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Abstract. In this article, we introduce the sftt command, which fits two-tier
stochastic frontier (2TSF) models with cross-sectional data. Like most frontier
models, a 2TSF model consists of a linear frontier model and a composite error
term. The error term is assumed to be a mixture of three components: two one-
sided inefficiency terms—strictly nonnegative and nonpositive, respectively—and
a symmetric noise term. When providing appropriate distributional assumptions,
sftt can fit models with exponential and half-normal specifications. sftt also fits
2TSF models with the scaling property to mitigate concerns over distributional
specifications. In addition, we provide two subcommands, sftt sigs and sftt
eff, to assist in postestimation efficiency analysis. We provide an overview of the
2TSF literature, a description of the sftt command and its options, and examples
using simulated and actual data.

Keywords: st0705, sftt, two-tier stochastic frontier model, inefficiency, information
asymmetry

1 Introduction
In this article, we introduce the sftt command, which fits parametric two-tier stochastic
frontier (2TSF) models using cross-sectional data. Since Polachek and Yoon (1987), who
introduced this model to reflect a boundary between observed wages and what workers
were willing to accept simultaneously with what firms were willing to pay, this class
of models has become a popular tool for studying price bargaining (Kumbhakar and
Parmeter 2009, 2010; Blanco 2017; Fried and Tauer 2019), information asymmetry (Lu,
Lian, and Lu 2011; Liu, Yao, and Wei 2019), and corporate governance (Lin, Liu, and
Sun 2017; Lyu, Decker, and Ni 2018; Ge et al. 2020), amongst other application domains.
A detailed review of these models can be found in Papadopoulos (2021).

The appeal of 2TSF models is that they allow for measurement of the impact of
asymmetries in markets where economic agents are operating in opposite directions,
such as workers and firms, buyers and sellers, and countries giving or receiving aid. As
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alternatives to the classic stochastic frontier literature, which has a single, explicit upper
or lower boundary, 2TSF models have both upper and lower boundaries. For example,
a home seller has the lowest price they would sell their house for, while simultaneously
a home buyer has a maximum price they would pay for a house. It is likely that these
two prices will differ and that the final observed price carries information on the relative
positions of both agents.

To our knowledge, the estimation of 2TSF models is currently unavailable in dis-
tributed Stata commands (or in any other statistical languages). Nevertheless, these
models remain popular in various application domains. As such, we developed the sftt
command and designed the syntax following the popular sfcross command by Belotti
et al. (2013).

To fit 2TSF models, researchers usually use two kinds of model assumptions and
estimation techniques. The first is to impose distributional assumptions and estimate
via maximum likelihood. For example, the one-sided terms in the composite error
are assumed to follow either the exponential distribution (Polachek and Yoon 1987)
or the half-normal distribution (Papadopoulos 2015), from which the joint distribution
function of the composite error term and the corresponding likelihood function can be
derived.

The second approach to fit 2TSF models is to use nonlinear least squares (NLS).
Parmeter (2018) proposed using NLS when observable characteristics are presumed to
impact the deviations from the boundaries. In this case, if the scaling property is as-
sumed (Wang and Schmidt 2002), NLS can be used to fit the model with no distributional
requirements.

Within Stata, multiple ways exist to fit a (single-tier) stochastic frontier model. The
built-in commands frontier and xtfrontier fit stochastic frontier models well, and
sfcross and sfpanel by Belotti et al. (2013) are quite popular among researchers. With
the development of stochastic frontier models, many new commands have been published
in recent years. sfkk and xtsfkk by Karakaplan (2017, 2022) can control endogeneity
in stochastic frontier models, while Fé and Hofler (2020) developed sfcount to fit count-
data stochastic frontier models. However, these commands fit only production or cost-
frontier models. If we are interested in topics like price bargaining and information
asymmetry, 2TSF models, which contain two one-sided terms to capture the inefficiencies
in different directions, are required.

sftt provides a user-friendly way to fit 2TSF models with either distributional as-
sumptions or the scaling property. When estimating with distributional assumptions,
sftt fits a 2TSF model with either the exponential or the half-normal specification.
sftt can also fit a 2TSF model with the scaling property to address concerns over distri-
butional specifications. sftt sigs and sftt eff are two subcommands to decompose
error terms and calculate measures of inefficiency, which are helpful in the postestima-
tion efficiency analysis.

The remainder of the article is organized as follows. In sections 2 and 3, we briefly
review the 2TSF model and discuss the rudiments of estimation using maximum like-
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lihood and NLS, respectively. Section 4 describes the syntax of sftt, focusing on the
main options. Sections 5 and 6 illustrate the use of the sftt command using simulated
data and three empirical applications from the 2TSF literature. Finally, section 7 offers
some conclusions.

2 2TSF models with distributional assumptions
We begin our discussion with the benchmark specification of the 2TSF model proposed
by Polachek and Yoon (1987) and discuss estimation via maximum likelihood and many
postestimation objects that researchers may find interesting. We then turn our attention
to the half-normal specification of Papadopoulos (2015). We intentionally do not discuss
the derivation of the corresponding criterion functions but refer the reader to the cited
literature for details on the estimation of each model.

2.1 The exponential specification

2.1.1 Model estimation

Following Kumbhakar and Parmeter (2009), consider the 2TSF model

y = Xδ + ε

ε = v − u+w (1)

where y is an n × 1 vector containing observations of the outcome variable, X is an
n × K matrix of covariates, δ is a K × 1 vector of the coefficients, and ε is an n × 1
vector of the composite error term, with u and w being two one-sided inefficiency terms
and v capturing stochastic noise. These three components are assumed to be jointly
independent. For each i, we have

vi ∼ i.i.d. N (0, σ2
v)

ui ∼ i.i.d. Exp(σu)
wi ∼ i.i.d. Exp(σw) (2)

where i.i.d. stands for independent and identically distributed, N (0, σ2
v) denotes a nor-

mal distribution with mean 0 and variance σ2
v , and Exp(σz) denotes a random variable

z that is exponentially distributed with mean σz and variance σ2
z .

Using the assumptions in (2), we can derive the probability density function of εi,

f(εi) =
ea1i

σu + σw
Φ(b1i) +

ea2i

σu + σw
Φ(b2i)

where a1i = (εi/σu) + {σ2
v/(2σ

2
u)}, b1i = −{(εi/σv) + (σv/σu)}, a2i = {σ2

v/(2σ
2
w)} −

(εi/σw), and b2i = (εi/σv)− (σv/σw). Φ(·) is the standard normal cumulative distribu-
tion function (CDF).
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The log-likelihood function for a sample of n observations is

lnL(ε|y,X,θ) = −n ln(σu + σw) +

n∑
i=1

ln {ea1iΦ(b1i) + ea2iΦ(b2i)}

where θ =
(
δ′, σv, σu, σw

)′. Estimates can be obtained by directly maximizing the
above log-likelihood function.

2.1.2 Measuring one-sided terms in levels

Using the maximum likelihood estimates, the conditional distributions of ui and wi can
be written as

f(ui|εi) =
λe−λuiΦ(ui/σv + b2i)

χ1i

f(wi|εi) =
λe−λwiΦ(wi/σv + b1i)

χ2i

where λ = (1/σu) + (1/σw), χ1i = Φ(b2i) + ea1i−a2iΦ(b1i), and χ2i = Φ(b1i) +
ea2i−a1iΦ(b2i) = ea2i−a1iχ1i.

The observation-specific conditional expectations of ui and wi are

E(ui|εi) =
1

λ
+
ea1i−a2iσv {φ(−b1i) + b1iΦ(b1i)}

χ1i
(3)

E(wi|εi) =
1

λ
+
σv {φ(−b2i) + b2iΦ(b2i)}

χ1i
(4)

2.1.3 Measuring one-sided terms in logarithmic specification

Following Papadopoulos (2018), if the dependent variable enters the regression in loga-
rithmic form, we need to consider the expected values of the exponentiated variables.

We derive the following conditional expectations to obtain the logarithmic one-sided
terms, which are e−u and e−w. The interpretation of these one-sided terms will be
discussed later in section 2.3.

E(e−ui |εi) =
λ

1 + λ

1

χ1i

{
Φ(b2i) + ea1i−a2i × eσ

2
v/2−σvb1iΦ(b1i − σv)

}
(5)

E(e−wi |εi) =
λ

1 + λ

1

χ2i

{
Φ(b1i) + ea2i−a1i × eσ

2
v/2−σvb2iΦ(b2i − σv)

}
(6)

The relative measure of one-sided terms E(ewie−ui |εi) is

E(ewie−ui |εi) =
e
(1+σu)

(
a1i+

σ2
v

2σu

)
Φ(b1i − σv) + e

(1−σw)

(
a2i−

σ2
v

2σw

)
Φ(b2i + σv)

ea1iΦ(b1i) + ea2iΦ(b2i)
(7)
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2.2 The half-normal specification

2.2.1 Model estimation

As in Papadopoulos (2015), we now assume that the inefficiency terms ui and wi follow
half-normal distributions,

vi ∼ i.i.d. N (0, σ2
v)

ui ∼ i.i.d. N+(0, σ
2
u)

wi ∼ i.i.d. N+(0, σ
2
w)

where N+(0, σ
2) represents a half-normal distribution, N+(0, σ

2) = |N (0, σ2)|.

For compactness, we use the notations

ω1 ≡ s
√
1 + θ22
θ1

, ω2 ≡ s
√
1 + θ21
θ2

, λ1 ≡ θ2
θ1

√
1 + θ21 + θ22, λ2 ≡ θ1

θ2

√
1 + θ21 + θ22

where θ1 ≡ (σw/σv), θ2 ≡ (σu/σv), and s ≡
√
σ2
v + σ2

u + σ2
w = σv

√
1 + θ21 + θ22.

With these notations, the density of εi is

fε(εi) =
2

s
φ (εi/s) {G(εi; 0, ω1,−λ1)−G(εi; 0, ω2, λ2)}

where G(z; location, scale, skew) is the CDF of a univariate skew-normal random variable.
We further use

G1i ≡ G(εi; 0, ω1,−λ1), G2i ≡ G(εi; 0, ω2, λ2)

For convenience of empirical implementation, we evaluate the CDF of the skew-
normal distribution with the correlated bivariate standard normal CDF, Φ2, following
Papadopoulos (2018):

G(εi; ξ, ω, λ) = 2Φ2

(
εi − ξ

ω
, 0; ρ =

−λ√
1 + λ2

)

The corresponding log-likelihood function is

lnL(ε|y,X,q) = n ln

(
2√
2π

)
− n ln s− 1

2s2

n∑
i=1

(yi − x′
iδ)

2 +

n∑
i=1

ln(G1i −G2i)

where q =
(
δ′, s, θ1, θ2

)′. xi is the column vector taken from the ith row of X.
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2.2.2 Measuring one-sided terms in levels

As for the measurement of inefficiency, the conditional expected values of ui and wi are

E(ui|εi) = s2ψ2i −
σ2
u

s2
(εi − s2ψi) (8)

E(wi|εi) = s2ψ1i +
σ2
w

s2
(εi − s2ψi) (9)

where ψ1i ≡ {g1i/(G1i −G2i)}, ψ2i ≡ {g2i/(G1i −G2i)}, ψi ≡ ψ1i − ψ2i, and g·i is the
probability density function of the corresponding skew-normal distribution.

2.2.3 Measuring one-sided terms in logarithmic specification

The logarithmic inefficiency can be estimated by 1 − E(e−ui |εi) and 1 − E(e−wi |εi),
where

E(e−u|εi) = 2 (G1i −G2i)
−1

exp

(
1

2
ω2
u +

ωu

ω2
εi

){
Φ

(
εi − σ2

u

ω1

)

− Φ2

(
εi − σ2

u

ω1
, ωu +

εi
ω2

; ρ =
−σwσu
s1s2

)}
(10)

E(e−w|εi) = 2 (G1i −G2i)
−1

exp

(
1

2
ω2
w +

ωw

ω1
εi

){
Φ

(
−εi + σ2

w

ω2

)

− Φ2

(
−εi + σ2

w

ω2
, ωw − εi

ω1
; ρ =

−σwσu
s1s2

)}
(11)

in which s1 ≡
√
σ2
w + σ2

v , s2 ≡
√
σ2
u + σ2

v , ωw ≡ {(σws2)/s}, ωu ≡ {(σus1)/s}, and
Φ2(·) is the correlated bivariate standard normal CDF.

E(ewie−ui |εi) can be obtained as

E(ewie−ui |εi) = exp

{
σ2
w + σ2

u

s2

(
σ2
v

2
+ εi

)}

×
Φ2

(
εi+σ2

v

ω1
, 0; ρ = λ1√

1+λ2
1

)
− Φ2

(
εi+σ2

v

ω2
, 0; ρ = −λ2√

1+λ2
2

)

Φ2

(
εi
ω1
, 0; ρ = λ1√

1+λ2
1

)
− Φ2

(
εi
ω2
, 0; ρ = −λ2√

1+λ2
2

) (12)

2.3 Interpreting the one-sided terms

Interpreting the one-sided terms is an essential part of 2TSF analysis. To study welfare
allocation, researchers usually pay more attention to the relative measures of one-sided
terms, which measure the result of price bargaining or information asymmetry.
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For example, we introduce the interpretation of one-sided terms in a logarithmic price
bargaining model. The actual price is assumed to be F (x)ev−u+w, where F (x) = ex

′δ

is the optimal price. Correspondingly, the benchmark price F (x)ev is the optimal price
plus a stochastic markup, while the maximum price is F (x)ev+w and the minimum price
is F (x)ev−u. The relative measure of surplus can be evaluated as follows:

• 1− e−u measures two things that appear different but are equal in magnitude:

– Seller surplus with respect to the benchmark price, relative to the benchmark
price.

Benchmark price−Minimum price
Benchmark price

=
F (x)ev − F (x)ev−u

F (x)ev
= 1− e−u

– Consumer surplus with respect to the actual price, relative to the maximum
price.

Maximum price−Actual price
Maximum price

=
F (x)ev+w − F (x)ev−u+w

F (x)ev+w
= 1− e−u

• 1− e−w measures two things that appear different but are equal in magnitude:

– Seller surplus with respect to the actual price, relative to the actual price.

Actual price−Minimum price
Actual price

=
F (x)ev−u+w − F (x)ev−u

F (x)ev−u+w
= 1− e−w

– Consumer surplus with respect to the benchmark price, relative to the max-
imum price.

Maximum price− Benchmark price
Maximum price

=
F (x)ev+w − F (x)ev

F (x)ev+w
= 1− e−w

• e−w − e−u measures the net gain in consumer surplus, which is actually the devi-
ation of actual price from benchmark price as a percentage of maximum price.

Benchmark price−Actual price
Maximum price

=
F (x)ev − F (x)ev−u+w

F (x)ev+w
= e−w − e−u

• ewe−u − 1 measures the difference between actual price from benchmark price, as
a percentage of benchmark price.

Actual price− Benchmark price
Benchmark price

=
F (x)ev−u+w − F (x)ev

F (x)ev
= ewe−u − 1
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3 2TSF models with the scaling property
Assuming that the one-sided error component is from a one-parameter distribution, it
possesses the scaling property (Parmeter 2018), which has many benefits. The scal-
ing property enables the estimation of 2TSF models without distributional assumptions
(Wang and Schmidt 2002). Further, as noted by Alvarez et al. (2006), ease of inter-
pretation of estimates also stems from use of the scaling property. Finally, as noted in
Parmeter (2018), independence among the separate error terms is no longer necessary
for identification and estimation when the scaling property is invoked. This point is
essential because, in many empirical settings, it is likely that u and w will have some
type of dependence at a minimum.

The ability to avoid distributional assumptions is naturally favorable, although the
imposition of correct distributional assumptions will produce statistically efficient esti-
mators via maximum likelihood. Empiricists, however, may find the simplicity of NLS
more palatable and, as such, argue for the imposition of the scaling property. sftt also
offers users an option to fit the 2TSF model with the scaling property.

Starting with (1),
y = Xδ − u+w + v (13)

assuming that the distributions of ui and wi depend upon the level of observable char-
acteristics zui and zwi, which are vectors of characteristics for the ith observation. We
then introduce the scaling property into the 2TSF model:

ui = u(zui, δu) = gu(zui, δu)× u∗i

wi = u(zwi, δw) = gw(zwi, δw)× w∗
i

u∗i and w∗
i are from what are termed basic distributions and are independent from xi,

zui, and zwi. gu(·) and gw(·) are scaling functions: gu(·) ≥ 0 and gw(·) ≥ 0. Following
Parmeter (2018), we assume g(zi, δ) = ez

′
iδ.

To fit the model, rewrite (13) as

yi = x′
iδ − ezu

′
iδuu∗i + ezw

′
iδww∗

i + vi (14)

Taking the expectation of (14),

E (yi|xi, zui, zwi) = x′
iδ − µ∗

ue
zu

′
iδu + µ∗

we
zw

′
iδw (15)

where δ, δu, δw, µu, and µw are parameters; µ∗
u and µ∗

w are the expectations of u∗i and
w∗

i ; µ∗
u = E(u∗i ); and µ∗

w = E(w∗
i ). Because u∗i and w∗

i are independent from zui and
zwi, we can extract the mean of u∗i and w∗

i from ezu
′
iδuu∗i and ezw

′
iδww∗

i .

To fit this model, we use NLS estimation:(
δ̂, δ̂u, δ̂w, µ̂

∗
u, µ̂

∗
w

)
= min

δ,δu,δw,µ∗
u,µ

∗
w

n−1
n∑

i=1

(
yi − x′

iδ + µ∗
ue

zu
′
iδu − µ∗

we
zw

′
iδw

)2
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4 The sftt command
This section introduces the syntax of sftt.

4.1 Estimation syntax

The syntax to fit a 2TSF model with distributional assumptions following Kumbhakar
and Parmeter (2009) and Papadopoulos (2015) is

sftt depvar
[

indepvars
] [

if
] [

in
] [

, hnormal noconstant robust

vce(vcetype) findseed seed(#) sigmau(varlist) sigmaw(varlist)
iterate(#)

]
The syntax to fit a 2TSF model with the scaling property following Parmeter (2018)

is

sftt depvar indepvars
[

if
] [

in
] [

, noconstant robust vce(vcetype)
sigmau(varlist) sigmaw(varlist) iterate(#) scaling

initial(initial_values)
]

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

4.2 Options for sftt

hnormal uses the half-normal/half-normal/normal specification rather than the bench-
mark exponential/exponential/normal specification. Note that, when using this op-
tion, the estimation might not converge because of flat derivatives or missing values;
setting another random seed by using the option seed() might help. Users may also
specify the findseed option to find a usable random seed.

noconstant suppresses the constant term (intercept) in the linear model.

robust is the synonym for vce(robust).

vce(vcetype) specifies the type of standard error reported, which includes types that are
robust to some kinds of misspecification (robust), allow for intragroup correlation
(cluster clustvar), or use bootstrap or jackknife methods (bootstrap, jackknife)
for estimation with scaling.

findseed loops through 100 estimations, during which the random seed was set from 1
to 100. We iterate at most 200 times for each seed to accelerate the process.

seed(#) sets a random seed before estimating to ensure that the results are repro-
ducible.
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sigmau(varlist) specifies heteroskedasticity in the negative inefficiency component, with
the variance expressed as a linear model of the covariates defined in varlist.

sigmaw(varlist) specifies heteroskedasticity in the positive inefficiency component, with
the variance expressed as a linear model of the covariates defined in varlist.

iterate(#) specifies the maximum iterations. The default is iterate(1000). In most
cases, the optimization should converge in fewer than 1,000 iterations.

scaling fits the 2TSF model with the scaling property by NLS. The results might be
very sensitive to the initial values if the models are complex.

initial(initial_values) specifies the initial values to begin the NLS estimation. This
option is used only when estimating with scaling. When NLS runs slowly or cannot
converge, assigning initial values might help. If the independent variable is named x
and the covariates for the two one-sided error terms are zu and zw, then the initial
values should be assigned with the syntax initial(delta_x 1 du_zu 0.6 mu_u 1
dw_zw 0.8 mu_w 1), where mu_u and mu_w represent µ∗

u and µ∗
w in (15) and the

numbers correspond to initial values. By default, the estimation results of ordinary
least squares (OLS) would be used as initial values for dependent variables, and other
parameters would be initialized to 1.

4.3 Subcommands

After model estimation using sftt, the subcommands sftt sigs and sftt eff may be
used for variance decomposition and calculation of inefficiency measures, respectively.

Error term decomposition

sftt sigs

This command calculates the parameters of each component’s distribution (ui, wi,
and vi) in the composite error term.

Inefficiency measurements

sftt eff
[
, level exp absolute relative u_hat(newvar) w_hat(newvar)

wu_diff(newvar) u_hat_exp(newvar) w_hat_exp(newvar)
wu_diff_exp(newvar) wu_net_effect(newvar) replace

]
This subcommand encapsulates several of the most commonly used algorithms of

inefficiency in both level and logarithmic specification. By default, this command will
generate all measures of inefficiency using the default variable name. This subcommand
is unavailable when the scaling option is invoked. Users may use the following options
to select the type of measurement to be performed:
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level generates inefficiency terms only in the level specification. level may not be
used with exp.

exp generates inefficiency terms only in the logarithmic specification. exp may not be
used with level.

absolute generates only absolute measures of inefficiency. absolute may not be used
with relative.

relative generates only relative measures of inefficiency. relative may not be used
with absolute.

The variable names of inefficiency measures may be customized using the following
options:

u_hat(newvar) sets the variable name of E(ui|εi), which is the conditional expectation
of ui, calculated by (3) and (8). The default is u_hat(_u_hat).

w_hat(newvar) sets the variable name of E(wi|εi), which is the conditional expectation
of wi, calculated by (4) and (9). The default is w_hat(_w_hat).

wu_diff(newvar) sets the variable name of E(wi|εi)−E(ui|εi), which is the net surplus
in the level specification. The default is wu_diff(_wu_diff).

u_hat_exp(newvar) sets the variable name of E(e−ui |εi), the conditional expectation
of e−ui , calculated by (5) and (10). The default is u_hat_exp(_u_hat_exp).

w_hat_exp(newvar) sets the variable name of E(e−wi |εi), the conditional expectation
of e−wi , calculated by (6) and (11). The default is w_hat_exp(_w_hat_exp).

wu_diff_exp(newvar) sets the variable name of E(e−wi |εi)−E(e−ui |εi), the net surplus
in the logarithmic specification. The default is wu_diff_exp(_wu_diff_exp).

wu_net_effect(newvar) sets the variable name of E(ewie−ui |εi)− 1, which is the net
effect in the logarithmic specification, calculated by (7) and (12). The default is
wu_net_effect(_wu_net_effect).

The command will check if there are any previous variables before generating a new
variable. To overwrite the existing variable, use the following option:

replace permits sftt to overwrite existing variables.
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5 Examples with simulated data
This section provides several examples with simulated data to illustrate the features of
sftt.

5.1 The benchmark 2TSF model

We first illustrate the sftt command by fitting a 2TSF model with simulated data.
As in Kumbhakar and Parmeter (2009), the one-sided error terms ui and wi follow
exponential distributions, and the stochastic noise vi is assumed to come from a normal
distribution.

The data-generating process is

yi = x1i + 2x2i − ui + wi + vi

ui ∼ i.i.d. Exp(0.6)
wi ∼ i.i.d. Exp(1.4)
vi ∼ i.i.d. N (0, 1)

where yi is the outcome variable and the covariates x1i and x2i are normally distributed
with 0 means and variances equal to 1.

We first fit a random sample with 1,600 observations by using the sftt command:

. set seed 999

. quietly set obs 1600

. generate x1 = invnormal(runiform())

. generate x2 = invnormal(runiform())

. generate ue = invexponential(0.6, runiform())

. generate we = invexponential(1.4, runiform())

. generate v = invnormal(runiform())

. generate y = x1 + 2 * x2 - ue + we + v
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. sftt y x1 x2, noconstant
initial: log likelihood = -3233.1231
rescale: log likelihood = -3233.1231
rescale eq: log likelihood = -3229.7914
Iteration 0: log likelihood = -3229.7914
Iteration 1: log likelihood = -3170.7503 (not concave)
Iteration 2: log likelihood = -3161.2027
Iteration 3: log likelihood = -3161.0853
Iteration 4: log likelihood = -3161.0851
Two-tier stochastic frontier model with exponential specification

Number of obs = 1,600
Wald chi2(2) = 3186.44

Log likelihood = -3161.0851 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

frontier_y
x1 .9915255 .0419678 23.63 0.000 .9092702 1.073781
x2 2.032645 .0402523 50.50 0.000 1.953752 2.111538

ln_sig_v
_cons -.0712458 .0951567 -0.75 0.454 -.2577494 .1152579

ln_sig_u
_cons -.4742256 .0972085 -4.88 0.000 -.6647506 -.2837005

ln_sig_w
_cons .3918662 .0468007 8.37 0.000 .3001386 .4835939

From the estimation results, the coefficients of x1i and x2i are 0.9915 and 2.0326,
which are very close to their true values (1 and 2).

To make sure the distributional parameters are strictly positive, the command takes
the exponential form during estimation. Thus, the _cons in sigma_v, sigma_u, and
sigma_w are actually ln(σv), ln(σu), and ln(σw). We then run the following postesti-
mation commands to interpret the actual distributional parameters and decompose the
residuals:
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. sftt sigs
Variance Estimation

sigma_v : 0.9312
sigma_u : 0.6224
sigma_w : 1.4797
sigma_v_sq : 0.8672
sigma_u_sq : 0.3873
sigma_w_sq : 2.1896

Variance Analysis

Total sigma_sqs : 3.4442
(sigu2+sigw2)/Total : 0.7482
sigu2/(sigu2+sigw2) : 0.1503
sigw2/(sigu2+sigw2) : 0.8497
sig_w - sig_u : 0.8574

. sftt eff
The following variables have been generated:
_u_hat
_w_hat
_wu_diff
_u_hat_exp
_w_hat_exp
_wu_diff_exp
_wu_net_effect
. summarize _u_hat_exp _w_hat_exp _wu_diff_exp

Variable Obs Mean Std. dev. Min Max

_u_hat_exp 1,600 .3818473 .1049245 .3046399 .9900407
_w_hat_exp 1,600 .6003683 .198864 .3046399 .9999939

_wu_diff_exp 1,600 .218521 .2852138 -.6854007 .695354
. summarize _wu_diff_exp, detail

_wu_diff_exp

Percentiles Smallest
1% -.4977102 -.6854007
5% -.2708443 -.6775006
10% -.1505466 -.644028 Obs 1,600
25% .0229923 -.6344826 Sum of wgt. 1,600
50% .2233657 Mean .218521

Largest Std. dev. .2852138
75% .4496792 .6951633
90% .6112484 .6952174 Variance .0813469
95% .6619091 .695277 Skewness -.304613
99% .6920454 .695354 Kurtosis 2.605813

The command sftt sigs identifies the variance of each component in the composite
error term. The estimated standard errors of ui, wi, and vi are 0.6224, 1.4797, and
0.9312, and the actual standard errors are 0.6, 1.4, and 1, respectively. sftt eff
decomposes the residual and calculates the inefficiency measures.
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5.2 Estimation with the scaling property

sftt also fits 2TSF models with the scaling property (Parmeter 2018). The most attrac-
tive feature of the scaling property is that it is free from distributional and independence
assumptions. Here we assume that the basic distribution of the one-sided error terms
is the exponential distribution. Consider the data-generating process

yi = xi − e0.6zui × u∗i + e0.8zwi × w∗
i + vi

u∗i ∼ i.i.d. Exp(1)
w∗

i ∼ i.i.d. Exp(1)
vi ∼ i.i.d. N (0, 1)

where xi, zui, and zwi are the covariates. As in Parmeter (2018), xi, zui, and zwi

follow a trivariate normal distribution with correlation 0.1. u∗i , w∗
i , and vi are mutually

independent from one another and from (xi, zui, zwi). We do not explicitly include an
intercept in this model, because the simulations in Parmeter (2018) suggested it was
quite difficult to separately identify an intercept and the constant terms for both u and
w.

The following commands demonstrate the generation of the simulated data and the
way to fit the model. We first estimate without setting initial values.

. clear

. set seed 999

. quietly set obs 10000

. matrix C = (1, 0.1, 0.1 \ 0.1, 1, 0.1 \ 0.1, 0.1, 1)

. drawnorm x zu zw, corr(C)

. generate ui = invexponential(1, runiform())

. generate wi = invexponential(1, runiform())

. generate vi = invnormal(runiform())

. generate y = x - exp(0.6 * zu) * ui + exp(0.8 * zw) * wi + vi
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. sftt y x, scaling sigmau(zu) sigmaw(zw) robust noconstant
initial value: delta_x 1.056823117155457 du_zu 1 mu_u 1 dw_zw 1 mu_w 1
Iteration 0: residual SS = 70216.84
Iteration 1: residual SS = 68805.46
Iteration 2: residual SS = 68791.96
Iteration 3: residual SS = 68791.83
Iteration 4: residual SS = 68791.83
Iteration 5: residual SS = 68791.83

Nonlinear regression Number of obs = 10,000
R-squared = 0.3221
Adj R-squared = 0.3217
Root MSE = 2.623476
Res. dev. = 47663.77

Two-tier stochastic frontier model with scaling property

Robust
y Coefficient std. err. t P>|t| [95% conf. interval]

/delta_x 1.004185 .025706 39.06 0.000 .9537958 1.054574
/du_zu .5945575 .0549976 10.81 0.000 .4867511 .7023639
/mu_u 1.013727 .1194435 8.49 0.000 .7795938 1.24786

/dw_zw .777372 .0684228 11.36 0.000 .6432495 .9114945
/mu_w 1.030119 .1314908 7.83 0.000 .7723707 1.287868

As expected, the coefficients are precisely estimated.

In the above example, we did not provide any initial value. The sftt command will
run a regress command to specify a set of initial values for delta_x, while the other
parameters are initialized to 1.
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A suitable set of initial values can speed up the optimization process. Here we use
the actual values of these parameters to emphasize the comparison.

. sftt y x, scaling sigmau(zu) sigmaw(zw) robust noconstant
> initial(delta_x 1 du_zu 0.6 mu_u 1 dw_zw 0.8 mu_w 1)
initial value: delta_x 1 du_zu 0.6 mu_u 1 dw_zw 0.8 mu_w 1
Iteration 0: residual SS = 68791.84
Iteration 1: residual SS = 68791.83
Iteration 2: residual SS = 68791.83
Iteration 3: residual SS = 68791.83

Nonlinear regression Number of obs = 10,000
R-squared = 0.3221
Adj R-squared = 0.3217
Root MSE = 2.623476
Res. dev. = 47663.77

Two-tier stochastic frontier model with scaling property

Robust
y Coefficient std. err. t P>|t| [95% conf. interval]

/delta_x 1.004185 .025706 39.06 0.000 .9537958 1.054574
/du_zu .5945575 .0549976 10.81 0.000 .486751 .7023639
/mu_u 1.013727 .1194433 8.49 0.000 .7795941 1.24786

/dw_zw .777372 .0684228 11.36 0.000 .6432495 .9114944
/mu_w 1.030119 .1314907 7.83 0.000 .772371 1.287867

From the results, we can see that the number of iterations is reduced, but the
estimation results are identical.

We demonstrate the performance of sftt with a series of Monte Carlo simulations,
and the results show a similar pattern to table 1 in Parmeter (2018).

6 Empirical applications
This section provides three empirical applications to illustrate the use of sftt. We
first examine the wage bargaining between firms and workers by using the benchmark
exponential specification following Kumbhakar and Parmeter (2009). We then estimate
the hedonic price function in Kumbhakar and Parmeter (2010) by using a heterogeneous
2TSF model with half-normal specification. Finally, we compare different specifications’
impacts on inefficiency by using a dataset from the medical service market following Lu,
Lian, and Lu (2011).
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6.1 Match uncertainty and wage bargaining

In labor markets, workers’ willingness to accept a job and firms’ willingness to offer a
job are private information; workers and firms are incentivized to extract more surplus
from each other. We can demonstrate the optimal wage and surplus extraction in each
firm–worker pair in a two-tier stochastic frontier model:

wagei = µ(xi) + εi

wagei is the actual wage, and µ(xi) = x′
iδ is a linear model that represents the optimal

wage in the ith firm–worker pair. εi = vi − ui + wi is the composite error term. The
lower frontier of wage (wagei) is wagei = µ(xi)−ui, which represents the minimum wage
that the ith worker is willing to accept. The upper frontier indicates the maximum wage
that a firm would pay to hire a worker and is given by wagei = µ(xi)+wi. The worker’s
surplus is µ(xi)− wage

i
, and the firm’s surplus is wagei − µ(xi).

Distributional assumptions are then proposed to make it possible to estimate the
surplus extraction components. Following Kumbhakar and Parmeter (2009), we assume
that vi ∼ i.i.d. N (0, 1), ui ∼ i.i.d. Exp(σu), and wi ∼ i.i.d. Exp(σw).



Y. Lian, C. Liu, and C. F. Parmeter 215

Run the following syntax:

. set seed 20220612

. use https://sftt.oss-cn-hangzhou.aliyuncs.com/kp09.dta, clear

. sftt lwage iq educ educ2 exper exper2 tenure tenure2 age married south
> urban black sibs brthord meduc feduc
initial: log likelihood = -821.98656
rescale: log likelihood = -821.98656
rescale eq: log likelihood = -821.98656
Iteration 0: log likelihood = -821.98656 (not concave)
Iteration 1: log likelihood = -790.073 (not concave)

(output omitted )
Iteration 15: log likelihood = -226.06913
Two-tier stochastic frontier model with exponential specification

Number of obs = 663
Wald chi2(16) = 319.41

Log likelihood = -226.06913 Prob > chi2 = 0.0000

lwage Coefficient Std. err. z P>|z| [95% conf. interval]

frontier_lw~e
iq .0043955 .0011061 3.97 0.000 .0022277 .0065634

educ 2.036803 1.128628 1.80 0.071 -.1752675 4.248873
educ2 -.7563295 .5533698 -1.37 0.172 -1.840914 .3282555
exper .28234 .1561886 1.81 0.071 -.023784 .588464
exper2 -.1005302 .0921451 -1.09 0.275 -.2811314 .0800709
tenure .1535866 .0635696 2.42 0.016 .0289925 .2781808

tenure2 -.0568321 .0380829 -1.49 0.136 -.1314732 .0178091
age .4950143 .1867546 2.65 0.008 .128982 .8610465

married .2060007 .0443427 4.65 0.000 .1190905 .2929109
south -.0348172 .0297127 -1.17 0.241 -.0930529 .0234186
urban .2208797 .0290555 7.60 0.000 .1639319 .2778275
black -.1022164 .0526949 -1.94 0.052 -.2054965 .0010637
sibs .0088167 .007232 1.22 0.223 -.0053579 .0229912

brthord -.015372 .0106093 -1.45 0.147 -.0361658 .0054218
meduc .0081452 .0056126 1.45 0.147 -.0028553 .0191456
feduc .0076534 .0050712 1.51 0.131 -.0022858 .0175927
_cons 3.858254 .6128944 6.30 0.000 2.657004 5.059505

ln_sig_v
_cons -1.659804 .1570302 -10.57 0.000 -1.967578 -1.352031

ln_sig_u
_cons -1.510707 .1146933 -13.17 0.000 -1.735502 -1.285912

ln_sig_w
_cons -1.665971 .1230849 -13.54 0.000 -1.907213 -1.424729
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. sftt sigs
Variance Estimation

sigma_v : 0.1902
sigma_u : 0.2208
sigma_w : 0.1890
sigma_v_sq : 0.0362
sigma_u_sq : 0.0487
sigma_w_sq : 0.0357

Variance Analysis

Total sigma_sqs : 0.1206
(sigu2+sigw2)/Total : 0.7002
sigu2/(sigu2+sigw2) : 0.5770
sigw2/(sigu2+sigw2) : 0.4230
sig_w - sig_u : -0.0317

From the results in Variance Analysis, the unexplained variation in log wage (σ2
v+

σ2
u+σ

2
e) is 0.1206, while 70.02% of the unexplained variation is due to bargaining. From

the estimate of E(wi − ui) = σw − σu, we can tell whether bargaining affects wages on
average, and if so, in which direction. In this application, E(wi − ui) = −3.17% < 0
means bargaining may lead to lower wages on average.

However, if the interest is to obtain the exact impact of bargaining on wages, we
should analyze observation-specific estimates of E(ui|ε) and E(wi|ε). As an example,
we analyze the surplus extraction between races (table 4 of Kumbhakar and Parmeter
[2009]) with the sftt eff command.

. sftt eff
The following variables have been generated:
_u_hat
_w_hat
_wu_diff
_u_hat_exp
_w_hat_exp
_wu_diff_exp
_wu_net_effect
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. tabstat _w_hat _u_hat _wu_diff, by(black) statistics(mean p25 p50 p75)
> format(%6.3f) columns(statistics)
Summary for variables: _w_hat _u_hat _wu_diff
Group variable: black

black Mean p25 p50 p75

0 0.189 0.114 0.143 0.212
0.221 0.122 0.165 0.249

-0.032 -0.135 -0.022 0.091

1 0.184 0.110 0.150 0.210
0.213 0.122 0.156 0.279

-0.029 -0.169 -0.006 0.088

Total 0.189 0.114 0.144 0.212
0.221 0.122 0.164 0.251

-0.032 -0.137 -0.020 0.091

. tabstat _w_hat_exp _u_hat_exp _wu_diff_exp, by(black)
> statistics(mean p25 p50 p75) format(%6.3f) columns(statistics)
Summary for variables: _w_hat_exp _u_hat_exp _wu_diff_exp
Group variable: black

black Mean p25 p50 p75

0 0.159 0.103 0.127 0.182
0.181 0.109 0.144 0.210

-0.022 -0.107 -0.017 0.073

1 0.157 0.100 0.133 0.180
0.178 0.110 0.138 0.232

-0.021 -0.132 -0.005 0.071

Total 0.159 0.103 0.128 0.182
0.181 0.109 0.144 0.211

-0.022 -0.109 -0.016 0.073

From the results, we can conclude that the difference between the average surplus
extractions of Black and White workers is insignificant. However, from the tails of the
extraction distributions, the lower quartile suggests that Black workers have 2–3% more
extraction from the benchmark. In contrast, White workers can extract about 1% more
than Black workers in the upper quartile.

6.2 Estimation of the hedonic price function

With the development of technology, information conduits such as advertisements and
the Internet are increasingly ubiquitous in today’s marketplace. Both buyers and sellers
can gain information through search. However, given that search costs exist, market
participants most likely will not become fully informed and price variations due to
ignorance will exist even after controlling for product characteristics (Kumbhakar and
Parmeter 2010).
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As an example, the housing market might be inefficient for certain types of buyers
and sellers. We can use the 2TSF model to study the advantage a buyer may possess
over a seller or vice versa, simultaneously. Following Kumbhakar and Parmeter (2010),
we express prices observed in the market as

Pm = h(X) + v − u+w

where h(X) is the implied price of the characteristics X, u and w are the costs of
incomplete information to the sellers and buyers, and v is a vector of the random noise.

To capture the heterogeneous cost of incomplete information, we allow the distri-
butions of u and w to be functions of buyers’ and sellers’ characteristics, Zu and Zw,
respectively. Thus, we specify the vectors of standard errors of u and w, which are σu

and σw, as
σu = eZuδu , σw = eZwδw

We introduce buyers’ and sellers’ attributes through the options sigmau() and
sigmaw(). Here we assume the ignorance of information follows a half-normal dis-
tribution, so we add the option hnormal. The syntax and results are as follows:

. use https://sftt.oss-cn-hangzhou.aliyuncs.com/kp10.dta, clear

. sftt lprn lsf unitsftc bathstot roomsn sfan sfdn
> agelt5 age510 age1015 agegte30
> cencityn urbsubn urbann riuraln inadeq degreen
> s87 s88 s89 s90 s91 s92 s93
> verylg large siz1to3 small,
> sigmaw(outbuy firstbuy incbuy busbuy agebuy blkbuy marbuy sfbuy edubuy kidbuy)
> sigmau(incsell bussell agesell blksell marsell sfsell edusell kidsell)
> hnormal seed(6)
initial: log likelihood = -5527.2566
rescale: log likelihood = -5527.2566
rescale eq: log likelihood = -5411.5646
Iteration 0: log likelihood = -5411.5646 (not concave)
Iteration 1: log likelihood = -4377.3679

(output omitted )
Iteration 26: log likelihood = -2846.9465
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Two-tier stochastic frontier model with half-normal specification
Number of obs = 4,962
Wald chi2(27) = 2215.50

Log likelihood = -2846.9465 Prob > chi2 = 0.0000

lprn Coefficient Std. err. z P>|z| [95% conf. interval]

frontier_lprn
lsf .2974248 .0246532 12.06 0.000 .2491053 .3457442

unitsftc -.1209992 .0424964 -2.85 0.004 -.2042905 -.0377078
bathstot .2234376 .0154124 14.50 0.000 .1932298 .2536454

roomsn .0100356 .0062459 1.61 0.108 -.0022062 .0222774
sfan .5028812 .0473966 10.61 0.000 .4099856 .5957769
sfdn .5890742 .0349242 16.87 0.000 .5206241 .6575243

agelt5 .196477 .0299935 6.55 0.000 .1376909 .2552631
age510 .0916725 .0242236 3.78 0.000 .0441951 .1391499

age1015 .0365939 .0237961 1.54 0.124 -.0100456 .0832333
agegte30 -.0010998 .0201294 -0.05 0.956 -.0405527 .0383532
cencityn -.1176012 .0298582 -3.94 0.000 -.1761222 -.0590803
urbsubn -.0234166 .0275902 -0.85 0.396 -.0774924 .0306592
urbann -.3236883 .0336743 -9.61 0.000 -.3896887 -.2576879

riuraln -.3196333 .0312238 -10.24 0.000 -.3808308 -.2584358
inadeq .0445825 .0669426 0.67 0.505 -.0866226 .1757877

degreen -.0093918 .0057882 -1.62 0.105 -.0207364 .0019528
s87 .0408672 .0285615 1.43 0.152 -.0151123 .0968467
s88 .0559373 .0281587 1.99 0.047 .0007473 .1111273
s89 .1140626 .0288774 3.95 0.000 .0574638 .1706613
s90 .1885622 .0294923 6.39 0.000 .1307583 .2463661
s91 .1295755 .0296901 4.36 0.000 .0713839 .1877671
s92 .1351328 .0285183 4.74 0.000 .079238 .1910276
s93 .1557371 .0304917 5.11 0.000 .0959744 .2154998

verylg .5600216 .0376576 14.87 0.000 .4862141 .6338291
large .1516597 .0362234 4.19 0.000 .0806632 .2226563

siz1to3 .1975842 .0259854 7.60 0.000 .1466538 .2485146
small -.0954866 .0270787 -3.53 0.000 -.1485599 -.0424133
_cons 8.171205 .1780178 45.90 0.000 7.822296 8.520113

ln_sig_v
_cons -1.142592 .0527501 -21.66 0.000 -1.24598 -1.039203

ln_sig_u
incsell -.3762457 .0403635 -9.32 0.000 -.4553567 -.2971348
bussell -.2718317 .0475565 -5.72 0.000 -.3650408 -.1786227
agesell -.2809178 .0516282 -5.44 0.000 -.3821072 -.1797284
blksell .2727522 .0809753 3.37 0.001 .1140435 .4314608
marsell -.1369204 .0412778 -3.32 0.001 -.2178234 -.0560174
sfsell -.0725139 .0466659 -1.55 0.120 -.1639775 .0189497

edusell -.3189302 .0356865 -8.94 0.000 -.3888744 -.2489859
kidsell -.0180103 .034288 -0.53 0.599 -.0852135 .049193

_cons .4297773 .0753251 5.71 0.000 .2821429 .5774118
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ln_sig_w
outbuy .079076 .0725611 1.09 0.276 -.063141 .2212931

firstbuy .0079438 .0672442 0.12 0.906 -.1238524 .13974
incbuy .3901659 .0388278 10.05 0.000 .3140647 .4662671
busbuy .3152677 .0641257 4.92 0.000 .1895835 .4409518
agebuy .6749622 .108253 6.24 0.000 .4627902 .8871342
blkbuy -1.366972 .6209467 -2.20 0.028 -2.584005 -.1499389
marbuy -.0038389 .0801271 -0.05 0.962 -.1608851 .1532073
sfbuy .1127059 .0998305 1.13 0.259 -.0829583 .3083702
edubuy .4212932 .0724415 5.82 0.000 .2793104 .563276
kidbuy -.1204749 .0587324 -2.05 0.040 -.2355884 -.0053615
_cons -2.485998 .2466709 -10.08 0.000 -2.969464 -2.002532

Here we mainly focus on the estimated parameters in the δu and δw functions.

On the buyers’ side, the negative signs on the Black dummy (blkbuy) and children
dummy (kidbuy) in δw suggest that the costs of incomplete information for African
American buyers and buyers with kids are lower. In contrast, buyers who have a
higher income (incbuy), have a business (busbuy), are older (agebuy), and are edu-
cated (edubuy) pay higher information costs.

On the sellers’ side, however, we find that income (incsell), having a business
(bussell), age (agesell), being married (marsell), and having a college education
(edusell) decrease information costs. Conversely, Black sellers (blksell) pay higher
information costs.

6.3 Medical information asymmetry

6.3.1 Model estimation

Lu, Lian, and Lu (2011) estimated the effect of information asymmetry in the medical
services market of China. Considering the ith doctor–patient pair, a doctor has a
minimum price, P i, at which he or she would offer a particular medical service, and the
patient has a maximum price, P i, that he or she could afford. The actual price can be
written as

Pi = P i + η(P i − P i) = µ(xi) + η
{
P i − µ(xi)

}
− (1− η) {µ(xi)− P i}

where µ(xi) is the optimal price in a doctor–patient pair and η represents the bargaining
power of the doctor.
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The 2TSF model fits data from the China Health and Nutrition Survey database.
Here we add factor variables i.province and i.year into the syntax to absorb provin-
cial and annual fixed effects.

. set seed 20220612

. use https://sftt.oss-cn-hangzhou.aliyuncs.com/lu11.dta, clear

. sftt lnprice lnage symp urban education job endurance insur i.province i.year
note: i_province_1 omitted because of collinearity.
note: i_year_1 omitted because of collinearity.
initial: log likelihood = -3675.6139
rescale: log likelihood = -3675.6139
rescale eq: log likelihood = -3645.644
Iteration 0: log likelihood = -3645.644
Iteration 1: log likelihood = -3460.2012 (not concave)

(output omitted )
Iteration 9: log likelihood = -3311.415
Two-tier stochastic frontier model with exponential specification

Number of obs = 1,806
Wald chi2(21) = 672.36

Log likelihood = -3311.415 Prob > chi2 = 0.0000

lnprice Coefficient Std. err. z P>|z| [95% conf. interval]

frontier_ln~e
lnage .5982784 .1144348 5.23 0.000 .3739903 .8225664

symptoms .7457815 .0548336 13.60 0.000 .6383096 .8532533
urban .2049616 .0761177 2.69 0.007 .0557736 .3541495

education .0630399 .034737 1.81 0.070 -.0050434 .1311233
job -.2929144 .0777547 -3.77 0.000 -.4453109 -.140518

endurance -1.015456 .0915982 -11.09 0.000 -1.194985 -.8359272
insurance .0989838 .0857161 1.15 0.248 -.0690166 .2669843

i_province_2 .2183171 .140904 1.55 0.121 -.0578497 .4944838
i_province_3 .9542838 .1576787 6.05 0.000 .6452392 1.263328
i_province_4 .4149037 .1523468 2.72 0.006 .1163095 .713498
i_province_5 .5425718 .1485073 3.65 0.000 .2515029 .8336407
i_province_6 1.158282 .1372435 8.44 0.000 .8892896 1.427274
i_province_7 .6197577 .1360702 4.55 0.000 .353065 .8864504
i_province_8 .6700105 .1298114 5.16 0.000 .4155849 .9244361
i_province_9 .8400983 .1728504 4.86 0.000 .5013177 1.178879

i_year_2 -.2171845 .2684136 -0.81 0.418 -.7432656 .3088965
i_year_3 .4858937 .2390549 2.03 0.042 .0173548 .9544326
i_year_4 .946091 .2338325 4.05 0.000 .4877878 1.404394
i_year_5 1.093305 .2220374 4.92 0.000 .6581198 1.52849
i_year_6 1.228319 .2168512 5.66 0.000 .8032985 1.65334
i_year_7 1.20161 .2266252 5.30 0.000 .7574324 1.645787

_cons -1.586893 .5319389 -2.98 0.003 -2.629474 -.5443124

ln_sig_v
_cons .1269897 .1232088 1.03 0.303 -.1144951 .3684746

ln_sig_u
_cons -1.177247 1.071734 -1.10 0.272 -3.277807 .9233118

ln_sig_w
_cons .0036885 .0914932 0.04 0.968 -.1756349 .1830119
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This command processes factor variables as a series of dummy variables, where
i_province_1 and i_year_1 are dropped because of collinearity.

Next we decompose the composite error term into information asymmetry compo-
nents.

. sftt eff, exp
The following variables have been generated:
_u_hat_exp
_w_hat_exp
_wu_diff_exp
_wu_net_effect
. summarize _u_hat_exp _w_hat_exp _wu_diff_exp

Variable Obs Mean Std. dev. Min Max

_u_hat_exp 1,806 .2355296 .0406805 .1907761 .5762016
_w_hat_exp 1,806 .5016665 .1672711 .2073607 .9943287

_wu_diff_exp 1,806 .266137 .2015247 -.3688409 .8035526
. summarize _wu_diff_exp, detail

_wu_diff_exp

Percentiles Smallest
1% -.1120609 -.3688409
5% -.0133144 -.332948
10% .0352878 -.2467907 Obs 1,806
25% .1196526 -.2240263 Sum of wgt. 1,806
50% .2360287 Mean .266137

Largest Std. dev. .2015247
75% .3937378 .7953292
90% .5637176 .7954245 Variance .0406122
95% .6552005 .8010323 Skewness .4913073
99% .7682604 .8035526 Kurtosis 2.834541

From the first table in the results, the mean value of doctor surplus E(e−wi |εi) (that
is, the variable _w_hat_exp) is 0.5017, which means that, relative to the optimal price,
doctor surplus makes the price 50.17% higher, while the patient surplus (_u_hat_exp)
lowers the price by only 23.55%. The information asymmetry between doctors and
patients eventually leads to medical service prices that are 26.62% (50.17% − 23.55%)
higher than optimal prices.

The second table shows the quantile of net surplus [E(e−ui |εi) − E(e−wi |εi); that
is, the variable _uw_diff_exp]. The 10% quantile of the net surplus is 0.0353 > 0,
implying that at least 90% of patients must pay higher-than-optimal prices because of
information asymmetry.
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We then demonstrate the distribution of the surplus extracted by each side of
patient–doctor pairs and the distributions of the net surplus.

. histogram _u_hat_exp, percent title(Percent, place(10) size(*0.7))
> ylabel(,angle(0)) ytitle("") xtitle("Surplus extracted by patients (%)")
> xscale(titlegap(3) outergap(-2)) scheme(sj)
(bin=32, start=.19077611, width=.01204455)
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Figure 1. Surplus extracted by patients

. histogram _w_hat_exp, percent title(Percent, place(10) size(*0.7))
> ylabel(,angle(0)) ytitle("") xtitle("Surplus extracted by doctors (%)")
> xscale(titlegap(3) outergap(-2)) scheme(sj)
(bin=32, start=.20736069, width=.02459275)
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Figure 2. Surplus extracted by doctors
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. histogram _wu_diff_exp, percent title(Percent, place(10) size(*0.7))
> ylabel(,angle(0)) ytitle("") xtitle("Net surplus (%)")
> xscale(titlegap(3) outergap(-2)) scheme(sj)
(bin=32, start=-.36884092, width=.0366373)
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Figure 3. Distribution of net surplus

Figures 1 and 2 show that the patient surplus is much smaller than the doctor
surplus. In contrast, both the patient surplus and the doctor surplus are right-skewed,
indicating that only a few doctors have fully used their information superiority. Figure 3
illustrates the distribution of net surplus. From the histogram, we can see that most
doctors have a positive net surplus, which means the prices of medical services are
somewhat higher than optimal.

6.3.2 Contrasting the exponential and half-normal specifications

We then contrast the results from the exponential setting to the half-normal distribu-
tional setting. We run OLS estimation as well as the two specifications (exponential and
half-normal) of the 2TSF model with the following syntax:

. use https://sftt.oss-cn-hangzhou.aliyuncs.com/lu11.dta, clear

. // OLS

. regress lnprice lnage symp urban education job endurance insur i.province
> i.year, vce(robust)

(output omitted )
. // 2TSF - exponential specification
. sftt lnprice lnage symp urban education job endurance insur i.province i.year,
> findseed

(output omitted )
. // 2TSF - half-normal specification
. sftt lnprice lnage symp urban education job endurance insur i.province i.year,
> hnormal findseed

(output omitted )
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The results are in table 1.

Table 1. Estimation results with different distributions

(1) (2) (3)
OLS Exponential Half-normal

lnage 0.666∗∗∗ 0.598∗∗∗ 0.557∗∗∗
(6.02) (5.23) (4.93)

symptoms 0.765∗∗∗ 0.746∗∗∗ 0.745∗∗∗
(13.23) (13.60) (13.65)

urban 0.210∗∗ 0.205∗∗ 0.206∗∗
(2.69) (2.69) (2.73)

education 0.0536 0.0630 0.0687∗
(1.47) (1.82) (2.05)

job −0.274∗∗∗ −0.293∗∗∗ −0.286∗∗∗
(−3.44) (−3.77) (−3.71)

endurance −0.969∗∗∗ −1.015∗∗∗ −0.990∗∗∗
(−10.43) (−11.09) (−11.00)

insurance 0.0947 0.0990 0.0998
(1.07) (1.15) (1.17)

_cons −1.255∗∗ −1.587∗∗ −1.512∗∗
(−2.61) (−2.98) (−3.05)

σu 0.3085 1.1468
σw 1.0037 2.0772
σv 1.5343 1.1354 0.5621

N 1806 1806 1806
note: t statistics in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We can see that the coefficients are similar across the three columns, while the
estimated standard errors vary between the exponential and the half-normal 2TSF spec-
ifications. The expected values of ui and wi also differ in table 2, as expected.
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Table 2. Summary statistics of inefficiency

Specification Variable N Mean SD Min p50 Max

Exponential u_hat_e 1806 0.309 0.0732 0.236 0.290 1.110
w_hat_e 1806 1.004 0.695 0.261 0.775 5.841

Half-normal u_hat 1806 0.915 0.376 0.442 0.780 3.753
w_hat 1806 1.657 1.055 0.317 1.331 6.852

However, if we were interested in the rank of the one-sided terms, the choice of
distributional assumptions may not significantly affect the results. Indeed, the rank
correlation coefficients of ui and wi between the exponential and half-normal specifica-
tions are above 99%.

In figures 4 and 5, we present the scatterplots of rank(ui) and rank(wi). We see that
the rankings of ui and wi are essentially linear, which also indicates that the ranking of
inefficiency is not sensitive to the distributional assumptions.

0
50

0
10

00
15

00
20

00
H

al
f-n

or
m

al

0 500 1000 1500 2000
Exponential

Figure 4. Ranking of ui
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Figure 5. Ranking of wi

7 Conclusions
In this article, we introduced a new command, sftt, to fit 2TSF models with cross-
sectional data. When paired with distributional assumptions, this command can fit
2TSF models by using either an exponential (Polachek and Yoon 1987) or a half-normal
(Papadopoulos 2015) specification. sftt also fits 2TSF models with the scaling property
imposed (which are free of distribution assumptions), as in Parmeter (2018). We also
provided two postestimation subcommands, sftt sigs and sftt eff, to help with
variance identification and residual decomposition.

sftt provides the user with a simple way to fit 2TSF models that is intuitive and
similar to sfcross. We illustrated the command’s estimation capabilities through both
simulated data and three distinct empirical datasets, using different frameworks to
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demonstrate the versatility of sftt. Our work here has covered the most popular
cross-sectional approaches for the 2TSF model. There do exist several interesting exten-
sions that could be added to the coding lexicon for the 2TSF. These include accounting
for selection (Blanco 2017), the use of the fast Fourier transform to allow for different
distributions for the separate one-sided shocks (Tsionas 2012), and extensions for the
presence of panel data (Das and Polachek 2017). Any of these extensions into the Stata
programming environment would help to further enhance the use of this flexible model.
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9 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-1

. net install st0705 (to install program files, if available)

. net get st0705 (to install ancillary files, if available)

The corresponding code and results can be found on GitHub (https://github.com/
arlionn/sftt).

10 References
Alvarez, A., C. Amsler, L. Orea, and P. Schmidt. 2006. Interpreting and testing the
scaling property in models where inefficiency depends on firm characteristics. Journal
of Productivity Analysis 25: 201–212. https://doi.org/10.1007/s11123-006-7639-3.

Belotti, F., S. Daidone, G. Ilardi, and V. Atella. 2013. Stochastic frontier analysis using
Stata. Stata Journal 13: 719–758. https://doi.org/10.1177/1536867X1301300404.

Blanco, G. 2017. Who benefits from job placement services? A two-sided analysis.
Journal of Productivity Analysis 47: 33–47. https: // doi.org / 10.1007 / s11123-016-
0489-8.

Das, T., and S. W. Polachek. 2017. Estimating labor force joiners and leavers using a
heterogeneity augmented two-tier stochastic frontier. Journal of Econometrics 199:
156–172. https://doi.org/10.1016/j.jeconom.2017.05.007.

Fé, E., and R. Hofler. 2020. sfcount: Command for count-data stochastic frontiers and
underreported and overreported counts. Stata Journal 20: 532–547. https://doi.org/
10.1177/1536867X20953566.

https://github.com/arlionn/sftt
https://github.com/arlionn/sftt
https://doi.org/10.1007/s11123-006-7639-3
https://doi.org/10.1177/1536867X1301300404
https://doi.org/10.1007/s11123-016-0489-8
https://doi.org/10.1007/s11123-016-0489-8
https://doi.org/10.1016/j.jeconom.2017.05.007
https://doi.org/10.1177/1536867X20953566
https://doi.org/10.1177/1536867X20953566


228 2TSF analysis using Stata

Fried, H. O., and L. W. Tauer. 2019. Efficient wine pricing using stochastic frontier
models. Journal of Wine Economics 14: 164–181. https://doi.org/10.1017/jwe.2019.
16.

Ge, T., J. Li, R. Sha, and X. Hao. 2020. Environmental regulations, financial con-
straints and export green-sophistication: Evidence from China’s enterprises. Journal
of Cleaner Production 251: 119671. https://doi.org/10.1016/j.jclepro.2019.119671.

Karakaplan, M. U. 2017. Fitting endogenous stochastic frontier models in Stata. Stata
Journal 17: 39–55. https://doi.org/10.1177/1536867X1701700103.

. 2022. Panel stochastic frontier models with endogeneity. Stata Journal 22:
643–663. https://doi.org/10.1177/1536867X221124539.

Kumbhakar, S. C., and C. F. Parmeter. 2009. The effects of match uncertainty and
bargaining on labor market outcomes: Evidence from firm and worker specific esti-
mates. Journal of Productivity Analysis 31: 1–14. https://doi.org/10.1007/s11123-
008-0117-3.

. 2010. Estimation of hedonic price functions with incomplete information. Em-
pirical Economics 39: 1–25. https://doi.org/10.1007/s00181-009-0292-8.

Lin, Z. J., S. Liu, and F. Sun. 2017. The impact of financing constraints and agency
costs on corporate R&D investment: Evidence from China. International Review of
Finance 17: 3–42. https://doi.org/10.1111/irfi.12108.

Liu, Y., X. Yao, and T. Wei. 2019. Energy efficiency gap and target setting: A study
of information asymmetry between governments and industries in China. China Eco-
nomic Review 57: 101341. https://doi.org/10.1016/j.chieco.2019.101341.

Lu, H., Y. Lian, and S. Lu. 2011. Measurement of the information asymmetric in
medical service market of China. Economic Research Journal 46(4): 95–107.

Lyu, X., C. Decker, and J. Ni. 2018. Compensation negotiation and corporate gover-
nance: The evidence from China. Journal of Chinese Economic and Business Studies
16: 193–213. https://doi.org/10.1080/14765284.2018.1445081.

Papadopoulos, A. A. 2015. The half-normal specification for the two-tier stochastic
frontier model. Journal of Productivity Analysis 43: 225–230. https: //doi.org / 10.
1007/s11123-014-0389-8.

. 2018. The two-tier stochastic frontier framework (2TSF): Theory and applica-
tions, models and tools. PhD thesis, Department of Economics, Athens University of
Economics and Business.

. 2021. The two-tier stochastic frontier framework (2TSF): Measuring frontiers
wherever they may exist. In Advances in Efficiency and Productivity Analysis. NAPW
2018. Springer Proceedings in Business and Economics, ed. C. F. Parmeter and R. C.
Sickles, 163–194. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-
47106-4_8.

https://doi.org/10.1017/jwe.2019.16
https://doi.org/10.1017/jwe.2019.16
https://doi.org/10.1016/j.jclepro.2019.119671
https://doi.org/10.1177/1536867X1701700103
https://doi.org/10.1177/1536867X221124539
https://doi.org/10.1007/s11123-008-0117-3
https://doi.org/10.1007/s11123-008-0117-3
https://doi.org/10.1007/s00181-009-0292-8
https://doi.org/10.1111/irfi.12108
https://doi.org/10.1016/j.chieco.2019.101341
https://doi.org/10.1080/14765284.2018.1445081
https://doi.org/10.1007/s11123-014-0389-8
https://doi.org/10.1007/s11123-014-0389-8
https://doi.org/10.1007/978-3-030-47106-4_8
https://doi.org/10.1007/978-3-030-47106-4_8


Y. Lian, C. Liu, and C. F. Parmeter 229

Parmeter, C. F. 2018. Estimation of the two-tiered stochastic frontier model with the
scaling property. Journal of Productivity Analysis 49: 37–47. https: // doi.org / 10.
1007/s11123-017-0520-8.

Polachek, S. W., and B. J. Yoon. 1987. A two-tiered earnings frontier estimation of
employer and employee information in the labor market. Review of Economics and
Statistics 69: 296–302. https://doi.org/10.2307/1927237.

Tsionas, E. G. 2012. Maximum likelihood estimation of stochastic frontier models by
the Fourier transform. Journal of Econometrics 170: 234–248. https: //doi.org /10.
1016/j.jeconom.2012.04.001.

Wang, H.-J., and P. Schmidt. 2002. One-step and two-step estimation of the effects of
exogenous variables on technical efficiency levels. Journal of Productivity Analysis
18: 129–144. https://doi.org/10.1023/A:1016565719882.

About the authors

Yujun Lian is an associate professor of finance at the Sun Yat-sen University.

Chang Liu is a PhD candidate of finance at the Sun Yat-sen University.

Christopher Frank Parmeter is an associate professor of economics at the University of Miami.

https://doi.org/10.1007/s11123-017-0520-8
https://doi.org/10.1007/s11123-017-0520-8
https://doi.org/10.2307/1927237
https://doi.org/10.1016/j.jeconom.2012.04.001
https://doi.org/10.1016/j.jeconom.2012.04.001
https://doi.org/10.1023/A:1016565719882



