / / 0.2942 0.2910 26,580.20 /
GWR1 127,484.20 35.48 9.02 0.00 0.5241 0.5218 25,267.38 146
GWR2 109,523.49 32.87 6.02 0.00 0.5911 0.5892 24,874.97 12,801.29
cTWR 94,682.11 27.32 10.98 0.00 0.6465 0.6449 24,168.15 8342.18 23.611
GTWR 31,569.85 13.89 8.31 0.00 0.8721 0.8715 22,792.04 23,838.19 4.333
GcTWR 22,151.93 10.84 9.79 0.00 0.9274 0.9270 22,592.21 26,583.87 3.286 24.286

GWR1: GWR model with adaptive kernel; GWR2: GWR model with fixed kernel; RSS: residual sum of squares; MS: mean square.
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Chl-a concentration variance is explained by the global model in term
of R2. Nonetheless, according to the t-probabilities, all independent
variables, including DO, COD, TN, and PO4, are statistically significant

at 99.5% confidence level. In addition, DO and COD are positively as-
sociated with Chl-a, while TN and PO4 are negatively correlated with
Chl-a.

4.2. GWR-based models

GWR, cTWR, GTWR, and GcTWR models were performed on the
same dataset. The estimations are presented in Tables 5 and 6. Con-
sidering the results of local parameter estimates are massive, the dis-
tributions of parameters are simply shown by a three-column outline to
imply their variability.

The proportion of variance interpretation has risen from 29.42% in
OLS to 59.11% in GWR, 64.65% in cTWR, 87.21% in GTWR, and
92.74% in GcTWR. The significantly reduced RSS and residual standard
error (RSE) values in cTWR and GWR over OLS respectively indicate the
strong spatial heterogeneity and temporal heterogeneity in our dataset.
GTWR, on the other hand, obtains better result than GWR and cTWR
due to the fact that it manages both spatial and temporal non-
stationarities. Furthermore, after considering the cycle-temporal var-
iations on the basis of GTWR, GcTWR acquires the most superior per-
formance according to AIC and R2.

4.3. Results of spatiotemporally heterogeneous chlorophyll-a

4.3.1. Spatiotemporal heterogeneity of Chl-a
One significant advantage of the GWR-based methods is that the local

estimated results of parameters are mappable and viewable by different
colours and symbol sizes proportional to their absolute values. For example,
the spatial distributions of DO estimations in the spring of 2015 using the
GWR, GTWR, and GcTWR models are shown in Fig. 5. We can see sig-
nificant spatial variations over the study area in all models, and the dis-
tribution patterns of GTWR-based (GTWR and GcTWR) models present
more aggregation phenomena than GWR model.

Fig. 3. The parameters μ and φ against R2 statistics.

Fig. 4. R2 values plotted against parameter φ when μ = 3.286.

Table 4
OLS model parameter estimate summaries.

Variable Coefficient Std. deviation t-Statistic Sig.

Constanta −1.657 0.544 −3.045 0.002
DOa 1.886 1.321 14.279 0.000
CODa 2.298 1.194 19.246 0.000
TNa −9.713 0.763 −12.730 0.000
PO4

a −4.558 3.655 −12.470 0.000
Diagnostic information
R2 0.2942
Residual standard error
(RSE)

7.4650

Residual sum of squares
(RSS)

215,830.00

AIC 26,580.20

a Indicates 1% statistical significance.

Table 5
GWR and cTWR parameter estimate summaries.

GWR (bandwidth = 12,801.29) cTWR (bandwidth = 8342.18)

Parameter Min Med Max Min Med Max

Constant −4.852 0.402 4.220 −5.364 4.048 11.707
DO −3.645 3.403 10.441 −19.495 1.192 16.487
COD −1.941 4.614 11.294 −10.454 0.203 10.725
TN −1.151 2.005 4.462 −6.862 −1.030 4.724
PO4 −11.219 −6.807 1.340 −10.593 −1.253 11.866
Diagnostic information
R2 0.5911 0.6465
RSE 5.3178 4.9442
RSS 109,523.49 94,682.11
AIC 24,874.97 24,168.15
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Diverse distributions of parameters indicate that the spatial effects vary
across space. For instance, the spatial variation of TN, PO4, DO, and COD in
the spring of 2016 obtained by GcTWR are shown in Fig. 6. TN shows sig-
nificant positive influence on Chl-a in the Hangzhou Bay area (Fig. 6a, Region

1). PO4, however, shows strong positive influences on Chl-a in the Ningbo sea
areas (Fig. 6b, Region 2) but negative effects in the Wenzhou sea areas
(Fig. 6b, Region 3). In addition, we can see that DO has the most significant
effects in the Zhoushan (Fig. 6c, Region 4) and Ningbo (Fig. 6c, Region 5) sea

Table 6
GcTWR and GTWR parameter estimate summaries.

GcTWR (bandwidth = 26,583.87) GTWR (bandwidth = 23,838.19)

Parameter Min Med Max Min Med Max

Constant −8.108 −3.001 2.577 −1.503 0.013 1.780
DO −2.204 1.077 4.128 −5.278 1.043 3.348
COD −2.389 8.015 15.173 −3.342 0.067 3.748
TN −10.740 −3.000 2.170 −9.294 3.012 14.256
PO4 −2.694 4.005 12.904 −14.754 −2.119 6.801
Diagnostic information
R2 0.9274 0.8721
RSE 2.3915 2.8550
RSS 22,151.93 31,569.85
AIC 22,592.21 22,792.04

Fig. 5. Parameter estimates of DO in spring of 2015 using GWR, GTWR, and GcTWR. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Spatial variation of TN, PO4, DO and COD coefficients.
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Fig. 7. Spatiotemporal distributions of TN in summer from 2012 to 2016.

Fig. 8. Comparison between real values and estimated values at selected monitoring stations from 2012 to 2016.

Fig. 9. Spatiotemporal seasonal variations of parameter DO.
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areas, and COD has the most powerful influences in the Ningbo sea areas
(Fig. 6d, Region 6). Given that spring is the season of high red tide incidences
in the ZCA, these results suggest that by controlling specific parameters in
different sea areas, the variations of Chl-a can be changed and the red tides
might be mitigated.

By comparing the spatial distributions of parameter TN in summer

from 2012 to 2016 using GcTWR (Fig. 7), we note that the five years'
results are almost identical except for some minor differences which
may be caused by the year-to-year modifications in monitoring stations
and monitoring time. It further demonstrates that the interannual ef-
fects of parameter TN on Chl-a are non-significant.

In addition, the spatial distributions of all parameters (TN, DO, COD and

Fig. 10. Spatiotemporal variation of parameter DO with 3D representation.

Fig. 11. Spatiotemporal variation of parameter PO4 with 3D representation.
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PO4) in all 17 seasons from 2012 to 2016 are displayed in Appendix A. In
the results, the spatial distributions of parameter TN in other seasons or the
spatial variations of other parameters in a specific season show similar
spatial patterns. Besides, the estimations present similar distributions in
2014, 2015 and 2016, while in 2012 and 2013, the distribution patterns are
slightly different. The difference of the distributions and quantities of
monitoring stations between 2014–2016 and 2012–2013 are very likely to
be the reason behind the phenomenon.

4.3.2. Cycle-temporal nonstationarity over seasons
Strong seasonal characteristics are discovered after analysing Chl-a var-

iations of several typical monitoring stations in Fig. 2. To evaluate the ca-
pacity of GcTWR for modelling the seasonal variations, the estimated Chl-a
values of GcTWR are compared with the real values in Fig. 8. The almost
identical temporal trends of both values in all stations indicated that the
seasonal nonstationarity are fully captured by the GcTWR model.

Significant cycle-temporal variability of Chl-a is also verified by the
variations of parameter DO over seasons in 2015 (Fig. 9). Parameter DO
demonstrates relatively analogous spatial distribution in spring and summer;
while in autumn and winter, the distribution patterns are remarkably dif-
ferent. Particularly, due to the more suitable weather conditions for phyto-
plankton growth in spring and summer in the ZCA, the influences of DO on
Chl-a in these two seasons are more active than that in autumn and winter. It
accordingly explains the reason why spring and summer are the frequent
occurrence periods of red tide. For other parameters, the spatial distributions
over seasons are observable from Figs. 12 to 15 in Appendix A, which as well
demonstrate significant variability over seasons.

5. Discussion

5.1. Applicability of the GcTWR model

Geographic and environmental processes often present nonstationarity
among both time and space. This phenomenon is especially complicated in
marine environmental process with significant seasonal variations (Wang
et al., 2015). In this paper, we put forward an innovative model called
GcTWR on the basis of the GTWR model of Huang et al. (2010). It divides
temporal distance into seasonal periodic and interannual aperiodic parts to
deal with the spatiotemporal nonstationarity and seasonal variations si-
multaneously. The application of GcTWR in Chl-a modelling using a
2012–2016 dataset in Zhejiang coastal areas, along with the comparison
with the traditional OLS and GWR-based approaches, demonstrates the
effectiveness and efficiency of the proposed model (Table 3).

Compared with the widely used global regression model (OLS), both
local spatial (GWR) and temporal model (cTWR) present considerable im-
provement in performance according to the reductions in RSS and increase
in R2, which confirms that the relationships between Chl-a concentrations
and four explanatory variables (DO, COD, TN, and PO4) are characterized
by significant spatial and temporal nonstationarity. Also, we note that the
performance of GWR2 is much better than GWR1 in term of RSS and R2,
which indicates that the fixed kernel is superior to the adaptive kernel for
our dataset. Therefore, the fixed kernels are adopted in the cTWR, GTWR
and GcTWR models. Compared with traditional global and local (spatial or
temporal) models, the GTWR and our proposed GcTWR models perform
much better in term of all statistical indictors (Table 3), probably due to
their capability to account for the nonstationarity in both space and time.
Studies have shown that seasonal variations in marine environment are
quite significant (Chen and Liu, 2015; Khodse et al., 2007). Consequently,
after considering the cycle-temporal variations on the basis of GTWR,
GcTWR acquires the most superior performance, which further testifies the
applicability and efficiency of GcTWR model.

Small bandwidths usually indicate more rapid variations among time or
space while large bandwidths are more similar to the universal model (Gollini
et al., 2015). Given that the temporal distances have converted to the same
range of spatial distances in the modelling, the bigger bandwidth of GWR2

over cTWRmodel indicates that the temporal variation in our dataset is more

obvious than the spatial variation. When comparing the bandwidths of
GTWR-based models which address both spatial and temporal hetero-
geneities, GTWR model shows more rapid variation than GcTWR model.

In the meantime, we find that the cyclic-noncyclic ratios (φ/δ) in
cTWR and GcTWR models are far> 1, reaching up to 23.611 and
24.286. Considering that dcT and dnoncT are under the same metric
system, it further demonstrates that the seasonal influences of Chl-a are
much more significant than the interannual effects. This conclusion is
also verified by the significant cycle-temporal variability observed from
the spatiotemporal distribution of estimations in Fig. 9 and Appendix A.

In addition, Chl-a is the biological indicator of coastal environ-
ments. The information of spatial distribution provided by the GcTWR
model is useful for developing more effective plans and policies for
environmental protection and pollution, such as mitigate the negative
effects of red tides according to the results of Fig. 6.

5.2. Analysis of spatiotemporal nonstationarity using 3D visualization

To present the spatial distribution and temporal variation concurrently
are quite important for the analysis of space-time models (Kraak and
Koussoulakou, 2005). Therefore, a novel 3D visualization method is pro-
posed in this paper to show the spatiotemporal heterogeneity and seasonal
variations more directly and intuitive for GcTWR model.

We use longitude as the X-axis towards the south and latitude as the Y-
axis towards the west. dT (dT= φdTc + δdTnonc) is used as the Z-axis, and φ and
δ are the optimal parameters of GcTWR, i.e., φ=24.286 and δ=1. The 3D
representation of parameters DO and PO4 are shown in Figs. 10 and 11.

Since φ is considerably larger than δ, dT is primarily controlled by dTc and
reveals seasonal clustering on the Z-axis. Moreover, the slight difference of
monitoring times in each season during the five years leads to unobvious
stratifications among the same seasons. Compared to Fig. 9, Fig. 10 portrays
the spatiotemporal variations of parameter DO in more details over time.
From the perspective of 3D visualization, it represents the spatiotemporal
nonstationarity and aggregation more intuitively. We notice Fig. 10 that the
influences of DO on Chl-a have significant spatiotemporal characteristics in
the Zhoushan, Ningbo and Taizhou sea areas (ZNTSA, selected by the yellow
frames). In winter, DO shows a smoothly negative influence in the ZNTSA;
however, the influence suddenly turns strongly positive in spring. In summer,
there are both positive and negative influences, and the positive forces are
dominant. In autumn, however, the impact is mainly controlled by the ne-
gative forces, and the positive effects decrease rapidly.

In addition, some obvious spatiotemporal aggregation phenomena
are noted in Fig. 11. For example, there are positive clusters in the
Wenzhou sea areas in spring; and strong negative aggregations appear
in the Ningbo sea areas in summer (selected by the yellow frames).

6. Conclusions

In this study, a GcTWR model extending GTWR with cycle-temporal
variations was put forward to incorporate seasonal variations into spatio-
temporal heterogeneity in the marine environmental processes in coastal
areas. The proposed model could be applied to manage both spatial and
cycle-temporal nonstationarity for similar phenomena with periodicity
characteristics, such as human activities, social events, and environmental
processes.

The experimental results of Chl-a in the Zhejiang coastal areas de-
monstrate that GcTWR obtains an excellent goodness of fit and adequate
spatiotemporal explanatory capability compared to the GWR, cTWR, and
GTWR models. In the comparisons among the GWR-based and global
models, the R2 of OLS, GWR, cGWR and GTWR are improved from 0.2942,
0.5911, 0.6465 and 0.8721, respectively, to 0.9274 by GcTWR. Absolute
errors are reduced in OLS, cTWR, GWR and GTWR by 89.74%, 79.77%,
76.60% and 29.83% relative to the GcTWR model. The results of ANOVA
tests and AIC statistics illustrate the same substantial improvements.
Consequently, we come to the conclusion that it is significant to extend
GTWR with cycle-temporal variations.
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Limitations, however, still remain in our research. For instance, a simple
linear combination is adopted to construct both temporal distance and total
spatiotemporal distance in our method while more effective combination
schemes should be explored in the future. Additionally, marine environ-
mental processes are complex and affected by ocean dynamics and physical
oceanography. Therefore, we will attempt to combine GcTWR model with
ocean dynamics models to improve the performance.
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Appendix A

Fig. 12. Spatiotemporal distributions of para-
meter TN in all (totally 17) seasons from 2012 to
2016.
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Fig. 13. Spatiotemporal distributions of para-
meter DO in all (totally 17) seasons from 2012 to
2016.
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Fig. 14. Spatiotemporal distributions of para-
meter COD in all (totally 17) seasons from 2012
to 2016.
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