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A B S T R A C T

Sugarcane production represents around 10% of the agricultural area and 1% of GDP in Brazil, and has grown
substantially in recent years. The traditional harvest method involves burning the field to facilitate access to
the canes, resulting in well-documented negative effects on health. The existing studies do not consider the
effects on health in the surrounding areas. This article presents a new variety of a spatial diff-in-diff model
to control for the effects of sugarcane production in neighboring non-producing regions. This method is an
addition to the Spatial Econometrics literature, as it includes spatial effects on treated and untreated regions,
so that the effects on both producing and surrounding non-producing regions can be properly estimated. The
results indicate that the effects on the producing regions are 78% larger than if the effects on the surrounding
areas were ignored. Moreover, the effects on the surrounding areas, typically ignored in other studies, are
relevant, and almost as large as the effects on the producing areas.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Brazil is a traditional producer of sugar and has been an impor-
tant player in the international market for centuries. In 2013, the
country was the largest producer in the world, producing almost 27%
more than the second largest producer, India. Although this market
has somewhat stagnated in recent years, its growth was substantive
in recent decades. Sugar is produced from sugarcane, an input that is
also used to produce ethanol as fuel for automobiles. A governmental
incentive program to substitute ethanol for fossil fuels was estab-
lished in the late 1970s and reached full steam in the first decade
of this century, as the automobile producers developed techniques
to allow cars to run on both gasoline and/or ethanol. High oil prices
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powered the fuel substitution and the demand for ethanol increased
dramatically, and production followed. As a result of these two influ-
ences, the production of sugarcane has increased sharply in the last
20 years, with the ethanol industry representing approximately 3.5%
of Brazilian industrial GDP. The sector as a whole employs more than
6 million people and the planted area doubled in the last 20 years,
occupying 10% of the agricultural area of the country.

The ethanol program has been considered a success in terms of
emissions reduction by replacing pollutant fossil fuels (Goldemberg
et al., 2008), but there are many issues related to the possible nega-
tive by-products of sugarcane production. There are doubts about the
quality of the employment in the sugarcane fields, because the activ-
ity is hazardous and physically demanding. There are also questions
on environmental aspects, such as soil contamination, atmospheric
pollution generated by the burning of the fields, water consumption,
and dislocation of other crops towards native forests (Noronha et al.,
2006). Some studies have shown that the balance of costs and ben-
efits is positive from the standpoint of the entire country (BNDES
and CGEE, 2008), but not so evidently in the growing regions that
disproportionately bear the negative impacts.
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The most studied aspect is related to the labor market, and the
negative impacts of manual harvesting are highlighted (Alves, 2006,
2007; Baccarin et al., 2008). Toneto-Jr and Liboni (2008) indicated
that sugarcane generates more jobs than soybean, and only slightly
less than corn. As it generates more value per hectare and more jobs
as well, cane growing generates more income per area planted than
other staple crops. Because transportation costs on the raw material
are high, processing plants (sugar mills and/or ethanol distilleries)
must be located close to the fields, increasing the sector’s indirect
effects on the producing region. Chagas et al. (2011) evaluated the
impact of sugarcane on the local Human Development Index using
spatial propensity score matching, controlling for the fact that sug-
arcane production in one specific region is not random. The results
suggest that sugarcane growing is not relevant to determine local
social conditions.

This paper deals with the impacts of sugarcane production on
health conditions in the planting areas and their neighborhood.
Because harvesting involves burning the fields, it releases fine and
coarse particulate matter that affects the population in the vicinity.
We explore a new ground in presenting a spatial difference-in-
differences model (SDID) to control for the effect of sugarcane pro-
duction on both producing (treated) and nonproducing (untreated)
neighboring regions. This procedure for measuring the effects is
more complete than the ones used in previous studies, such as Heck-
ert and Mennis (2012) and Dubé et al. (2014). It brings a new way to
look at both the true effects of sugarcane production on health and
the measurement of spatial effects in general.

The article is organized in six sections, including this introduction.
The next section deals with a review of the literature of the effects
of sugarcane production on human health. Section 3 presents a
review of the methodological questions present in the literature, the
methodology proposed to identify the possible impacts of sugar-cane
production on the respiratory health conditions in the producing
regions, and the data used. Section 4 presents the results followed
by robustness checks of the estimates, as presented in Section 5. The
last section contains the final remarks of the analysis.

2. Sugarcane production, air pollution, and human health

Sugarcane is harvested by unskilled workers mostly manually.
This traditional harvest method involves burning the planting area to
facilitate access to the canes. There are concerns about the possible
negative direct and indirect effects on health in the planting regions.
The burning of the fields is intended to increase workers? productiv-
ity, as it eases access to the plants, saves on time otherwise spent in
the separation of leaves, and reduces work hazards (dry leaves are
harmful and there might be poisonous insects and snakes). It takes
place at the beginning of harvest, which coincides with the dry sea-
son in the production areas. Many studies highlight the increase in
both fine and coarse particulate matter, black carbon concentration,
especially during burning hours (Lara et al., 2005), and the increase
of the air concentration of substances as nitrite, sulfite, oxide of car-
bon, and others in the air (Allen et al., 2004). Considering smoke
dispersion, the literature relates that short and long-term exposition
to classical pollutants (matter, sulfite, nitrite, oxide carbon, etc.) can
negatively affect the economy of a country by damaging the health
status of the workers, specifically among the young and the elderly
(Braga et al., 1999; Fischer et al., 2003; Gangadharan and Valenzuela,
2001; Goncalves et al., 2005; Roseiro, 2002; Sicard et al., 2010; Sun
and Gu, 2008; Wen and Gu, 2012).

Sugarcane burning generates a massive quantity of particles and
toxic gases that spread all over the region, reaching cities and becom-
ing a potential threat to human health. According to Mazzoli-Rocha
et al. (2008), pollution from sugarcane burning may be as harm-
ful as pollution from traffic and manufacturing activities. There are

many studies in this topic on the Brazilian case, mostly coming from
the public health literature (Arbex et al., 2000, 2004, 2007, 2014;
Cançado et al., 2006; Carneseca et al., 2012; Goto et al., 2011; Ribeiro,
2008; Santejo Silveira et al., 2013; Uriarte et al., 2009). The study
of Nicolella and Belluzzo (2015) is an exception. They use a clas-
sical difference-in-differences approach to evaluate the impact of
the reduction in the pre-harvest burning sugarcane on respiratory
health. The results indicate that reducing the area where sugarcane is
harvested after burning reduces the number of hospitalization cases.
These are mostly case studies focusing on the effects of burning
on respiratory health problems at the local level. They concentrate
on the short-distance effects, failing to capture the consequences of
burning events on other places (spillover effect), which is the focus
of this work.

The literature on spillover effects of environmental events is
increasing rapidly, but it is still limited. There are many papers
testing the well-known Environmental Kuznets Curves (EKC), asso-
ciating low levels of environmental problems both at low or high
per capita income levels, and at high levels of environmental prob-
lems at intermediate income levels (Dinda, 2004; Grossman and
Krueger, 1991, 1995). Spatial econometrics techniques were used to
measure if per capita emissions in a country (county) were spatially
dependent on the environmental characteristics of the neighbor-
ing countries (counties), as in Ciriaci and Palma (2010), Hao and
Liu (2016), Maddison (2006, 2007), Rupasingha et al. (2004), Stern
(2000), Su et al. (2009).

3. Methodology and data

Spatial econometrics techniques are becoming more popular
in the study of environmental interactions, such as Hosseini and
Kaneko (2013), at the institutional level, Renard and Xiong (2012)
and Li et al. (2014), on industrial structure similarity, Pandit and
Laband (2007), on imperiled species, Won Kim et al. (2003) and Chen
and Ye (2015), on housing and gasoline prices, Li et al. (2014), on
local economic development, and air quality and urbanization, Fang
et al. (2015) on automobile and population density, and Chen and
Ye (2015) on the levels of precipitation and the direction and speed
of the wind. However, to the best of our knowledge, there are still
only few studies measuring the effects of pollution of any source on
health indicators considering the spatial correlation (Lagravinese et
al., 2014; Wang et al., 2014, 2015, are exceptions).

3.1. The difference-in-differences model

The literature on impact evaluation sets to measure the impact,
or the marginal effect, of a single binary regressor that equals one
if the treatment occurs and zero otherwise (Ashenfelter and Card,
1985). The simplest case is one where outcomes are observed for two
groups in two time periods. One of the groups receives a treatment
in the second period, and the other group is not exposed to the treat-
ment during either period. In the case where the same units within a
group are observed in each time period, the average gain in the sec-
ond (control) group is subtracted from the average gain in the first
(treatment) group. This should remove any biases in second-period
comparisons between the treatment and control groups that could
be the result of permanent differences between those groups, as well
as biases from comparisons over time in the treatment group that
could be the result of common trends.

In the equations that follow, yit is the variable of interest (hospi-
talizations due to respiratory diseases) and xit is a vector of observ-
able characteristics specific to region i in period t. We consider
two situations for each region: before (b) and after (a) treatment.
Additionally, we introduce a fixed effect vi and a drift term ht.
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Then, the pre-treatment and post-treatment outcomes are given by,
respectively,

yb
it,0 = vi + ht + l(xi) + eit

yb
it,1 = yb

it,0 (1)

where, yb
it,0 is the dependent variable in the untreated region, before

treatment, and yb
it,1 is the dependent variable in the treated region.

After treatment, we have another situation to the treated region,
that is

ya
it,0 = yb

it,0

ya
it,1 = ya

it,0 + a. (2)

The parameter a captures the direct effect of the treatment on
the treated region. Defining Dit as a region-i specific indicator of
treatment in time t, we can write

yit = (1 − Dit)yit,0 + Dityit,1,

= vi + ht + aDit + l(xi) + eit. (3)

Using the “before” and “after” formulations, we obtain the Aver-
age Treatment Effect (ATE)

ATE = E[ya
it,1 − yb

it,1] − E[ya
it,0 − yb

it,0]

= a. (4)

An important assumption for identification is that one, and only
one, of the potential outcomes is indeed observable for every mem-
ber of the population. This assumption, sometimes called the obser-
vation rule, follows from the so-called Stable Unit Treatment Value
Assumption (SUTVA). In other words, it is required that the poten-
tial outcome in one unit should not be affected by the particular
assignment of treatments to the other units (Cox, 1958; Rosenbaum,
2010). Importantly, it implies that the treatments are completely
represented and, in particular, that there are no relevant interactions
between the members of the population.

3.2. The spatial difference-in-differences model (SDID)

As usual in spatial studies, we need to take into account that
regions are interrelated. This generates the possibility of propaga-
tion of the effects on both the regions where production takes place
(treated region) and on the surrounding areas (untreated region),
violating the SUTVA assumption. This makes causal inference more
difficult.

In recent years, some studies added spatial effects to the
difference-in-differences approach. Heckert and Mennis (2012) mea-
sured the impact of Philadelphia’s innovative vacant land greening
program on residential property values. The authors concluded that
the program’s impact decreases with the distance to the treated lots
and then compared the observed changes in property values sur-
rounding treated vacant lots with changes in lots that could have
been treated but were not. The author was worried with spatial
nonstationarity and so used geographically weighted regressions to
compare spatial variations of the program’s impact across districts.
The author found a positive impact of the program on property val-
ues surrounding greened vacant lots in comparison to properties
surrounding nongreened ones. Comparing different versions of the

model, the study also explored spatial variations in the impacts of the
program, offering insights into which kind of neighborhood might
produce the greatest economic benefit from vacant land greening
programs.

Dubé et al. (2014) evaluated the impact of public mass transit
systems expansion on real-estate values in Montreal, Canada, taking
into account possible spatial spillover effects. The authors claimed
that the SDID method generated better estimates of the impact of the
establishment of new train stations and allowed for richer interpre-
tations of the marginal effects. They indicated that the consideration
of spillover effects “is a major methodological gain as compared to
the DID version” (Dubé et al., 2014, p.38). The authors put partic-
ular emphasis on the development of a suitable weight matrix to
account for the spatial links between observations. Their experimen-
tal design takes the estimated reduction in car travel time due to
the inauguration of new stations in Montreal as the treatment. The
SAR model specification made it possible to account for possible spa-
tial spillover effects in the price of houses determination process.
Interestingly enough, the authors concluded that there was little gain
in using the SDID estimator, in comparison to the usual diff-in-diff
method in that specific case, given some particularities of the situa-
tion. In spite of such disappointing results, they argued in favor of the
SDID estimator, as it allows for a simple t-test of the presence of spa-
tial autocorrelation in the dependent variable, which is better than
assuming that the problem does not exist.

Both Heckert and Mennis (2012) and Dubé et al. (2014) ignored
the problems involved in the possible violation of the SUTVA.
Delgado and Florax (2015) introduced this concern, considering the
treatment effect in a difference-in-differences approach for spatial
data with local spatial interaction. In their case, the potential out-
come of observed units depends on their own treatment as well as
on the treatment status of proximate neighbors. The authors empha-
size the indirect effect of the treatment over the treated region due
to neighborhood structure, but do not pay attention to the effect on
the untreated region closed to treated one, as we discuss ahead in
this paper. Unfortunately, the authors also do not offer an empirical
applications, as we do in this paper.

In our work, this problem is explicitly taken into account. In the
problem dealt with in this paper, the nature of the treatment is such
that it affects both treated and untreated regions, thus violating the
SUTVA assumption. Thus, we have to model the effect of the treat-
ment also on untreated regions neighboring the treated ones. This is
what the following model intends to do.

3.3. The model

In the model constituted by Eqs. (1) to (3), we incorporate in
Eq. (2) the possibility of a propagation effect of the treatment in both
regions, treated and untreated. We can thus identify two different
impacts in the after-treatment situation: in the treated region and
in the untreated region. The latter depends on the proximity of the
regions. In the after-treatment situation, we have

ya
it,0 = yb

it,0 + w′
iditb

ya
it,1 = ya

it,0 + a (5)

where wi is an n × 1 vector associating each region to all the other
regions, and dit is an n × 1 vector of values dit = 1 if the region is
treated, and dit = 0 otherwise. The parameter a captures the direct
effect of the treatment on the treated region; b captures the indirect
effect of the treatment on all regions, treated and untreated, condi-
tioned on the neighbor treated, which is captured by wi

′dit . Based on
the definition of Dit, as before we have yit = (1 − Dit)yit,0 + Dityit,1.
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Fig. 1. Sugarcane production in São Paulo state by municipality, 2002, 2005, 2008, and 2011.
Source: IBGE, Municipal Agricultural Research.

Using the “before” and “after” definitions, now three effects can
be computed: ATE (Average Treatment Effect), ATET (Average Treat-
ment Effect on the Treated), and ATENT (Average Treatment Effect on
the Non-Treated), as follows

ATE = E
[
ya

it,1 − yb
it,1

]
− E[ya

it,0 − yb
it,0]

= a

ATET = E
[
ya

it,1 − yb
it,1

]
= a + w′

iditb

ATENT = E
[
ya

it,0 − yb
it,0

]
= w′

iditb.

Table 1
Number of treated regions.

Year Number of municipalities % of total

2002 230 0.357
2003 236 0.366
2004 242 0.376
2005 260 0.404
2006 291 0.452
2007 324 0.503
2008 348 0.540
2009 366 0.568
2010 387 0.601
2011 387 0.601
2012 385 0.598
2013 408 0.634

Source: IBGE, authors’ calculations.

These expressions make clear the bias in the usual diff-in-diff
approach if the spatial spillover in the treatment effect, represented
by w′

iditb, is not considered. In matrix notation, with a database
structured as a panel data, we have

Yt = 0 + ht + l(Xt) + (a + Wb)Dt + Nt (6)

where Yt = (Y1t , · · · , Ynt)′ is an nt × 1 vector of observations,
0 = (01, · · · ,0n)′ is an nt × 1 vector of regional fixed-effects,
ht = (h1, · · · , ht)′ is an nt × 1 vector of time fixed-effects, Xt =
(X1t , · · · , Xnt)′ is an nt × k matrix of covariates, Dt = (D1, · · · , Dt)′ is
a dummy variable indicating treated regions, W is a n × n neighbor-
hood weight matrix, and Nt = (U1t , · · · , Unt)′ is a vector of errors of
nt × 1 dimension. a and b are parameters to be estimated, and l is a
function relating Xt to Yt.

The term bWDt indicates the indirect effect of the treatment on
both regions, treated and untreated. This effect is usually ignored in
estimations of this type.2 However, this is an average effect, affecting
both types of regions.

It is possible, however, that the incidence of the indirect effect
could be different among treated and untreated regions. Consider a
situation in which the indirect effect in the treated region is small,
because the direct effect is more important. At the same time, the
indirect effect on the untreated region is large, because it is the
only effect impacting the region. In this situation, estimating b as
an average to all regions might underestimate the real effect of the

2 Angelucci and Giorgi (2009), Berniell et al. (2013), Kaboski and Townsend (2012)
are some exceptions. However, these studies do not control for different structures of
neighborhood.
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Fig. 2. Hospitalization due to respiratory problems in São Paulo state by municipality, 2002, 2005, 2008, and 2011.
Source: Datasus, Health Ministry.

treatment, because b will be estimated as an average of the indirect
effects on the treated and untreated regions.

For clarity, consider, at each point in time, the following decom-
position of the W matrix,

W = WT,T + WT,NT + WNT,T + WNT,NT

where

WT,T = Dt × W × Dt

WT,NT = Dt × W × DC
t

WNT,T = DC
t × W × Dt , and

WNT,NT = DC
t × W × DC

t

Table 2
Hospitalization due respiratory health problem, by municipality.

Year Hospitalization due to respiratory problems

Mean Std. dev. Maximum Minimum

2002 11.678 7.216 45.366 0.810
2003 11.337 7.332 41.895 0.272
2004 10.742 6.831 45.326 0.000
2005 9.996 6.291 42.415 0.000
2006 10.632 6.860 54.111 0.262
2007 9.780 6.271 54.756 1.175
2008 8.745 5.690 37.122 0.949
2009 9.798 6.367 39.896 1.291
2010 9.355 6.204 46.392 1.166
2011 9.264 5.967 45.065 0.458
2012 4.956 3.227 22.942 0.681
2013 5.077 3.200 21.889 0.000

Source: IBGE, authors’ calculations.

where Dt = diag(Dt) is an n × n matrix with Dt in the main diag-
onal and zeros elsewhere, and DC

t = diag(in − Dt), with in a vector
of 1’s. In this way Wij represents the neighborhood effects of the j-
region on i-region, i, j = T (treated) or NT (untreated). Substituting in
Eq. (6), results in

Yt = 0+ht +l(Xt)+[a+(WT,T +WT,NT +WNT,T +WNT,NT )b]Dt +Nt.

Then, it is clear that b represents an average effect, as we have
mentioned above. A more realistic model considers different effects

Table 3
Summary statistics for the variables.

Variable Mean Std. dev. Max Min N

Treatment 0.500 0.500 1.000 0.000 7728
WD 0.507 0.371 1.000 0.000 7728
W11D 0.399 0.427 1.000 0.000 7728
W21D 0.108 0.203 1.000 0.000 7728
Workers 0.202 0.143 2.202 0.036 7728
Urbanization 0.831 0.146 1.000 0.221 7728
Olders 0.125 0.030 0.251 0.043 7728
Children 0.229 0.034 0.366 0.071 7728
Doctors 0.675 0.847 7.000 0.000 7728
Wworkers 0.202 0.056 0.456 0.089 7728
Wurbanizaton 0.832 0.076 0.997 0.472 7728
Wolders 0.125 0.021 0.198 0.057 7728
Wchildren 0.229 0.027 0.332 0.164 7728
Wmedicos 0.682 0.232 1.766 0.170 7728

Source: Authors’ calculations.
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Table 4
Linear correlations between the variables of the model.

Variables Treatment WD W11D W21D Workers Urbanization Olders

Treatment 1.0000
WD 0.7856 1.0000
W11D 0.9342 0.8805 1.0000
W21D −0.5327 −0.0271 −0.4977 1.0000
Workers 0.1475 0.1486 0.1649 −0.0759 1.0000
Urbanization 0.2667 0.2703 0.2998 −0.1375 0.1930 1.0000
Olders 0.0715 0.1970 0.0764 0.1994 −0.0807 −0.1718 1.0000
Children −0.2502 −0.3684 −0.2730 −0.0983 −0.1386 −0.1266 −0.7296
Doctors 0.0117 0.0069 0.0136 −0.0160 0.2104 0.3675 0.0727
Wworkers 0.2644 0.3242 0.3338 −0.1106 0.2840 0.3242 −0.1230
Wurbanizaton 0.3973 0.4567 0.4786 −0.1737 0.2363 0.5389 −0.1499
Wolders 0.2094 0.3071 0.1910 0.1591 −0.0609 −0.1209 0.7088
Wchildren −0.3491 −0.4665 −0.3729 −0.0673 −0.1160 −0.1445 −0.5804
Wmedicos 0.0356 0.0337 0.0948 −0.1383 0.1939 0.2446 −0.2536

Variables Children Doctors Wworkers Wurbanizaton Wolders Wchildren Wmedicos

Children 1.0000
Doctors −0.2501 1.0000
Wworkers −0.2222 0.1412 1.0000
Wurbanizaton −0.2225 0.1241 0.5695 1.0000
Wolders −0.6651 −0.1044 −0.1608 −0.1875 1.0000
Wchildren 0.8050 0.0014 −0.2773 −0.2622 −0.8269 1.0000
Wmedicos 0.0019 0.0661 0.5626 0.5101 −0.3202 −0.0520 1.0000

Source: Authors’ calculations.

for dissimilar W matrices. As, by construction, WT,NTDt and WNT,NTDt

are 0-vectors3, the unrestricted model is

Yt = 0 + ht + l(Xt) + [a + (WT,Tb1 + WNT,Tb2)]Dt + Nt. (7)

The models in Eqs. (6) and (7) are special forms of the SDID.4 It
is important to register that they do not contain a traditional spatial
interaction effect, such as in the Spatial Autoregressive Model (SAR)
and the Spatial Error Model (SEM) (Anselin, 1988; LeSage and Pace,
2009). However, we can model the control effects, l(X), including an
auto-regressive spatial term or the error as a Spatial Error Model or
both

l(Xt) = qWYt + Xtc
′

and/or

Nt = kWNt + Ut.

In the first equation, c is a 1 × k parameter vector to be esti-
mated, and q is the spatial auto-regressive parameter. In the second
equation, Ut is an error vector, not spatially associated, and k is the
spatial error parameter to be estimated. Thus, a complete version of
models 6 and 7 is

Yt =(In − qW)−1{0 + ht + Xtc
′ + [a + (WT,Tb1 + WNT,Tb2)]Dt

+ (In − kW)−1Ut}. (8)

To the best of our knowledge, this formulation is new to the
Spatial Econometrics literature.

3 The elements of both matrices WT,NT and WNT,NT are given, respectively, by

WT,NT ij =

{
Wij if Dit = DC

jt = 1
0 otherwise

; and WT,NT ij =

{
Wij if DC

it = DC
jt = 1

0 otherwise
. Then,

WT,NT Dt =
∑

jWij|Dit =DC
jt =1 ×Dit , but this is a 0-vector because WT,NT ij is different from

zero only when Dit is equal to zero. The same holds for WNT,NTDt .
4 Delgado and Florax (2015) consider only the restricted case.

3.4. Data

A balanced panel of 644 municipalities belonging to the state
of Sao Paulo, the largest producer of sugarcane in the country was
chosen as study area. Annual data covered the period 2002–2013.
Information on sugarcane production, planted area, and harvested
area is based on the annual survey on agricultural production devel-
oped by IBGE, the Brazilian statistics office.

As mentioned before, the expansion in the sugarcane growing
area has prompted a series of questions on the possible conflicts
between land used to produce food versus energy. This does not
seem to be a problem at the national level: Brazil has over 800 mil-
lion hectares of landmass, of which over 300 million are suitable for
farming and ranching activities. Of these, about 60 million are used
to grow permanent and temporary crops and some 200 million are
used for animal husbandry. Thus, there is plenty of suitable land to
increase production, and this can be even larger if degraded land is
recovered and if productivity in animal production, which is very
low in the country, would increase (Chagas et al., 2008). In São Paulo
state, however, the crop represents nearly 50% of the area suitable
for farming. Fig. 1 shows a map of the evolution of sugarcane produc-
tion in São Paulo state, by municipality, during the period analyzed.5

It is clear that there was a steady increase in the production in the
northwest region of the state, and a sprawl to the west of the state,
an area previously used for cattle ranching.

The production of sugarcane is important to define our treat-
ment variable. In terms of physical conditions, any municipality in
the state is capable of producing sugarcane, a plant with minimum
soil and weather requirements. Even when it is not produced com-
mercially, farmers typically plant a small quantity to feed animals or
to make a highly appreciated drinkable juice. Although some restric-
tions on production in some areas were recently introduced by the
state and federal governments6 , they do not affect the capability
of the restricted areas to produce the cane. In any case, they were
implemented at the end of our period of analysis. From all the munic-
ipalities in the state, we consider as treated those in which the share

5 We select some years in this period, but the evolution is evident.
6 These restrictions aimed at forest and water sources preservation. At the state

level, they were introduce only in 2008.
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Table 5
Results.

Classical SLX SDEM

Restricted Unrestricted Restricted Unrestricted

Treatment 0.8145∗∗∗ 0.7184∗∗ 1.4914∗∗∗ 0.6828∗∗ 1.441∗∗∗

(0.2099) (0.2835) (0.3514) (0.2867) (0.379)
WD 0.2678 0.3561

(0.5189) (0.6654)
WT,TD −0.6671 −0.5902

(0.5762) (0.7357)
WNT,TD 1.3445∗∗ 1.3503∗

(0.5939) (0.7413)
R-square 0.7815 0.7830 0.7834 0.7828 0.7832
AIC 5.0426 5.0374 5.0359 5.0126 5.0116
Moran’s I 0.0683 0.0608 0.0600
p-Value 0.0000 0.0000 0.0000
LM_lag 268.5993 228.7994 221.7469
p-Value 0.0000 0.0000 0.0000
LM_error 337.6452 268.1517 261.0415
p-Value 0.0000 0.0000 0.0000
rob LM_lag 0.0377 1.3812 1.5001
p-Value 0.8460 0.2399 0.2207
rob LM_error 69.0836 40.7336 40.7947
p-Value 0.0000 0.0000 0.0000
k 0.3707∗∗∗ 0.3746∗∗∗

(0.0270) (0.0269)
N 644 644 644 644 644
T 12 12 12 12 12

Note: All models include control variables. SLX and SDEM models also include spatial lags of controls variables. Additionally, the models include a constant and spatial and
temporal fixed effects.
Statistical significance: *** p < 0.01; ** p < 0.05; * p < 0.1.

of the area planted with sugarcane is above 6,7%, the median of the
distribution of the production area. In Table 1 we report the num-
ber of treated areas in each year, showing an increase from 38.4% to
62.4% in the period.

Table 6
Complete results of the SDEM model (unrestricted case).

Dependent variable Intern per th

R-squared 0.7832
corr-squared 0.0501
Within R2 0.1867
Between R2 0.0186
Overall R2 0.0099
s2 9.4838
Log-likelihood 19,349.634
AIC 5.0116
Wald, p-value 271.2591, 0.0000
Nobs,Nvar,#FE 7728, 15, 656
# iterations 17
Min and max k −0.9900, 0.9900

Variable Coefficient Standard-error p-Value

Constant 10.0166 8.0812 0.1851
Treatment 1.4410 0.3790 0.0003
WT,TDt −0.5902 0.7357 0.2892
WNT,TDt 1.3503 0.7413 0.0759
trendd 0.2891 0.4778 0.3322
trendwd −1.9698 0.8008 0.0194
Workers −1.5337 0.5634 0.0098
Urbanization 6.8558 1.8923 0.0006
Olders 15.4285 9.0286 0.0926
Children −8.6372 8.9771 0.2511
Doctors 0.6034 0.2364 0.0154
W-workers −4.7291 3.0582 0.1207
W-urbanization −9.2632 9.2298 0.2411
W-olders −52.0746 35.3292 0.1346
W-children 40.4848 31.7538 0.1770
W-doctors −1.0709 1.2023 0.2683
k 0.3746 0.0269 0.0000

Our variable of interest is the number of persons hospitalized due
to respiratory problems (per 1000 inhabitants). The data was pro-
vided by DATASUS7 , the statistical agency of the Ministry of Health,
and includes hospitalizations in public and private hospitals. The
information is highly disaggregated in spatial terms, and we used
data at the municipality level. As Fig. 2 indicates, the number of
cases of hospitalizations due to respiratory diseases is decreasing
over time. This could be associated to changes in the federal legis-
lation, which introduced limitations for burning in certain areas and
times. This is especially true in the state of Sao Paulo, in which a state
law broadens the limitations imposed by the federal law. The prac-
tice of burning the canes to facilitate harvesting is expected to end in
a few years’ time in the state, both by restrictions coming from the
legislation (both environment and labor market related) and by eco-
nomic stimuli for the economical use of the leaves and the straws.
Table 2 illustrates the situation.

Given that, we have introduced a trend variable interacting with
the treated regions to adjust for this empirical evidence in all mod-
els estimated, and the coefficients are negative and significant in
all cases.8 We have included variables to control for socioeconomic

7 http://www2.datasus.gov.br/DATASUS/index.php.
8 As suggested by one of the anonymous reviewers, we have replaced the general

trend with temporal fixed effects interacting with the treatment effects. The results
are available upon request. The interaction dummies are not significant, in general,
and they are not robust to different specifications. Although the presence of a large
number of non-significant variables does not generate biases, it tends to compro-
mise inference. However, the absence of an important explanatory variable, as the
trend seems to be, can bias the results, if the missing variable is correlated with
another explanatory variable. In fact, the effect of the untreated region becomes non-
significant when the trend term is omitted. This might be due to a possible positive
relationship between the trend and the way the region interacts with its neighbors
over time. This is an interesting aspect to explore in a future work.

http://www2.datasus.gov.br/DATASUS/index.php
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Table 7
Monte Carlo simulation results.

Models b

0.1 0.4 0.8

Coef 95% conf. interval Coef 95% conf. interval Coef 95% conf. interval

N = 200, T = 10, k = 0.1

Contiguity matrix
Classical 0.0852 −0.2210 0.3914 0.2020 −0.1042 0.5082 0.3578 0.0516 0.6640
SLX −0.0173 −0.4069 0.3722 0.1022 −0.2874 0.4917 0.2615 −0.1281 0.6510
SDEM −0.0168 −0.4063 0.3728 0.1024 −0.2871 0.4919 0.2613 −0.1283 0.6508

k-Nearest matrix
Classical 0.1665 −0.3210 0.6540 0.4665 −0.0210 0.9540 0.8665 0.3790 1.3540
SLX 0.0982 −0.5184 0.7147 0.3982 −0.2184 1.0147 0.7982 0.1816 1.4147
SDEM 0.0987 −0.5171 0.7145 0.3987 −0.2171 1.0145 0.7987 0.1830 1.4145

k-Nearest Euclidean matrix
Classical 0.1391 −0.3203 0.5985 0.3457 −0.1137 0.8051 0.6213 0.1619 1.0807
SLX 0.0009 −0.5636 0.5655 0.2106 −0.3540 0.7751 0.4901 −0.0744 1.0547
SDEM 0.0038 −0.5602 0.5678 0.2121 −0.3519 0.7761 0.4897 −0.0742 1.0536

N = 200, T = 100, k = 0.1

Contiguity matrix
Classical −0.1812 −0.2746 −0.0878 −0.0728 −0.1662 0.0206 0.0718 −0.0216 0.1652
SLX 0.0143 −0.1044 0.1329 0.1229 0.0043 0.2416 0.2678 0.1492 0.3865
SDEM 0.0154 −0.1032 0.1340 0.1231 0.0045 0.2417 0.2667 0.1481 0.3853

k-Nearest matrix
Classical −0.4752 −0.6282 −0.3221 −0.1752 −0.3282 −0.0221 0.2248 0.0718 0.3779
SLX 0.0959 −0.0943 0.2862 0.3959 0.2057 0.5862 0.7959 0.6057 0.9862
SDEM 0.0957 −0.0941 0.2855 0.3957 0.2059 0.5856 0.7957 0.6059 0.9855

k-Nearest Euclidean matrix
Classical −0.3304 −0.4695 −0.1914 −0.1297 −0.2688 0.0093 0.1379 −0.0012 0.2769
SLX 0.0432 −0.1284 0.2148 0.2442 0.0726 0.4158 0.5122 0.3406 0.6838
SDEM 0.0429 −0.1284 0.2142 0.2430 0.0717 0.4143 0.5098 0.3384 0.6811

N = 200, T = 10, k = 0.5

Contiguity matrix
Classical −0.1230 −0.4824 0.2364 −0.0200 −0.3794 0.3394 0.1174 −0.2420 0.4768
SLX 0.0810 −0.3584 0.5205 0.1858 −0.2536 0.6252 0.3254 −0.1140 0.7649
SDEM 0.0651 −0.3601 0.4904 0.1631 −0.2622 0.5884 0.2937 −0.1317 0.7191

k-Nearest matrix
Classical −0.3316 −0.9947 0.3314 −0.0316 −0.6947 0.6314 0.3684 −0.2947 1.0314
SLX 0.1061 −0.6523 0.8645 0.4061 −0.3523 1.1645 0.8061 0.0477 1.5645
SDEM 0.1040 −0.5832 0.7912 0.4040 −0.2833 1.0913 0.8039 0.1167 1.4911

k-Nearest Euclidean matrix
Classical −0.2050 −0.7674 0.3573 −0.0120 −0.5744 0.5503 0.2453 −0.3171 0.8076
SLX −0.0227 −0.6925 0.6471 0.1714 −0.4984 0.8413 0.4303 −0.2395 1.1001
SDEM 0.0047 −0.6245 0.6338 0.1950 −0.4341 0.8241 0.4490 −0.1802 1.0782

N = 200, T = 100, k = 0.5

Contiguity matrix
Classical 0.0219 −0.0910 0.1349 0.1282 0.0152 0.2411 0.2698 0.1568 0.3827
SLX 0.0362 −0.0955 0.1678 0.1425 0.0108 0.2741 0.2842 0.1526 0.4158
SDEM 0.0357 −0.0892 0.1606 0.1385 0.0136 0.2634 0.2755 0.1506 0.4004

k-Nearest matrix
Classical 0.0554 −0.1515 0.2623 0.3554 0.1485 0.5623 0.7554 0.5485 0.9623
SLX 0.0955 −0.1280 0.3190 0.3955 0.1720 0.6190 0.7955 0.5720 1.0190
SDEM 0.0976 −0.0964 0.2917 0.3977 0.2037 0.5916 0.7976 0.6036 0.9917

k-Nearest Euclidean matrix
Classical 0.0375 −0.1364 0.2114 0.2411 0.0672 0.4151 0.5127 0.3388 0.6866
SLX 0.0272 −0.1710 0.2254 0.2316 0.0334 0.4297 0.5040 0.3059 0.7022
SDEM 0.0349 −0.1425 0.2123 0.2330 0.0556 0.4105 0.4972 0.3198 0.6747

N = 200, T = 10, k = 0.9

Contiguity matrix
Classical −0.0707 −0.8090 0.6676 0.0461 −0.6922 0.7845 0.2020 −0.5363 0.9403
SLX 0.0288 −0.8134 0.8711 0.1453 −0.6970 0.9875 0.3005 −0.5417 1.1427
SDEM 0.0345 −0.4344 0.5033 0.1449 −0.3239 0.6136 0.2920 −0.1767 0.7608

(continued on next page)
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Table 7 (continued)

Models b

0.1 0.4 0.8

Coef 95% conf. interval Coef 95% conf. interval Coef 95% conf. interval

N = 200, T = 10, k = 0.9

k-Nearest matrix
Classical −0.1165 −1.7578 1.5247 0.1835 −1.4578 1.8247 0.5835 −1.0578 2.2247
SLX 0.0728 −1.4046 1.5502 0.3728 −1.1046 1.8502 0.7728 −0.7046 2.2502
SDEM 0.0862 −0.5891 0.7614 0.3862 −0.2890 1.0613 0.7861 0.1108 1.4614

k-Nearest Euclidean matrix
Classical 0.0245 −1.3887 1.4377 0.2344 −1.1788 1.6476 0.5143 −0.8988 1.9275
SLX 0.1159 −1.1619 1.3936 0.3273 −0.9505 1.6051 0.6092 −0.6686 1.8869
SDEM 0.0452 −0.5761 0.6664 0.2494 −0.3721 0.8709 0.5214 −0.1001 1.1429

N = 200, T = 100, k = 0.9

Contiguity matrix
Classical −0.1135 −0.3648 0.1378 −0.0067 −0.2579 0.2446 0.1358 −0.1155 0.3871
SLX 0.0372 −0.2387 0.3131 0.1455 −0.1304 0.4214 0.2899 0.0140 0.5658
SDEM 0.0333 −0.1123 0.1788 0.1327 −0.0128 0.2782 0.2654 0.1198 0.4109

k-Nearest matrix
Classical −0.3299 −0.9323 0.2725 −0.0299 −0.6323 0.5725 0.3701 −0.2323 0.9725
SLX 0.1038 −0.4462 0.6538 0.4038 −0.1462 0.9538 0.8038 0.2538 1.3538
SDEM 0.1017 −0.1042 0.3075 0.4017 0.1958 0.6075 0.8016 0.5958 1.0075

k-Nearest Euclidean matrix
Classical −0.1904 −0.6398 0.2590 −0.0123 −0.4617 0.4371 0.2253 −0.2241 0.6747
SLX 0.0812 −0.3397 0.5020 0.2618 −0.1590 0.6826 0.5026 0.0818 0.9235
SDEM 0.0583 −0.1345 0.2512 0.2290 0.0361 0.4219 0.4567 0.2637 0.6496

Source: Authors’ calculations.

conditions that influence people’s behavior towards health pre-
vention, such as the proportion of workers in the population, and
urbanization. We have also included the proportion of elderly and
young people, to control for the presence of groups more susceptible
to respiratory health problems, as indicated in the literature (Braga
et al., 1999; Goncalves et al., 2005; Roseiro, 2002). Finally, we have
introduced the proportion of doctors in the population, to control
for the presence of regular assistance. Table 3 reports the descriptive
statistics and Table 4 reports the correlation matrix.

4. Results

This section presents the results.9 We computed and compared
three different types of models. The first is a classical panel data
regression with fixed effects, to set a baseline for comparing our
results. The second includes spatial controls on the x variables. This
is similar to the spatial lag of X (SLX) model case suggested by
Vega and Elhorst (2015) and is our baseline case to perform the
model search in Spatial Econometrics. The third involves traditional
models in Spatial Econometrics (SDM/SDEM). For this last case, the
selection was based on the Lagrange Multiplier (LM) and LM robust

9 We based our estimates on Elhorst’s routine for spatial panel data models (Elhorst,
2010a,b). Elhorst uses Maximum Likelihood (ML) because the number of studies
considering Instrumental Variables/Generalized Method of Moments (IV/GMM) esti-
mators of spatial panel data models is still relatively sparse. One exception is Kelejian
et al. (2006), who used IV to estimate a spatial lag model with time-period fixed
effects. They point out that the model cannot be combined with a spatial weight
matrix with non-diagonal elements equal to 1/(N − 1). In this situation, the spatially
lagged dependent is asymptotically proportional and thus collinear with the time-
period fixed effects, as N goes to infinity. Elhorst (2010a) provides Matlab routines
to estimate spatial panel data models, including the bias correction procedure pro-
posed by Lee and Yu (2010) if the spatial panel data model contains spatial and/or
time-period fixed effects, the direct and indirect effects estimates of the explana-
tory variables proposed by LeSage and Pace (2009), and a selection framework to
determine which spatial panel data model best describes the data.

tests (Anselin et al., 1996), following the suggestion by Florax et al.
(2003).10 In all situations, the tests indicated the use of the SDEM
model. Additionally, we consider both restricted and unrestricted
cases, as models 6 and 7, respectively. We consider a k-nearest neigh-
bors distance matrix, with k varying between 20 and 100, and use the
Akaike Information Criterion (AIC) for pooled models, without spa-
tial effects, to choose the size of k. Thus, we chose the matrix that
best fits the data.

Classical panel
Yt = 0 + ht + (a + tt)Dt + Xtc′ + Nt

SLX model
Restricted model
Yt = 0 + ht + (a + bW + tt + xWt)Dt + Xtc′ + WXtd′ + Nt

Unrestricted model
Yt = 0 + ht + (a + b1WT,T + b2WNT,T + tt + xWt)Dt + Xtc′ + WXtd′ + Nt

SDEM model
Restricted model
Yt = 0 + ht + (a + bW + tt + xWt)Dt + Xtc′ + WXtd′ + (In − kW)−1Ut

Unrestricted model
Yt = 0 + ht + (a + b1WT,T + b2WNT,T + tt + xWt)Dt + Xtc′ + WXtd′

+(In − kW)−1Ut

The results are reported in Table 5. The Classical Panel Model indi-
cates that sugarcane production increases hospitalizations by only
0.81 cases per thousand, and this conclusion is significant at 1%,
which is in line with the results of Nicolella and Belluzzo (2015).
However, as we have mentioned above, this is an incomplete account
of the effects. The introduction of spatial controls increases the influ-
ence of sugarcane production on hospitalizations, and suggests the
relevance of introducing spatial controls on untreated regions. The
impact of sugarcane production in the treated region is of 1.49 cases

10 These tests have become popular in empirical research. However, Elhorst (2014)
calls attention to the fact that the power of these tests to spatial panel data models
must still be investigated.
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Table 8
Robustness check — neoplasm-related hospitalization.

Dependent variable neopl per th

R-squared 0.4166
corr-squared 0.0284
Within R2 0.0111
Between R2 0.1042
Overall R2 0.0081
sigma2^ 0.4844
Log-likelihood −7836.0529
AIC 2.0318
Wald test, p-value 174.3972, 0.0000
Nobs,Nvar,#FE 7728, 15, 656
# iterations 14
Min and max k −0.9900, 0.9900

Variable Coefficient Standard-error p-Value

Constant 2.1565 1.6701 0.1733
Treatment 0.0780 0.0826 0.2553
WT,TDt 0.1376 0.1420 0.2495
WNT,TDt 0.1880 0.1454 0.1729
trendd −0.0517 0.1071 0.3550
trendwd −0.3723 0.1592 0.0259
Workers 0.0800 0.1254 0.3256
Urbanization 0.8412 0.4248 0.0562
Olders 11.8091 2.0527 0.0000
Children −8.8971 2.0480 0.0000
Doctors −0.0492 0.0529 0.2585
W-workers −1.8169 0.5803 0.0030
W-urbanization −2.9752 1.7688 0.0969
W-olders −6.6432 6.4381 0.2343
W-children 15.2469 6.1739 0.0189
W-doctors −0.6271 0.2303 0.0098
spat.aut. 0.2321 0.0282 0.0000

per thousand, 84% larger than in the previous model. Moreover, the
influence on the neighboring untreated regions is approximately 90%
of the effect on producing areas (1.34/1.49).

The spatial effects may take place through other channels than
spatial lags in the independent variable. Therefore, we introduced
spatial controls as suggested by the LM and LM robust tests, which
have indicated the SDEM specification in all cases. In this situa-
tion, the treatment effect diminished to 1.44, in the unrestricted
model. However, the relative importance of the effect on untreated
regions (1.35) has increased to 94% of the effect on treated regions
(1.35/1.44).

Table 6 shows the complete results of the SDEM model (unre-
stricted case). The signs of the control variables are as expected.
Better social conditions reduce the number of admissions and so
do a larger proportion of workers in the population. Urbanization
increases the number of hospitalizations, probably reflecting easier
access to hospitals and/or that cane burning worsens the pollution
in the cities. More elderly people in the region leads to larger num-
bers of hospitalizations, but the same does not show for the number
of children (not significant). The number of doctors increases hospi-
talizations, also reflecting access to hospitals. The spatial parameter
(k) controls for common shocks to the dependent variable, and is
positive and significant.

5. Robustness checks

To verify the robustness of our results, we have evaluated four
situations: the identification power of the model, the application to
diseases not related, in principle, to cane production, and the use of
different forms of measuring the neighborhood effects.

We ran Monte Carlo simulations to investigate the identification
power of the unrestricted model in Eq. (8). We have considered the
identification of the effect of the treatment on the non-treated as a
weighted average, with the weights being the proximity of the neigh-
boring unities. The ML method employed may not identify correctly

the effect due to possible multicollinearities, a problem that is more
serious in small samples. Therefore, we have set b1 = 0, that is,
we have simulated only the effects of sugarcane production in non-
producing regions in the neighborhood of producing regions. To all
simulations, we considered the following model

Yt =C + 0 + ht + (a + b1WT,T + b2WNT,T + tt + xWt)Dt

+ Xtc′ + WXtd′ + (In − kW)−1Ut. (9)

The dimension of the panel was set in n = 20011 and t = 10
(a short panel) and t = 100 a long one). The simulation consists of
varying b2, the effect of the treatment on the untreated regions. We
simulated b2 = 0.1, 0.4, and 0.8, to identify the magnitude at which
the effects begin to appear. We chose C = 10, similar with the value
estimated in the restricted SDEM model (Table 6); and t = x = −1,
compatible with the estimated negative trend (Table 6); k = 0.5, an
average spatial effect. A k-nearest neighbor matrix of spatial weights,
with k =

√
N, was constructed to form the y vectors used in the

simulations. Pseudo-geographical coordinates were generated from
random normal variables. The x-variable is formed by a random vec-
tor, with c = d = 1. The treatment indicator was generated from
a random uniform variable with values 0 or 1, and the treatment
effect over the treated, a, was set to 1. We ran 1000 draws to form
different U-vectors of errors. The tests were implemented with the
similar models estimated with the real data (a Classical Panel, SLX
and SDEM models). We used three different types of W-matrices:
Queen-contiguity, k-nearest, and k-nearest weighted by the inverse
Euclidean distance.

The simulation results are displayed in Table 7. The coefficients
correspond to the average of the 1000 coefficients estimated in each
case. Observing the results, it is clear that the SLX and SDEM mod-
els, with the true matrix (k-nearest matrix), always hit the parameter
(these methods are consistent), but even so inefficient when the
parameter indicating that these methods are consistent. However,
they are inefficient when the parameter magnitude is tiny (0.1), even
when T is high (T = 100). In panel data with small dimension (T =
10), the SDEM models provided more efficient estimation than the
SLX ones (the confidence interval is always smaller in SDEM mod-
els than in SLX). In small panels, with larger parameters (b = 0.8)
the classical method always underestimated the true value. Thus,
the SDEM model with fixed effects, which is our preferred model, is
capable of identifying the true effect.

As another form of robustness check, we ran the same models
using the incidence of hospitalizations related to neoplasm patholo-
gies, which are not, in principle, related to sugarcane production, at
least in the short run. Given the possibility that some respiratory or
skin-related neoplasm cases could be associated to cane burning in
the long term, we have excluded these cases from the neoplasm hos-
pitalization set. As the results presented in Table 8 indicate, we found
no relationship whatsoever between sugarcane production and the
incidence of hospitalizations related to this sort of pathologies. This
result suggests that there is no concentration of hospitalizations in
the cane-producing areas other than the ones related to the negative
externalities generated by cane production.

As another robustness check, we considered different forms for
the W-matrix. In the first case, we changed the number of neigh-
bors located within a 100-km radius between 0 and 50; in the
second case, we fixed a maximum of k = 22 neighbors, and changed
the radius between 0 and 100 km. Fig. 3 shows the effects over
untreated regions. As the figure shows, the mean effects are close to
the estimated SDEM model.

11 This choice corresponds to a medium sample data, smaller than our empirical one.
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Fig. 3. Robustness checks —different W matrices.
Source: Authors’ calculation.

Finally, we have considered the direction of the wind in the
construction of the neighborhood matrix. Because the transmission
mechanism is wind-related, as the particles are transported with
the smoke coming from the burning, municipalities located within
the same distance could receive different influences depending on
their relative position concerning the wind. We have used data from
the National Institute of Meteorology, covering 12 measuring sta-
tions within São Paulo state and 29 stations located at a maximum
distance of 200 km from the state borders. We have used yearly
information for the harvest season (from April to September) for all
years between 2002 and 2013. Fig. 4 shows the predominant wind
direction in the state, according to the parameters adopted. We have
considered a 120◦ window from the municipality centroid for wind
dispersion (60◦ on each side) and a maximum distance of 75 km.
Table 9 shows the results of the simulation. The estimated coeffi-
cients are similar to the ones obtained in the previous regressions.
A Wald-type test of restriction does not allow the rejection of the
null hypothesis of equal coefficients for the effect on neighboring
municipalities in both regressions (Tables 6 and 9).12

12 This result is in line with the conclusion of (LeSage and Pace, 2014 ,p. 247): “due to
the number of common elements in these weight matrices and selection of parameters
that give the best fit for each W, good fitting models using these different forms of W
are not likely to produce estimates and inferences that materially differ.”.

Considering these robustness checks, it seems that our results
are firm, and the proposed method of measuring the effects of cane
production on neighboring regions is adequate.

6. Conclusions

The increasing importance of ethanol as fuel for cars in Brazil
has attracted attention for many reasons. Being a biofuel that is
environment-friendly, it appeared as a potential solution for the
world’s dependence on fossil. On the other hand, many negative
aspects have been pointed out, such as poor working conditions,
soil contamination, dislocation of land used to produce other prod-
ucts and into forested areas. In this article we have investigated one
negative externality widely recognized in the literature, that is, the
impacts of the burning of the canes on respiratory diseases. Although
harvest methods are changing in recent years, both by law enforce-
ment and by new economic incentives for the use of the leaves and
the bagasse, the practice of burning the fields to facilitate access to
the sugarcane is still prevalent, and will remain so for a while in areas
with spiky topography.

The existing studies on the impact of sugarcane production on
health conditions do not consider the effects on areas surrounding
the plantations. We have developed a new variety of spatial diff-
in-diff model to control for the effects of sugarcane production on
neighboring non-producing regions, introducing spatial effects also
in the independent variables, through a SDEM model. This method
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Fig. 4. Wind speed and directions.
Source: INMET. Authors calculation.

is an addition to the Spatial Econometrics literature, as it includes
spatial effects on treated and untreated regions in a comprehen-
sive way, so that the effects on both producing and surrounding
non-producing regions can be properly estimated.

We have introduced control variables related to socioeconomic
conditions in the regions, such as the presence of children and elders,
the share of population employed, the number of doctors, and the
urbanization rate. The estimated coefficients for these variables came
out as expected. As for the spatial effects, the results indicate that the
impacts on the producing regions are 78% larger than if the effects
on the surrounding areas were ignored. This indicates that ignoring
the effects on surrounding areas in the calculations underestimates
the effects on the producing areas in the calculations underestimates
the effects on the producing areas themselves. Moreover, the effects
on the surrounding areas, typically ignored in other studies, are rele-
vant, and almost as large as the effects on the producing areas. Again,

Table 9
Robustness check —wind neighbors matrix.

Dependent variable intern per th

R-squared 0.7831
corr-squared 0.0502
Within R2 0.1842
Between R2 0.025
Overall R2 0.0121
sigma2^ 9.4824
Log-likelihood −19,349.773
AIC 5.0116
Wald test, p-value 276.6881, 0.0000
Nobs,Nvar,#FE 7728, 15, 670
# iterations 16
Min and max k −0.9900, 0.9900

Variable Coefficient Standard-error p-Value

Constant 10.8825 8.0906 0.1615
Treatment 1.1777 0.3352 0.0008
WT,TDt −0.1326 0.5312 0.3867
WNT,TDt 1.3679 0.5652 0.0213
trendd 0.2447 0.4609 0.3465
trendwd −2.0516 0.6786 0.0041
Workers −1.5459 0.5618 0.0091
Urbanization 6.8309 1.8919 0.0006
Olders 15.6748 9.0280 0.0884
Children −8.7973 8.9873 0.2471
Doctors 0.6006 0.2365 0.0159
W-workers −5.2374 3.0255 0.0892
W-urbanization −10.0147 9.2938 0.2232
W-olders −50.2464 33.5926 0.1303
W-children 39.1678 31.7675 0.1866
W-doctors −1.1589 1.2055 0.2513
spat.aut. 0.3793 0.0268 0.0000
Wald restriction test, p-value 0.0010, 0.9752

ignoring the neighborhood effects underestimates the impacts on
hospitalizations in the area at large. We have implemented robust-
ness checks that gave us more confidence on the results, as they
have indicated that they are not related to specificities of the regions
considered.

These findings are important for the planning of the distribution
of health facilities across regions. It is clear that sugarcane pro-
duction tends to increase hospitalizations due to respiratory causes
not only in the producing municipalities, but also in the vicinity. In
addition, the quantitative effects are much larger than if the spa-
tial effects were ignored. Therefore, planning the organization of the
health services to cope with this kind of negative externality must
consider larger numbers of hospitalization requests, and should con-
sider broader areas, involving both producing and non-producing
municipalities.
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