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A B S T R A C T

Mixed geographically weighted regression (GWR) models, a combination of linear and spatially varying coef-
ficient models, have found their applications in a variety of disciplines including economic modelling for geo-
referenced data analysis. Generally, different explanatory variables may operate at different spatial scales, lead-
ing to different levels of spatial heterogeneity of the varying coefficients. To deal with such a multiscale prob-
lem, we propose a scale-adaptive method to calibrate mixed GWR models, in which a different bandwidth is
separately assumed for each spatially varying coefficient and is selected based on the backfitting procedure.
Extensive simulations with different spatial layouts and a real-world example based on the Dublin voter turnout
data demonstrate that the scale-adaptive method can not only significantly improve the estimation accuracy of
the spatially varying coefficients, but also provide valuable information on the scale at which each explanatory
variable operates.

1. Introduction

Regression models are one of the most important tools in economic
modelling. Because of the complexity of economic phenomena, spa-
tial heterogeneity in a regression relationship is very common in many
real-world problems such as regional housing market, policy-making
and cost-benefit analysis (Holly et al., 2010; Oikarinen et al., 2018;
Mauricio, 2019). Various kinds of regression models including multi-
level models (Goldstein, 1986), random coefficient models (Longford,
1995) and geographically weighted regression (GWR) models (Bruns-
don et al., 1996) have been developed to deal with spatial heterogene-
ity. Among these models, GWR models have been a very popular tool in
exploring spatial heterogeneity of a regression relationship due to their
flexibility and interpretability. A GWR model is of the form

yi = 𝛽0(ui, vi) +
r∑

j=1
𝛽j(ui, vi)xij + 𝜀i, i = 1,2,… , n,

where {yi; xi1, xi2,… , xir}n
i=1 are the observations of the response vari-

able Y and the explanatory variables X1,X2,… ,Xr at n spatial sampling
locations {(ui, vi)}n

i=1, {𝛽j(u, v)}r
j=0 are r + 1 unknown spatially varying

coefficients to be estimated, and {𝜀i}n
i=1 are independent and identi-

cally distributed errors with E(𝜀i) = 0 and Var(𝜀i) = 𝜎2. The spatially
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varying coefficients are estimated by the locally weighted least square
procedure and the estimated coefficients provide the information about
spatial heterogeneity of the regression relationship.

The GWR model assumes that all of the coefficients vary over space.
In practice, however, the influence of some explanatory variables on the
response variable may be spatially global, whereas that of the others is
spatially local. To model such a regression relationship, Brunsdon et
al. (1999) proposed a semi-parametric counterpart of the GWR model,
called the mixed GWR model, in which some coefficients are assumed
to be constant and the others vary over space. That is, the mixed GWR
model can be represented as

yi =
q∑

l=1
𝛼lzil +

p∑
j=1

𝛽j(ui, vi)xij + 𝜀i, i = 1,2,… , n, (1)

where we denote the constant coefficients by {𝛼l}
q
l=1 and the corre-

sponding explanatory variables by Z1,Z2,… ,Zq. Generally, one takes
Z1 = 1 or X1 = 1 to make the model contain a constant or spatially
varying intercept.

As aforementioned, the traditional GWR model is calibrated by the
locally weighted least square or kernel smoothing method in which the
weights are generated by a kernel function with a single bandwidth size
for all of the spatially varying coefficients (Brunsdon et al., 1996). For
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the mixed GWR model in Equation (1), Brunsdon et al. (1999) treated
the constant coefficient part and the spatially varying coefficient part
separately to calibrate the model. Specifically, all of the spatially vary-
ing coefficients are simultaneously estimated by the traditional GWR
procedure and the constant coefficients are estimated by the ordinary
least square procedure. The two procedures are alternatively performed
until a given convergence criterion is met. Afterwards, Fotheringham et
al. (2002) proposed a two-step method to calibrate the mixed GWR
model without iteration. The two-step method can not only reduce
the computation time, but also yield closed forms of both constant
and varying coefficient estimators. Nevertheless, a single bandwidth
size is still used to estimate all of the spatially varying coefficients. In
view of the identification of the constant coefficients in a mixed GWR
model, Mei et al. (2004) formulated a test based on the residual sums of
squares from the fits of the GWR model and its mixed counterpart; Lu
et al. (2014b) derived a Monte Carlo test using the AIC criterion; and
Mei et al. (2016) developed a residual-based bootstrap test without the
assumption that the model errors are normally distributed. Nowadays,
in addition to their applications in many other fields, both GWR and
mixed GWR models have been widely applied to economic modelling
(recently for example, Cho et al., 2010; Öcal and Yildirim, 2010; Heck-
ert and Mennis, 2012; Lu et al., 2014a; Cao et al., 2019; Cortés and
Iturra, 2019; Li et al., 2019; Salvati et al., 2019).

Spatial phenomena are intrinsically subject to scale effect (Gao and
Bian, 2016). In general, different spatial processes may operate at dif-
ferent spatial scales (Fotheringham et al., 2017). And specific explana-
tory variables with different scales may have different effects on the
response variable (Wu et al., 2019; Murakami et al., 2019). For exam-
ple, the characteristics of houses are usually measured with different
scales. Some variables are measured at the dwelling scale such as the
average number of rooms and housing units; some are measured at the
real estate level like the property fee; and some are measured at the
census or town level such as the population density and crime rate (Wu
et al., 2019). In the GWR model, each coefficient reflects the inten-
sity of the corresponding explanatory variable on the response variable
and the explanatory variables with different spatial scales may make
the coefficients admit different levels of spatial heterogeneity. As well
known in statistical varying coefficient models with non-parametric
kernel smoothing estimation, a coefficient with strong variation needs a
small bandwidth size while a smoother coefficient requires a relatively
large bandwidth size in order to obtain efficient estimators for all of the
coefficients (Fan and Zhang, 1999). This means that the bandwidth size
can be used to quantify the heterogeneity level of each coefficient and
different bandwidth sizes should be selected for the coefficients with
different levels of heterogeneity. As aforementioned, however, both tra-
ditional calibration methods for the GWR and the mixed GWR models
assume a single bandwidth size for all of the spatially varying coef-
ficients. The selected optimal bandwidth size is therefore a balance
among the different levels of spatial heterogeneity, leading to efficiency
or accuracy loss in the estimators of the varying coefficients.

The above issue, termed as the multiscale problem, has been noted
and well handled for the GWR model. Specifically, Fotheringham et
al. (2017) and Leong and Yue (2017) employed the backfitting proce-
dure (Hastie and Tibshirani, 1986) to calibrate the GWR model, which
makes it possible to adaptively select an appropriate bandwidth size
for each spatially varying coefficient. Meanwhile, the simulation stud-
ies which they conducted have demonstrated that, in contrast to the
traditional GWR estimation, the backfitting-based method can signif-
icantly improve the accuracy of the coefficient estimators especially
when the coefficients are of different levels of spatially heterogeneity.
More importantly, this estimation method can provide valuable infor-
mation on the scale at which each explanatory variable operates.

Although the mixed GWR model has partially considered the mul-
tiscale problem by allowing a subset of the coefficients to be constant
and the others to vary over space, its existing calibration methods still
have the limitation that all of the varying coefficients are assumed to

be operated at a same spatial scale (Fotheringham et al., 2017; Wu
et al., 2019). Given the wide application backgrounds of the mixed
GWR model, the development of scale-adaptive calibration methods is
therefore of great importance in obtaining efficient estimators for the
coefficients and providing useful scale information for the explanatory
variables. Motivated by the multiscale estimation of the GWR model in
Fotheringham et al. (2017) and Leong and Yue (2017), a backfitting-
based scale-adaptive estimation method is proposed in this paper for
the mixed GWR model. Specifically, the two-step estimation method
(Fotheringham et al., 2002) is used to obtain the initial estimators of
both constant and varying coefficients. Then, the constant and vary-
ing coefficients are re-estimated by the backfitting procedure in which
the optimal bandwidth size for each varying coefficient is separately
selected by the commonly used AICc criterion.

The rest of this paper is organized as follows. In Section 2, the scale-
adaptive calibration method for the mixed GWR model is introduced
in details. In Section 3, extensive simulation studies with a compari-
son to the existing two-step estimation are conducted to assess the per-
formance of the proposed estimation approach. A real-world example
based on the Dublin voter turnout data is given in Section 4 to demon-
strate the application of the proposed method. The paper is then con-
cluded with a brief summary.

2. Scale-adaptive estimation for mixed GWR models

The mixed GWR model in Equation (1) can be re-expressed in matrix
notation as

y = Z𝜶 +
p∑

j=1
𝜷 j(u, v) ∗ xj + 𝜺, (2)

where y = (y1, y2,… , yn)T; Z = (z1, z2,… , zq) with zl =
(z1l, z2l,… , znl)T (l = 1,2,… , q); xj = (x1j, x2j,… , xnj)T (j = 1,2,… , p);
𝜷 j(u, v) =

(
𝛽j(u1, v1), 𝛽j(u2, v2),… , 𝛽j(un, vn)

)T (j = 1,2,… , p); 𝜶 =
(𝛼1, 𝛼2,… , 𝛼q)T; 𝜺 = (𝜀1, 𝜀2,… , 𝜀n)T; and “∗” stands for the element-
wise multiplication of two vectors such that, for each j = 1,2,… , p,
𝜷 j(u, v) ∗ xj =

(
𝛽j(u1, v1)x1j, 𝛽j(u2, v2)x2j,… , 𝛽j(un, vn)xnj

)T.
Let X = (x1,x2,… ,xp), x̃T

i = (xi1, xi2,… , xip), and

Lv(h) =

⎛⎜⎜⎜⎜⎜⎝

x̃T
1
(
XTWh(u1, v1)X

)−1XTWh(u1, v1)
x̃T

2
(
XTWh(u2, v2)X

)−1XTWh(u2, v2)
⋮

x̃T
n
(
XTWh(un, vn)X

)−1XTWh(un, vn)

⎞⎟⎟⎟⎟⎟⎠
,

where Wh(ui, vi) = Diag (K(di1∕h),K(di2∕h),… ,K(din∕h)) with K(·)
being a kernel function, dij being the Euclidean distance between the
locations (ui, vi) and (uj, vj), and h being the bandwidth. According to
the two-step estimation in Fotheringham et al. (2002), the estimators
of the constant coefficients are obtained by

�̂� =
(
𝛼1, 𝛼2,… , 𝛼q

)T

=
(
ZT(In − Lv(h))T(In − Lv(h))Z

)−1ZT(In − Lv (h))T (In − Lv (h)) y, (3)

where In is the identity matrix of order n.
The estimators of the varying coefficients at the location (ui, vi) are

derived by

𝜷(ui, vi) =
(
𝛽1(ui, vi), 𝛽2(ui, vi),… , 𝛽p(ui, vi)

)T

=
(
XTWh(ui, vi)X

)−1XTWh(ui, vi)
(
y − Z�̂�

)
, i = 1,2,… , n. (4)

The optimal bandwidth size, denoted by h∗, is selected by the AICc
criterion, that is,

h∗ = argmin
h>0

AICc(h), (5)

2
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where

AICc(h) = log(𝜎2(h)) + n + tr(H(h))
n − 2 − tr(H(h)) , (6)

𝜎2(h) = 1
n

yT(In − H(h))T (In − H(h))y,

H(h) = (In − Lv(h))Z
(
ZT(In − Lv(h))T(In − Lv(h))Z

)−1ZT(In − Lv (h))T + Lv (h) ,

and tr(·) is the trace of a matrix.
Taking the above estimators of the constant and varying coefficients

as their respective initial estimators, we re-estimate the constant and
varying coefficients using the following backfitting procedure, in which
all of the constant coefficients are simultaneously estimated in each
iteration.

(i) Set �̂� in Equation (3) to be an initial estimator of the constant
coefficient vector 𝜶, which we denote by 𝜶(0), and let ỹ(0) =
y − Z𝜶(0). Construct the GWR model as

ỹ(0) =
p∑

j=1
𝜷 j(u, v) ∗ xj + 𝜺. (7)

(ii) Set the initial values 𝜷
(0)
j (u, v) (j = 1,2,… , p) of

𝜷 j(u, v)(j = 1,2,… , p) to be their respective estimators
from the two-step method. That is, let

𝜷
(0)
j (u, v) =

(
𝛽(0)j (u1, v1), 𝛽

(0)
j (u2, v2),… , 𝛽(0)j (un, vn)

)T

=
(
𝛽 j(u1, v1), 𝛽 j(u2, v2),… , 𝛽 j(un, vn)

)T
, (8)

where 𝛽 j(ui, vi) (j = 1,2,… , p; i = 1,2,… , n), obtained by Equa-
tion (4), are the two-step estimators of the varying coefficients

at n sampling locations.
(iii) Given each k = 1,2,… , p, rewrite the model in Equation (7) as

ỹ(0) −
p∑

j=1,j≠k
𝜷 j(u, v) ∗ xj = 𝜷k(u, v) ∗ xk + 𝜺. (9)

Substituting the initial values of
𝜷 j(u, v)(j = 1,… , k − 1, k + 1,… , p) into Equation (9)
yields the following GWR model with the single explanatory
variable Xk:

y(0)k ≜ ỹ(0) −
p∑

j=1,j≠k
𝜷
(0)
j (u, v) ∗ xj = 𝜷k(u, v) ∗ xk + 𝜺. (10)

According to the traditional GWR estimation (Brunsdon et al.,
1996), the ith element 𝛽k(ui, vi) in 𝜷k(u, v) is estimated by

𝛽k(ui, vi) =
(

xT
k Whk

(ui, vi)xk

)−1
xT

k Whk
(ui, vi)y

(0)
k , (11)

where Whk
(ui, vi) is same as Wh(ui, vi) except that hk here is the

bandwidth size for the kth varying coefficient. Denote

𝜷
(1)
k (u, v) =

(
𝛽k(u1, v1), 𝛽k(u2, v2),… , 𝛽k(un, vn)

)T
= Pk(hk)y

(0)
k ,

(12)

where

Pk(hk) =

⎛⎜⎜⎜⎜⎜⎜⎝

(
xT

k Whk
(u1, v1)xk

)−1
xT

k Whk
(u1, v1)(

xT
k Whk

(u2, v2)xk

)−1
xT

k Whk
(u2, v2)

⋮(
xT

k Whk
(un, vn)xk

)−1
xT

k Whk
(un, vn)

⎞⎟⎟⎟⎟⎟⎟⎠
.

The hat matrix for the GWR model in Equation (10) is then

Hk(hk) = Diag (x1k, x2k,… , xnk)Pk(hk). (13)

With the hat matrix in Equation (13), the optimal bandwidth
size of hk, which we denote by h(1)k , is determined by the AICc
criterion, that is,

h(1)k = arg min
hk>0

AICc(hk), (14)

where

AICc(hk) = log(𝜎2(hk)) +
n + tr(Hk(hk))

n − 2 − tr(Hk(hk))
,

and

𝜎2(hk) =
1
n

(
y(0)k

)T
(In − Hk(hk))

T (In − Hk(hk)) y(0)k .

(iv) After Step (iii) is completed for each k, we obtain the first
iterative value 𝜷

(1)
k (u, v) of 𝜷k(u, v) and the optimal bandwidth

size h(1)k for each varying coefficient. Then, the estimator of
𝜶 = (𝛼1, 𝛼2,… , 𝛼q)T is updated by

𝜶(1) =
(
ZTZ

)−1ZT

(
y −

p∑
k=1

𝜷
(1)
k (u, v) ∗ xk

)
. (15)

(v) Replace ỹ(0) and {𝜷 (0)
k (u, v)}p

k=1 in Step (iii) by ỹ(1) = y − Z𝜶(1)

and {𝜷(1)
k (u, v)}p

k=1 in Equation (12) respectively, and repeat
Steps (iii) and (iv) until a given convergence threshold, say 𝛿,
is reached. Specifically, let 𝜶(t−1), 𝜷(t−1)

k (u, v), 𝜶(t) and 𝜷
(t)
k (u, v)

be two successive iterative values of 𝜶 and {𝜷k(u, v)}
p
k=1. If

((
𝜶(t) − 𝜶(t−1)

)T (
𝜶(t) − 𝜶(t−1)

)
+ 1

n

p∑
k=1

(
𝜷
(t)
k (u, v) − 𝜷

(t−1)
k (u, v)

)T (
𝜷
(t)
k (u, v) − 𝜷

(t−1)
k (u, v)

)) 1
2

≤ 𝛿, (16)

then we take 𝜶(t) and {𝜷(t)
k (u, v)}p

k=1 as the final estimators of
𝜶 and {𝜷k(u, v)}

p
k=1, and the corresponding optimal bandwidth

sizes {h(t)k }p
k=1, which we denote by {h∗k}

p
k=1, as the final

bandwidth sizes of the varying coefficients.

3. Simulation studies

In this section, simulation studies with different spatial layouts and
different kinds of spatial weights are conducted to assess the perfor-
mance of the scale-adaptive estimation for the mixed GWR model. In
addition, to examine the impact of collinearity between the explana-
tory variables on the estimation accuracy of the spatially varying coeffi-
cients, different levels of collinearity between the explanatory variables
are also considered.

3.1. Simulation 1: regular lattice sampling points with fixed bandwidth
weights

3.1.1. The spatial layout and spatial weights
We took a unit square as the studied region and fit the origin of a

Cartesian coordinate system at the bottom-left corner of the unit square
with the two axes being along with its mutually orthogonal sides. The
sampling points were designated as the lattice points with the coordi-
nates being

(ui, vi) =
( 1

m − 1
mod (i − 1,m) , 1

m − 1
int (i − 1,m)

)
, i = 1,2,… ,m2,

where mod (a, b) and int (a, b) are the remainder and the integer part
of a divided by b, respectively, leading to the sample size n = m2. In

3
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this simulation, the spatial weights at each sampling point were gener-
ated by the Gaussian function with fixed bandwidth. That is, the spatial
weights at each (ui, vi) are

wij = K
(
dij∕h

)
= exp

(
−1

2

(dij
h

)2)
, j = 1,2,… , n, (17)

where dij is the Euclidean distance between (ui, vi) and (uj, vj) and h is
the bandwidth. The value of m was set to be 21 and 25, respectively,
meaning that two sample sizes n = 441 and 625 were considered.

3.1.2. The models for generating data
The mixed GWR models for generating data were designed as

yi = 𝛼1zi1 + 𝛼2zi2 + 𝛽1(ui, vi) + 𝛽2(ui, vi)xi2 + 𝛽3(ui, vi)xi3 + 𝜀i,

i = 1,2,… , n. (18)

The constant coefficients 𝛼1 and 𝛼2 were set to be 4 and 5, respec-
tively, and the following three groups of the spatially varying coeffi-
cients were considered.

Group 1:

⎧⎪⎨⎪⎩
𝛽1(u, v) = 2 + 5(4u − 2)exp(−(2 − 4u)2 − (2 − 4v)2),
𝛽2(u, v) = 4(sin(𝜋(u − 0.5)) sin(𝜋v))2,
𝛽3(u, v) = 2 + 2(u − v).

Group 2:

⎧⎪⎪⎨⎪⎪⎩

𝛽1(u, v) = 2 + 1
7

exp(u + v),

𝛽2(u, v) = 2 + 1
2
(u − v) ,

𝛽3(u, v) = 2 + 5 (4u − 2) exp
(
−(2 − 4u)2 − (2 − 4v)2

)
.

Group 3:

⎧⎪⎪⎨⎪⎪⎩

𝛽1(u, v) = 2 + 1
6
(u − v),

𝛽2(u, v) = 2 + 1
2

sin(𝜋u),

𝛽3(u, v) = 2 + 5 (4u − 2) exp
(
−(2 − 4u)2 − (2 − 4v)2

)
.

The true surfaces of the three groups of the spatially varying coefficients
are depicted in Fig. 1 to visually understand their respective variation
patterns.

The observations {zi1}n
i=1 and {zi2}n

i=1 of the explanatory variables
Z1 and Z2 were independently drawn from the standard normal distri-
bution N(0,1). The observations of X2 and X3 were generated in the
following way. Let(

X2

X3

)
=

(
1 𝛾

𝛾 1

)(
D1

D2

)
, (19)

where 0 ≤ 𝛾 < 1, and D1 and D2 are independent random variables
with the common distribution N(0,1). It is easy to derive that the cor-
relation coefficient between X2 and X3 is

𝜌(X2,X3) =
Cov(X2,X3)√

Var(X2)Var(X3)
= 2𝛾

1 + 𝛾2 .

In the simulation, three levels of collinearity between X2 and X3 were
considered:

(i) 𝛾 = 0, meaning that X2 and X3 are mutually independent.
(ii) 𝛾 = 0.27, yielding 𝜌(X2,X3) ≈ 0.5, a moderate correlation

between X2 and X3.
(iii) 𝛾 = 0.63, leading to 𝜌(X2,X3) ≈ 0.9, a strong correlation

between X2 and X3.

Given each value of 𝛾, we drew independently the observations of
D1 and D2 from N(0,1) and generated the observations {xi2}n

i=1 and
{xi3}n

i=1 of X2 and X3 according to Equation (19). Each experimen-
tal setting was repeated for N times, in which the observations of the
explanatory variables were fixed and {𝜀i}n

i=1 were independently drawn
from N(0,1) in each replication.

3.1.3. The indices for measuring accuracy of the coefficient estimators
For the constant coefficients, we used the usual indices including

mean, standard deviation and root mean square error to measure the
estimation accuracy. Let 𝛼l(r) be the estimator of the lth constant coef-
ficient in the rth replication. The mean value of the estimators of 𝛼l in
the N replications is defined by

Mean
(
𝛼l
)
= 1

N

N∑
r=1

𝛼l(r), l = 1,2,… , q,

the standard deviation is

SD (𝛼l) =
(

1
N

N∑
r=1

(
𝛼l(r) − Mean

(
𝛼l
))2

) 1
2

, l = 1,2,… , q,

and the root mean square error is

RMSE(𝛼l) =
(

1
N

N∑
r=1

(
𝛼l(r) − 𝛼l

)2
) 1

2

, l = 1,2,… , q.

For each spatially varying coefficient, the root mean square error at
each sampling point and the averaged value of the root mean square
errors over all of the n sampling points were taken as the estimation
accuracy measures. Let 𝛽k(r)(ui, vi) be the estimator of the kth vary-
ing coefficient at location (ui, vi) in the rth replication. The root mean
square error of the estimators of 𝛽k(ui, vi) at location (ui, vi) in the N
replications is

RMSE
(
𝛽k(ui, vi)

)
=

(
1
N

N∑
r=1

(
𝛽k(r)(ui, vi) − 𝛽k(ui, vi)

)2
) 1

2

, i = 1,2,… , n,

and the averaged value of the root mean squared errors for the kth
spatially varying coefficient is defined by

ARMSEk =
1
n

n∑
i=1

RMSE
(
𝛽k(ui, vi)

)
, k = 1,2,… , p.

3.1.4. The designation of the experimental parameter values
For each experimental setting, the replication number was set to be

N = 500 and the convergence threshold in the scale-adaptive method
was taken as 𝛿 = 0.001. In this simulation, both the proposed and the
two-step methods were performed for the purpose of comparison.

3.1.5. The simulation results with analysis
Estimation of the constant coefficients. The values of the indices for

the constant coefficients from both estimation methods are reported
in Table 1, where “Scale-adaptive” refers to the proposed method and
“Two-step” indicates the two-step method.

It can be observed from Table 1 that the two methods perform
almost equally well in estimating the constant coefficients no mat-
ter whether the explanatory variables in the spatially varying coeffi-
cient part are mutually independent or correlated. It is reasonable that
collinearity between the explanatory variables in the varying coeffi-
cient part has little influence on the constant coefficient estimators.
Moreover, it is interesting that no obvious improvement is achieved by
iteratively estimating the constant coefficients.

Bandwidth selection. Figs. 2–4 show the boxplots of the optimal band-
width sizes selected in the two-step and scale-adaptive methods in
N = 500 replications for the three groups of the varying coefficients, in
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Fig. 1. True surfaces of the spatially varying coefficients in the three groups.

which h∗ represents the optimal bandwidth size in the two-step method,
and h∗1, h∗2 and h∗3 denote the respective optimal bandwidth sizes of
𝛽1(u, v), 𝛽2(u, v) and 𝛽3(u, v) in the scale-adaptive method when the
convergence criterion is met in each replication.

For the varying coefficients in Group 1, it can be observed from
Fig. 1 that 𝛽1(u, v) and 𝛽2(u, v) are of a similar level of spatial hetero-
geneity, while 𝛽3(u, v) is much smoother than 𝛽1(u, v) and 𝛽2(u, v). As
shown in Fig. 2, smaller bandwidth sizes are generally selected in the
scale-adaptive method for 𝛽1(u, v) and 𝛽2(u, v) and much larger band-
width sizes are chosen for 𝛽3(u, v) in the 500 replications. This result
accords with the common finding in non-parametric smoothing tech-
niques that a smoother function needs a larger bandwidth size and a
function with a high level of heterogeneity needs a smaller bandwidth
size in order to obtain their efficient estimators (Fan and Zhang, 1999).

For the two-step method, however, the optimal bandwidth sizes are
generally between the smallest and largest ones in the scale-adaptive
method, implying that the optimal bandwidth size in the two-step
method is a trade-off of those for different levels of spatial heterogene-
ity of the varying coefficients. Furthermore, it seems that the optimal
bandwidth size in the two-step method is mainly controlled by the coef-
ficients with a high level of spatial heterogeneity. This finding can be
observed from Fig. 2 where the values of h∗ in the two-step method are
more similar to those of h∗1 and h∗2 in the scale-adaptive method. For
the other two groups of the varying coefficients, the similar finding can
be observed from the optimal bandwidth sizes in the two estimation
methods. In conclusion, the scale-adaptive method is capable of select-
ing proper bandwidth sizes for the coefficients with different levels of
spatial heterogeneity.
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Table 1
Means, standard deviations and root mean square errors of the constant coefficient estimators in the 500 replications for Simulation 1.

n Varying coefficient 𝜌 Method 𝛼1 = 4 𝛼2 = 5
Mean SD RMSE Mean SD RMSE

441 Group 1 0 Scale-adaptive 3.9881 0.0687 0.0697 5.0190 0.0630 0.0657
Two-step 3.9931 0.0700 0.0703 5.0050 0.0640 0.0641

0.5 Scale-adaptive 3.9914 0.0684 0.0688 5.0212 0.0629 0.0663
Two-step 3.9941 0.0700 0.0702 5.0048 0.0640 0.0642

0.9 Scale-adaptive 3.9996 0.0680 0.0679 5.0272 0.0630 0.0686
Two-step 3.9943 0.0703 0.0704 5.0044 0.0643 0.0644

Group 2 0 Scale-adaptive 4.0097 0.0669 0.0675 5.0005 0.0617 0.0616
Two-step 4.0125 0.0683 0.0694 5.0009 0.0628 0.0628

0.5 Scale-adaptive 4.0115 0.0670 0.0680 4.9993 0.0618 0.0618
Two-step 4.0138 0.0684 0.0697 4.9973 0.0630 0.0629

0.9 Scale-adaptive 4.0127 0.0670 0.0681 4.9978 0.0622 0.0622
Two-step 4.0150 0.0686 0.0702 4.9930 0.0632 0.0635

Group 3 0 Scale-adaptive 4.0218 0.0665 0.0700 5.0024 0.0616 0.0616
Two-step 4.0127 0.0683 0.0694 5.0024 0.0628 0.0628

0.5 Scale-adaptive 4.0222 0.0666 0.0701 5.0019 0.0618 0.0618
Two-step 4.0147 0.0683 0.0698 4.9989 0.0629 0.0629

0.9 Scale-adaptive 4.0220 0.0669 0.0704 5.0007 0.0621 0.0621
Two-step 4.0165 0.0686 0.0705 4.9948 0.0632 0.0633

625 Group 1 0 Scale-adaptive 4.0193 0.0599 0.0629 4.9559 0.0640 0.0777
Two-step 4.0120 0.0606 0.0617 4.9838 0.0648 0.0667

0.5 Scale-adaptive 4.0181 0.0600 0.0626 4.9549 0.0638 0.0781
Two-step 4.0127 0.0606 0.0618 4.9817 0.0649 0.0674

0.9 Scale-adaptive 4.0132 0.0601 0.0614 4.9551 0.0634 0.0777
Two-step 4.0137 0.0605 0.0619 4.9790 0.0650 0.0682

Group 2 0 Scale-adaptive 4.0183 0.0588 0.0615 5.0186 0.0612 0.0639
Two-step 4.0151 0.0596 0.0614 5.0098 0.0629 0.0636

0.5 Scale-adaptive 4.0173 0.0589 0.0613 5.0196 0.0611 0.0641
Two-step 4.0152 0.0597 0.0615 5.0085 0.0630 0.0635

0.9 Scale-adaptive 4.0161 0.0590 0.0612 5.0225 0.0609 0.0649
Two-step 4.0154 0.0598 0.0617 5.0065 0.0632 0.0634

Group 3 0 Scale-adaptive 4.0092 0.0589 0.0596 5.0100 0.0615 0.0623
Two-step 4.0135 0.0597 0.0611 5.0087 0.0629 0.0635

0.5 Scale-adaptive 4.0074 0.0590 0.0594 5.0104 0.0614 0.0622
Two-step 4.0139 0.0597 0.0612 5.0076 0.0629 0.0633

0.9 Scale-adaptive 4.0064 0.0593 0.0596 5.0121 0.0612 0.0623
Two-step 4.0145 0.0598 0.0615 5.0056 0.0631 0.0633

Fig. 2. Boxplots of the selected bandwidth sizes in the 500 replications for the coefficients of Group 1 in Simulation 1.

For the impact of collinearity between the explanatory variables on
the optimal bandwidth sizes in the two methods, it seems that the opti-
mal bandwidth sizes of the spatially varying coefficients with a lower
level of spatial heterogeneity are more affected than those of the coeffi-
cients with a high level of spatial heterogeneity. As shown in Fig. 2, for
example, when the value of 𝜌(X2,X3) increases from 0 to 0.9, the uncer-
tainty of the values of h∗3 increases obviously, while that of the values
of h∗1 and h∗2 varies slightly. The similar finding is also observed from
Figs. 3 and 4. When the sample size increases, however, the uncertainty
of the optimal bandwidth sizes seems decreasing.

Estimation of the spatially varying coefficients. Table 2 reports the

averaged values of the root mean squared errors of spatially varying
coefficient estimators for the scale-adaptive and two-step methods. It
is observed that the ARMSE values of the scale-adaptive estimators are
consistently smaller than those of the two-step estimators in all of the
experimental settings, indicating that the proposed method can signif-
icantly improve the estimation accuracy of the spatially varying coef-
ficients. The most significant improvement is achieved for such coeffi-
cients that their optimal bandwidth sizes selected in the two methods
are of large difference. Specifically, for the coefficients in Group 1, the
values of h∗3 in the scale-adaptive method are in general much larger
than those of h∗ in the two-step method. Then, the accuracy improve-
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Fig. 3. Boxplots of the selected bandwidth sizes in the 500 replications for the coefficients of Group 2 in Simulation 1.

Fig. 4. Boxplots of the selected bandwidth sizes in the 500 replications for the coefficients of Group 3 in Simulation 1.

ment for the estimator of 𝛽3(u, v) is most notable. For the coefficients in
Groups 2 and 3, the values of h∗1 and h∗2 are generally much larger than
those of h∗ and the accuracy improvement for the estimators of 𝛽1(u, v)
and 𝛽2(u, v) is obviously illustrated. For both methods, as expected, the
estimation accuracy for all of the varying coefficients increases with the
sample size increasing.

For the impact of collinearity between the explanatory variables on
the estimation accuracy of the varying coefficients, it is known from
Table 2 that, for both methods, strong collinearity leads to a decrease
on the accuracy of the coefficient estimators. However, it seems that the

influence is generally weaker for the scale-adaptive method. For exam-
ple, in the case of n = 441, when the value of 𝜌(X2,X3) increases
from 0 to 0.9, the ARMSE values of 𝛽2(u, v) and 𝛽3(u, v) in Group
1 for the two-step method increase by 0.6712–0.4244 = 0.2468
and 0.5518–0.2496 = 0.3022, respectively, while those for the
scale-adaptive method increase by 0.5401–0.3893 = 0.1508 and
0.4154–0.1968 = 0.2186, respectively. Nevertheless, this difference
seems decreasing with the sample size increasing. The results demon-
strate that the scale-adaptive method is more robust to the collinearity
between the explanatory variables.

Table 2
Values of ARMSE for the spatially varying coefficient estimators in the 500 replications for Simulation 1.

n Varying coefficient 𝜌 Scale-adaptive Two-step
𝛽1(u, v) 𝛽2(u, v) 𝛽3(u, v) 𝛽1(u, v) 𝛽2(u, v) 𝛽3(u, v)

441 Group 1 0 0.2584 0.3893 0.1968 0.2632 0.4244 0.2496
0.5 0.2605 0.4100 0.2195 0.2666 0.4511 0.2854
0.9 0.2642 0.5401 0.4154 0.2764 0.6712 0.5518

Group 2 0 0.1104 0.1264 0.2515 0.1654 0.1772 0.2578
0.5 0.1108 0.1449 0.2528 0.1682 0.2068 0.2739
0.9 0.1113 0.2499 0.3174 0.1752 0.3876 0.4133

Group 3 0 0.0877 0.1494 0.2524 0.1645 0.1812 0.2567
0.5 0.0870 0.1599 0.2550 0.1668 0.2081 0.2757
0.9 0.0862 0.2321 0.3003 0.1738 0.3871 0.4187

625 Group 1 0 0.2233 0.3441 0.1619 0.2285 0.3607 0.2248
0.5 0.2238 0.3555 0.1842 0.2309 0.3776 0.2410
0.9 0.2251 0.4667 0.3633 0.2384 0.5408 0.4336

Group 2 0 0.0966 0.1120 0.2339 0.1464 0.1617 0.2419
0.5 0.0967 0.1238 0.2377 0.1497 0.1833 0.2543
0.9 0.0986 0.2214 0.2962 0.1602 0.3325 0.3646

Group 3 0 0.0787 0.1292 0.2331 0.1466 0.1630 0.2419
0.5 0.0793 0.1409 0.2406 0.1501 0.1844 0.2542
0.9 0.0816 0.2062 0.2818 0.1613 0.3333 0.3643
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Fig. 5. Sampling points in Simulation 2.

Furthermore, the values of RMSE
(
𝛽k(ui, vi)

)
(k = 1,2,3) for each

experimental setting can be depicted on the spatial region to make
more comprehensive understanding on the root mean square errors for
the two estimation methods. As an example, we drew the surfaces of
RMSE

(
𝛽k(ui, vi)

)
(k = 1,2,3) for the sample size n = 441 and the

coefficients in Group 1 and provided the figures as supplementary mate-
rials (see Section S1 in the supplementary materials) because of the
limited space for the main body of the paper. The figures illustrate
that larger estimation errors for both methods generally appear at the
boundary area and the neighbourhoods of the locations where the coef-
ficients reach their extreme values.

3.2. Simulation 2: irregular sampling points with variable bandwidth
weights

3.2.1. The spatial layout and spatial weights
In this simulation, the same unit square as that in Simulation 1 was

taken as the studied region, but each coordinate (ui, vi) of sampling
points was determined by independently drawing a pair of random
numbers from the uniform distribution U(0,1). Only the sample size
n = 441 was considered in this simulation and the sampling points are
depicted in Fig. 5.

As pointed out by Gollini et al. (2013), for irregular sampling points,
the spatial weights with a variable or adapted bandwidth for the coef-
ficient estimation perform better than the weights with a fixed band-
width. Therefore, we generated the spatial weights in this simulation
by a variable bandwidth. In order to make the simulation focus on
examining the performance of the scale-adaptive method for irregular
sampling points, the Gaussian function was once again used to generate
the weights. In this case, however, h in Equation (17) is changed as dik,
the Euclidean distance from the focal location (ui, vi) to its kth nearest
sampling point, and the parameter k is treated as a “real” bandwidth to
be selected in the calibration process.

The other experimental designs including the number of replications
and convergence threshold were all kept to be the same as those in
Simulation 1. For the purpose of comparison, the results of the two-step
method were also computed.

3.2.2. The simulation results with analysis
Table 3 reports the results of the constant coefficient estimation for

both methods. It is known from the table that the two methods estimate
the constant coefficients equally well and all yield accurate estimators
of the constant coefficients when the sampling points are irregularly
distributed over the space.

Fig. 6 shows the boxplots of the optimal values of the parame-
ter k, i.e., the optimal bandwidth sizes in the case of variable band-
width weights. Compared with the corresponding results in Figs. 2–4
for n = 441, the similar variation patterns for the values of the param-
eter k can be observed, indicating that the scale-adaptive method can
also provide valid information for the levels of spatial heterogeneity of
the varying coefficients when the sampling points are irregularly dis-
tributed over space.

Table 4 shows the ARMSE values of the three groups of varying
coefficients obtained by both methods. In contrast to the corresponding
results in Table 2 for n = 441, although the ARMSE values for both
methods show a slight increase in most cases, the ARMSE values from
the scale-adaptive estimation are still consistently smaller than those
from the two-step estimation.

In addition to the foregoing simulation studies, the other two simu-
lation studies were also conducted according to one reviewer’s sugges-
tions. One is to use a real-world spatial layout with an irregular bound-
ary of the region and irregularly distributed sampling points. Here, the
Boston area with 506 US census tracts (Gilley and Pace, 1996) was
taken as the spatial layout for this simulation study. The simulation
results demonstrate that the proposed scale-adaptive method also per-
forms very well under such a spatial layout. The details on the exper-

Table 3
Means, standard deviations and root mean square errors of the constant coefficient estimators in the 500 replications for Simulation 2.

Varying coefficient 𝜌 Method 𝛼1 = 4 𝛼2 = 5
Mean SD RMSE Mean SD RMSE

Group 1 0 Scale-adaptive 3.9906 0.0677 0.0683 5.0156 0.0628 0.0647
Two-step 3.9838 0.0697 0.0715 5.0219 0.0641 0.0677

0.5 Scale-adaptive 3.9868 0.0677 0.0689 5.0194 0.0625 0.0654
Two-step 3.9804 0.0698 0.0724 5.0270 0.0642 0.0696

0.9 Scale-adaptive 3.9804 0.0676 0.0703 5.0268 0.0623 0.0677
Two-step 3.9769 0.0702 0.0738 5.0328 0.0643 0.0721

Group 2 0 Scale-adaptive 4.0024 0.0668 0.0668 5.0101 0.0619 0.0626
Two-step 4.0037 0.0673 0.0673 5.0095 0.0624 0.0631

0.5 Scale-adaptive 3.9952 0.0668 0.0669 5.0099 0.0619 0.0626
Two-step 4.0004 0.0675 0.0675 5.0073 0.0624 0.0628

0.9 Scale-adaptive 3.9907 0.0667 0.0673 5.0067 0.0617 0.0620
Two-step 3.9957 0.0678 0.0679 5.0042 0.0627 0.0628

Group 3 0 Scale-adaptive 3.9920 0.0671 0.0675 5.0123 0.0620 0.0632
Two-step 4.0015 0.0674 0.0674 5.0132 0.0624 0.0637

0.5 Scale-adaptive 3.9850 0.0669 0.0685 5.0135 0.0619 0.0633
Two-step 3.9990 0.0676 0.0675 5.0109 0.0623 0.0632

0.9 Scale-adaptive 3.9840 0.0668 0.0686 5.0096 0.0617 0.0624
Two-step 3.9950 0.0678 0.0680 5.0078 0.0626 0.0630

8



F. Chen, C.-L. Mei Economic Modelling xxx (xxxx) xxx

Fig. 6. Boxplots of the selected values of k in the 500 replications for the three groups of varying coefficients in Simulation 2.

Table 4
Values of ARMSE for the spatially varying coefficient estimators in the 500 replications for Simulation 2.

Varying coefficient 𝜌 Scale-adaptive Two-step
𝛽1(u, v) 𝛽2(u, v) 𝛽3(u, v) 𝛽1(u, v) 𝛽2(u, v) 𝛽3(u, v)

Group 1 0 0.2686 0.4167 0.2002 0.2908 0.4499 0.2395
0.5 0.2697 0.4349 0.2221 0.2938 0.4708 0.2714
0.9 0.2710 0.5563 0.3846 0.3007 0.6419 0.4933

Group 2 0 0.1170 0.1361 0.2910 0.1489 0.1654 0.3115
0.5 0.1183 0.1575 0.2948 0.1541 0.1863 0.3258
0.9 0.1202 0.2931 0.3690 0.1660 0.3649 0.4648

Group 3 0 0.0929 0.1521 0.2889 0.1466 0.1680 0.3064
0.5 0.0932 0.1637 0.2956 0.1512 0.1875 0.3215
0.9 0.0943 0.2705 0.3545 0.1627 0.3602 0.4591

imental design and the related results can be found in Section S2 of
the supplementary materials. The other simulation study is to empiri-
cally investigate the performance of the scale-adaptive method when
the traditional GWR estimation is replaced in the algorithm by the
local-linear GWR estimation (Wang et al., 2008). The general findings
are in what follows. The original GWR-based scale-adaptive and the
local-linear-based one perform equally well on the constant coefficient
estimation and on the selection of proper bandwidth sizes for varying
coefficients. For the estimation of the varying coefficients, the local-
linear-based method does reduce bias of the estimators, but increases
their variance because more parameters including the coefficients them-
selves and their partial derivatives should be estimated at each location.
As a result, the corresponding ARMSE values obtained from these two
kinds of scale-adaptive methods are comparable. Because of the limited
space, part of the simulation results with a brief description of the local-
linear GWR estimation is provided as Section S3 in the supplementary
materials.

4. Real-world example

The Dublin voter turnout data set, taken from Gollini et al. (2013), is
used to demonstrate the application of the scale-adaptive method. This
data set consists of nine percentage variables including voter turnout
from the Irish 2004 Dáil elections and eight characteristics of the social
structures in 322 electoral divisions of Greater Dublin. The related vari-
ables are explained in what follows.

• GenE12004: percentage of people who voted in the election in each
electoral division;

• DiffAdd: percentage of one-year migrants in each electoral division;
• LARent: percentage of local authority renters in each electoral divi-

sion;

• SC1: percentage of people with social class one (high social class) in
each electoral division;

• Unempl: percentage of unemployed people in each electoral divi-
sion;

• LowEduc: percentage of people without any formal education in
each electoral division;

• Age1: percentage of people aged from 18 to 24 in each electoral
division;

• Age2: percentage of people aged from 25 to 44 in each electoral
division;

• Age3: percentage of people aged from 45 to 64 in each electoral
division.

Lu et al. (2014b) built a GWR model with GenE12004 being the
response variable and the other eight variables being explanatory vari-
ables to analyze spatial heterogeneity of the regression relationship,
and a Monte Carlo test suggested that the coefficients of DiffAdd, LAR-
ent, LowEduc, Age2, Age3 and the Intercept are constant, while the
coefficients of SC1, Unempl and Age1 vary over space. This test result
specifies the following mixed GWR model:

GenE12004i = 𝛼1 + 𝛼2DiffAddi + 𝛼3LARenti + 𝛼4LowEduci + 𝛼5Age2i

+ 𝛼6Age3i + 𝛽1(ui, vi)SC1i + 𝛽2(ui, vi)Unempli

+ 𝛽3(ui, vi)Age1i + 𝜀i, i = 1,2,… ,322. (20)

We then employed both two-step and scale-adaptive methods to
calibrate this model, in which the Gaussian kernel function with a
variable bandwidth was used to generate the spatial weights, and the
convergence threshold 𝛿 was set to be 0.001 in the scale-adaptive
method.

The estimated constant coefficients by the two methods are listed in
Table 5. It is known from the table that both methods yield the simi-
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Table 5
Estimated constant coefficients in the model in Equation (20).

Variable Constant coefficient Intercept 𝛼1 DiffAdd 𝛼2 LARent 𝛼3 LowEduc 𝛼4 Age2 𝛼5 Age3 𝛼6

Scale-adaptive 78.9289 −0.1262 −0.1313 −0.1573 −0.4237 −0.1104
Two-step 84.7056 −0.1371 −0.1124 0.0928 −0.5133 −0.2390

Fig. 7. Maps of the varying coefficient estimators obtained by the two estimation methods. The left-hand column is for the scale-adaptive method and the right-hand
column is for the two-step method.
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lar estimated values of the constant coefficients except for that of the
coefficient of LowEduc. For the scale-adaptive method, the estimators
of the constant coefficients are all negative, implying that the corre-
sponding variables negatively influence the voting percentage consis-
tently over the 322 electoral divisions. The results seem reasonable
according to the practical meanings of these explanatory variables.
For the two-step method, however, the positive estimator of 𝛼4 appar-
ently conflicts with the meaning of the corresponding explanatory vari-
able LowEduc, although the significance of LowEduc influencing the
response variable remains to be statistically tested. In this sense, the
scale-adaptive method yields more reasonable estimators for the con-
stant coefficients.

For the spatially varying coefficients of the variables SC1, Unempl
and Age1, the optimal values of the parameter k in the weights are
respectively 26, 13 and 218 for the scale-adaptive method, and 16
for the two-step method. The optimal values of k from the scale-
adaptive method provide the information that the coefficient 𝛽3(u, v)
of Age1 is much smoother than the other coefficients, implying that,
in contrast to the impact of Age1 on the voting percentage, that
of SC1 and Unempl varies dramatically over the 322 electoral divi-
sions.

The maps of the estimators of the spatially varying coefficients
are shown in Fig. 7. It is observed that the corresponding estima-
tors of each varying coefficient by the two-step and scale-adaptive
methods show quite different spatial patterns. In view of the fact
that the scale-adaptive method is capable of selecting an appropri-
ate bandwidth size for each varying coefficient, the estimation result
from the scale-adaptive method is more convincible. From the maps
in the left-hand column of Fig. 7, we known that SC1 has positive
impact on the voting percentage at all electoral divisions, but the influ-
ence intensity varies over the divisions, showing a pattern of strong
influence in the center part and weak influence in the north and
south parts. Unempl negatively influences the voting percentage with
the larger intensity appearing on the surrounding area of the city.
Age1 has negative impact on the voting percentage with the inten-
sity showing slight difference between the northeast and southwest
parts.

5. Conclusions

In this paper, a scale-adaptive method is proposed to deal with
the multiscale problem in mixed GWR models. The extensive simula-
tions demonstrate that the proposed method not only achieves signif-
icant improvement on the estimation accuracy of the spatially vary-
ing coefficients, but also provides valuable information about the level
of spatial heterogeneity of each varying coefficient or spatial scale
that each explanatory variable operates. Moreover, the scale-adaptive
method is quite robust to the spatial layout and collinearity between
the explanatory variables. The real-world example based on the Dublin
voter turnout data demonstrates the application potentials of the scale-
adaptive estimation for mixed GWR models.
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