
1 

 

f_able: Estimation of marginal effects for models with alternative variable transformations 

by  

Fernando Rios-Avila 

Levy Economics Institute 

 

Abstract 

margins is a powerful post-estimation command that allows the 

estimation of marginal effects for official and community-contributed 

commands, with well-defined predicted outcomes (see predict). While 

the use of factor variable notation allows us to easily estimate 

marginal effects when interactions and polynomials are used, estimation 

of marginal effects of when other types of transformations such as 

splines, logs, or fractional polynomials, among others, are used remains a 

challenge. This paper describes how margins capabilities can be 

extended to analyze other variable transformations using the command 

f_able. 
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1. Introduction 

margins is a powerful post-estimation command that was introduced in Stata 11, allowing the 

estimation of marginal effects for all official estimation commands, and any community-contributed 

command with a properly defined predicted outcome program (see predict). As described in Williams 

(2012) the introduction of margins, at its companion marginsplot (in Stata 12), provides a great tool for 

analyzing and providing meaningful information that is easier to interpret and describe. Furthermore, in 

combination with factor variable notation (also introduced in Stata 11), it also allows users to easily 

estimate marginal effects when interactions and polynomials of continuous variables, and interactions 

with discreet variables, are used without any additional work from the user.  

Despite these features, the ability of margins to estimate marginal effects is limited to the use of 

simple polynomials and interactions. There is a reason for this. Unless further information is provided to a 

command, Stata cannot identify the possible interdependencies across explanatory variables.  

As far as I know, there are only 2 commands where this limitation is not binding. As described in 

Poi (2008), nl can be used to easily obtain marginal effects when using functions other than interactions 

of polynomials, even when the model is nonlinear in parameters, but assuming an additive error. 

npregress series, one of the newest additions to Stata 16 nonparametric analysis, can also estimate 

marginal effects of arbitrary transformations of the independent variables (splines, B-splines and 

polynomials), based on numerical derivations.  Unfortunately, both models are based on least-squares 

type of estimators, they cannot be used in the case of nonlinear models like logit or probit, and in the case 

of npregress series users cannot freely choose what transformations to use. The only other program 

that proposes a strategy that may help to obtain marginal effects, more specifically marginal means, using 

transformed covariates was proposed by Royston (2013). Their command, marginscontplot uses a 

predefined mapping between original and transformed covariates to appropriately handle the constructed 

variables in margins. 
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In this article, I describe a simple strategy, implemented by f_able, that allows the estimation of 

marginal effects of a larger set of nonlinear transformations using margins and the option nochain 

[numerical noestimcheck]. Section 2 provides a review of how marginal effects should be 

estimated, emphasizing on some of the computational challenges that are bypassed by the use of factor 

notation. Section 3 provides a simple approach for the estimation of marginal effects for the case of 

Spline regressions and compares it to a simplified case using npregress series. Section 4 introduces 

3 commands that would help to prepare the data for the estimation of marginal effects for any arbitrary 

variable transformation and shows how it can be used to estimate marginal effects using any variable 

transformation. Section 5 concludes. 

2. Marginal effects: Theoretical approach 

As mentioned before, marginal effects are useful statistics to measure the impact that a change in 

the independent variables will have on the dependent variable, assuming other covariates remaining 

constant. At the beginning of most introductory econometric courses, very little emphasis is put on 

understanding this concept because, for the case of linear regressions, marginal effects are typically equal 

to the coefficient associated with the variable analyzed. Consider the following linear regression model: 

𝑦𝑖 = 𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + 𝑒𝑖 (1) 

Under the standard assumptions of exogeneity and correct model specifications (see for example 

Wooldridge (2016)), the coefficients of this model can be estimated using Ordinary Least Squares (OLS). 

In this simple model, the marginal effect of 𝑥1 on 𝑦 and 𝑥2 on 𝑦 will be given by 𝑏1 and 𝑏2, respectively. 

Mathematically, it would be: 

𝜕𝑦𝑖

𝜕𝑥1𝑖
= 𝑏1 ;

𝜕𝑦𝑖

𝜕𝑥2𝑖
= 𝑏2 
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 This implies that for a simple linear regression (like equation(1)), where each variable appears 

only once, and without any transformation, marginal effects are directly identified by the estimated 

coefficients.  

Soon after, students are introduced to the idea that nonlinear transformations and interactions of 

the dependent variables can also be included in the linear regression model. Because the model is still 

linear in parameters it can be estimated using OLS. However, additional care needs to be taken when 

estimating the marginal effects, to account for the interdependence of variable transformations. Consider, 

for example, the following model: 

𝑦𝑖 = 𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥1𝑖
2 + 𝑏3𝑥2𝑖 + 𝑏4𝑥1𝑖𝑥2𝑖 + 𝑒𝑖 (2) 

In this model, the marginal effect of 𝑥1 on 𝑦 is no longer a constant, and it now depends on the 

values of 𝑥1 and also of 𝑥2. Using calculus, however, it is easy to derive the marginal effects from this 

model: 

𝜕𝑦𝑖

𝜕𝑥1𝑖
= 𝑏1 + 2𝑏2𝑥1𝑖 + 𝑏4𝑥2𝑖;

𝜕𝑦𝑖

𝜕𝑥2𝑖
= 𝑏3 + 𝑏4𝑥1𝑖 

Because these effects are no longer constant, one has to decide what to report as the presentative 

marginal effect. While one can always report plots showing all possible values these marginal effects will 

take, the standard practice is presenting average marginal effects or the marginal effects at the mean. For 

the example above, they both will be the same: 

𝐸 (
𝜕𝑦𝑖

𝜕𝑥1𝑖
) = 𝐸(𝑏1 + 2𝑏2𝑥1𝑖 + 𝑏4𝑥2𝑖) = 𝑏1 + 2𝑏2�̅�1 + 𝑏4�̅�2 

𝐸 (
𝜕𝑦𝑖

𝜕𝑥2𝑖
) = 𝐸(𝑏3 + 𝑏4𝑥1𝑖) = 𝑏3 + 𝑏4�̅�1 
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With this information in hand, and assuming 𝑥1 and 𝑥2 are non-stochastic, standard errors 

associated with this average marginal effects can be estimated right away,1 and the technical part of the 

analysis would be done. 

The problem with most software (including Stata) is that, unless additional information is 

provided, it may not recognized that some variables are interrelated to each other by constructions and 

that the assumption of “everything else remaining constant” is incorrect. In the case of Stata, until factor 

variables came along, it could not automatically adjust for these interrelations, providing incorrect 

estimations of marginal effects, unless further steps were considered. It still fails to grasp these 

interrelations when we step beyond simple interactions or polynomials.  

3. Marginal effects: Empirical approach 

For this section I will use the dataset “Fictional data on monthly drunk driving citations”, 

available online. Consider now the following model: 

𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑏0 + 𝑏1𝑓𝑖𝑛𝑒𝑠𝑖  + 𝑏2𝑓𝑖𝑛𝑒𝑠𝑖
2 + 𝑒𝑖 (3) 

Before Stata 11 and factor notation, if we wanted to estimate a model like this, we would need to 

create all variables before including them in the model. For example, creating a variable named fines2 

to be equal to 𝑓𝑖𝑛𝑒𝑠𝑖
2: 

webuse dui,clear 

gen fines2=fines^2 

 

and fit the model using the command regress: 

regress citations fines fines2 

      Source |       SS           df       MS      Number of obs   =       500 

-------------+----------------------------------   F(2, 497)       =    189.57 

       Model |    20750.38         2    10375.19   Prob > F        =    0.0000 

 
1 A detailed explanation of how standard errors are estimated using margins can be found 

https://www.stata.com/support/faqs/statistics/compute-standard-errors-with-margins/ 

https://www.stata.com/support/faqs/statistics/compute-standard-errors-with-margins/
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    Residual |   27200.458       497  54.7292917   R-squared       =    0.4327 

-------------+----------------------------------   Adj R-squared   =    0.4305 

       Total |   47950.838       499  96.0938637   Root MSE        =    7.3979 

 

------------------------------------------------------------------------------ 

   citations |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       fines |  -47.10883   7.691611    -6.12   0.000    -62.22091   -31.99674 

      fines2 |    1.98084   .3885844     5.10   0.000      1.21737    2.744311 

       _cons |   293.0067   37.94286     7.72   0.000     218.4585    367.5549 

------------------------------------------------------------------------------- 

 

Because there is no way for Stata to know that fines2=fines^2, using margins to calculate 

marginal effect of fines on citations would produce the wrong answer, since fines2 would not be 

handled correctly.  

margins, dydx(fines) 

 

Average marginal effects                        Number of obs     =        500 

Model VCE    : OLS 

 

Expression   : Linear prediction, predict() 

dy/dx w.r.t. : fines 

 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       fines |  -47.10883   7.691611    -6.12   0.000    -62.22091   -31.99674 

------------------------------------------------------------------------------ 

 

However, using calculus, average marginal effects can be easily derived by hand by taking the 

derivative of equation 3 with respect to fines, estimating the average as the point of reference, and use a 

command like lincom to calculate the marginal effects and standard errors: 

sum fines, meanonly 

 

lincom _b[fines]+2*_b[fines2]*`r(mean)' 

 

 ( 1)  fines + 19.7904*fines2 = 0 

 

------------------------------------------------------------------------------ 

   citations |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -7.907201   .4236816   -18.66   0.000    -8.739629   -7.074773 

------------------------------------------------------------------------------ 
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Of course, ever since Stata 11, estimating marginal effects for a model like this is much easier. 

Using factor notation we simply add the squared parameter, and let margins handle the interaction on its 

own: 

qui:regress citations fines c.fines#c.fines 

margins, dydx(fines) 

 

Average marginal effects                        Number of obs     =        500 

Model VCE    : OLS 

 

Expression   : Linear prediction, predict() 

dy/dx w.r.t. : fines 

 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       fines |  -7.907201   .4236816   -18.66   0.000    -8.739629   -7.074773 

------------------------------------------------------------------------------ 

 

My understanding of how this works is that whoever did the coding behind margins and factor 

notation was able to “teach” Stata how to take derivatives of polynomials. In other words, Stata 

recognizes that when there is an expression like “c.var1#c.var1”, internally it “knows” the analytical 

derivative is 2*c.var1. Thus, margins simply uses this information to handle the squared parameter 

(c.fines#c.fines), before providing you with the result. 

While this has been a big improvement for a better understanding of marginal effects, it does 

have its limitations. For example, margins would not be able to estimate marginal effects for the 

following models: 

Model 1: 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑏0 + 𝑏1(1/𝑓𝑖𝑛𝑒𝑠𝑖)  + 𝑒𝑖 

Model 2: 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑏0 + 𝑏1𝑓𝑖𝑛𝑒𝑠𝑖
0.5 + 𝑒𝑖 

Model 3: 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑏0 + 𝑏1𝑓𝑖𝑛𝑒𝑠 + 𝑏2 max(𝑓𝑖𝑛𝑒𝑠 − 9.9,0) + 𝑒𝑖 

(4) 

Even though, mathematically, the average marginal effects (AME), and marginal effects at the 

means (MEM) can be derived straight forward: 
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 AME MEM 

Model 1: 
𝑏1𝐸 (−

1

𝑓𝑖𝑛𝑒𝑠𝑖
2) −𝑏1

1

𝐸(𝑓𝑖𝑛𝑒𝑠𝑖)2 

Model 2: 0.5 ∗ 𝑏1𝐸(𝑓𝑖𝑛𝑒𝑠𝑖
−0.5) 0.5 ∗ 𝑏1𝐸(𝑓𝑖𝑛𝑒𝑠𝑖)−0.5 

Model 3: 𝑏1 + 𝑏2𝐸(1(𝑓𝑖𝑛𝑒𝑠𝑖 > 9.9)) 𝑏1 + 𝑏21(𝐸(𝑓𝑖𝑛𝑒𝑠𝑖) > 9.9) 

 

Which can be used to estimate the average marginal effects by hand. For simplicity, I will 

concentrate on the estimation of the average marginal effects: 

. webuse dui, clear 

(Fictional data on monthly drunk driving citations) 

. gen i_fines=1/fines 

. gen ni_fines2=-1/fines^2 

. gen fines05=fines^.5 

. gen i_fines05=0.5*fines^-.5 

. gen fines_99=max((fines-9.9),0) 

. gen dfines_99=fines>9.9 

* model 1 

. qui:regress citations i_fines 

. sum ni_fines2, meanonly 

. lincom _b[i_fines]*`r(mean)' 

 

 ( 1)  - .0104108*i_fines = 0 

------------------------------------------------------------------------------ 

   citations |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -8.091099   .4224389   -19.15   0.000    -8.921081   -7.261117 

------------------------------------------------------------------------------ 

* model 2 

. qui:regress citations fines05 

. sum i_fines05, meanonly 

. lincom _b[fines05]*`r(mean)' 

 

 ( 1)  .1593264*fines05 = 0 

------------------------------------------------------------------------------ 

   citations |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -8.010351   .4314167   -18.57   0.000    -8.857972   -7.162729 

------------------------------------------------------------------------------ 

* model 3 

. qui:regress citations fines fines_99 

. sum dfines_99, meanonly 

. lincom _b[fines]+_b[fines_99]*`r(mean)' 

 

 ( 1)  fines + .5*fines_99 = 0 

 

------------------------------------------------------------------------------ 

   citations |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -7.926694   .4271729   -18.56   0.000    -8.765981   -7.087407 

------------------------------------------------------------------------------ 
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Of course, for these models, one also have the option of using nl, to estimate the marginal 

effects, which requires less work:2 

qui:nl (citations = {b0}+{b1}/fines), variable(fines) 

margins, dydx(fines) 

 

qui:nl (citations = {b0}+{b1}*fines^.5), variable(fines) 

margins, dydx(fines) 

 

qui:nl (citations = {b0}+{b1}*fines+{b2}*max((fines-9.9),0)), variable(fines) 

margins, dydx(fines) 

  

This flexibility of nl to estimate marginal effects with non-standard transformations motivates 

the questions: why is it that nl can “correctly” estimate marginal effects, whereas regress can’t? The 

answer is rather simple. We are not using a constructed variable in the model, instead, we are using the 

original variable and letting nl handle the construction of the new variable.  

This means that, while we see this model is being estimated: 

citations = {b0}+{b1}*fines^.5 

What may be happening in the background is that Stata identifies what elements of this code are 

parameters to be estimated (those within brackets), and what elements need to be created (fines^.5), 

before fitting the model. In other words, Stata is simply estimating the following: 

citations = {b0}+{b1}*__000000 

where __000000 is a temporary variable, you never see, that was constructed as fines^.5. The 

difference is that nl knows that __000000= fines^.5.  

But, how is it that nl knows what the derivative of 𝑓𝑖𝑛𝑒𝑠0.5 is 0.5𝑓𝑖𝑛𝑒𝑠−0.5. The answer is that 

nl does not know. The only type of analytical derivatives Stata may know about is when you have 

interactions (again factor notation). However, because it “remembers” how a variable was constructed, it 

can use numerical derivatives to make a reasonable approximation for the analytical derivative.  

 
2 For this to work, we need to indicate to nl that fines is a variable in the model. Outputs are identical to the ones  

produced by hand. 
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For the simplified case above, the numerical derivative for the transformation 𝑓𝑖𝑛𝑒𝑠0.5 can be 

approximated as follows: 

𝜕(𝑓𝑖𝑛𝑒𝑠𝑖
0.5)

𝜕𝑓𝑖𝑛𝑒𝑠𝑖
=

(𝑓𝑖𝑛𝑒𝑠𝑖 + ℎ).5 − (𝑓𝑖𝑛𝑒𝑠𝑖 − ℎ).5

2ℎ
  for a sufficiently small h 

 This expression is surprisingly accurate.3 For this example, when ℎ = 1 the largest absolute 

difference between the numerical and analytical derivative is 0.000423, whereas when ℎ = 1/2^16, the 

largest difference is 6.58e-09. This simply implies that margins does not need to know how to obtain 

analytical derivatives, since it can use numerical derivatives instead, and use this information to estimate 

the appropriate marginal effects. 

 

4. f_able: marginal effects for arbitrary variable transformations 

In the previous sections, I sketched out how marginal effects should be estimated, and how to use 

that information to obtain average marginal effects, comparing the step-by-step procedure with what 

margins does. I also described that nl is capable to estimate marginal effects for variable transformations 

other than interactions, using numerical derivatives to approximate the analytical derivatives. As a matter 

of fact, when nonlinear models are estimated, numerical derivatives are already used to estimate marginal 

effects.4 

In other words, Stata already has the capabilities to estimate marginal effects when 

transformations other than interactions and polynomials are used in a model. There is only one aspect that 

needs to be addressed. How to tell Stata that a variable 𝑍 is constructed based on another variable X 

within the model specification?. One possible solution, which I suggest in this paper, is to use the variable 

 
3 As a matter of fact, as indicated on its help file, the function deriv() in mata uses this approximation to compute 

numerical derivatives. 
4 This is partially correct. Some of nonlinear models implemente in Stata, like logit, probit, poisson, among others, 

have been programmed so they obtain marginal effects using analytical derivates rather than numerical ones. 

However, one can still request marginal effects to be estimated using numerical derivatives. 
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label to “store” the transformation used to create the variable of interest. To automatize this procedure, I 

propose two small programs that “wrap” around Stata’s built-in commands generate and replace: 

program fgen 

 syntax newvarname =/exp [if] [in]  

 gen `typelist' `varlist'=`exp'  

 label var `varlist' "`exp'" 

end 

program frep  

 syntax varname =/exp [if] [in]  

 replace   `varlist'=`exp'  

 label var `varlist' "`exp'" 

end 

 

These two commands simply do one thing. When a new variable is created, it will label it with 

the expression used to create it, and if the values are replaced, it will change the label to the new 

expression used. 

Consider model 3 from equation (4). I can create the variable of interest using the command 

defined above. Since I made a mistake while creating this code, I will rectify it, using the second 

command and replace the values fines2 with the correct content: 

. fgen fines2=max(fines-9,0) 

 

. describe fines2 

 

              storage   display    value 

variable name   type    format     label      variable label 

------------------------------------------------------------------ 

fines2          float   %9.0g                 max(fines-9,0) 

 

. frep fines2=max(fines-9.9,0) 

(420 real changes made) 

 

. describe fines2 

 

              storage   display    value 

variable name   type    format     label      variable label 

----------------------------------------------------------------- 

fines2          float   %9.0g                 max(fines-9.9,0) 

 

In addition to setting up the data for the next step of the estimation of marginal effects, these 

commands may also be useful for keeping track of how variables are created or modified.  
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The final step is to explicitly tell Stata that a particular variable is constructed based on other 

variables in the model, and that when marginal effects are estimated, the constructed variable needs to be 

updated every time the original variable changes. This can be done with the two following programs: 

program f_able, eclass 

 syntax, [* NLvar(varlist)] 

 _ms_dydx_parse `nlvar' 

 if "`e(predict_old)'"=="" { 

  ereturn local predict_old  `e(predict)' 

  ereturn local predict   f_able_p 

 } 

 foreach i of varlist `nlvar' { 

  local fnc:variable label `i' 

  ereturn hidden local _`i' `fnc' 

 } 

 ereturn local nldepvar `nlvar' 

end  

 

program f_able_p 

 syntax newvarname [if] [in], [*] 

 local idepvar `e(nldepvar)' 

 foreach i of local idepvar {     

    tempvar _`i' 

   qui:clonevar `_`i''=`i' 

   qui:recast double `i' 

   qui:replace `i'=`e(_`i')' 

 } 

 `e(predict_old)' `0' 

 foreach i of local idepvar { 

     if "`i'"!="_cons" { 

   qui:replace `i'=`_`i'' 

  } 

 } 

end 

 

The first program, f_able, does three things. First, it adds information, to any previously 

estimated model, indicating which variables are constructed variables using e(nldepvar).  It 

also adds hidden macros with information regarding the data transformation used.5 Lastly, it 

redirects predict from the original e(predict) command to the one I defined below as 

f_able_p, but keeping the original information in e(predict_old). 

The second program, f_able_p, has the only purpose of updating the constructed 

variables, identified in e(nldepvar), before proceeding to obtain the predicted values 

 
5 While this step is unnecessary in most cases I have considered, in some examples margins “drops” the variable 

label information. In those cases, storing the information as part of the estimation commands seems to be better 

alternative. 
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appropriate for the estimated command e(predict_old), using the information previously 

stored in the hidden macros. 

With these two pieces of code, the last step is to simply call margins for the estimation 

of the marginal effects, using the option nochainrule.6 This is an option often ignored when 

using official Stata commands. However, as its help file indicates: 

“nochainrule is safer because it makes no assumptions about how the parameters and 

covariates join to form the response.” 

This implies that when a model like the following is estimated: 

regress citations fines fines2 

f_able, nl(fines2) 

Marginal effects concerning will be calculated using the coefficient of fines, and the 

coefficient of fines2 times the numerical derivative of fines2 with respect to fines if fines2 

was declared as a constructed variable. Let see how this works.  

. qui:regress citations fines fines2 

. f_able, nlvar(fines2) 

. margins, dydx(fines) nochainrule 

Average marginal effects                        Number of obs     =        500 

Model VCE    : OLS 

 

Expression   : Fitted values, predict() 

dy/dx w.r.t. : fines 

 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       fines |  -7.926694   .4271729   -18.56   0.000    -8.763937   -7.089451 

------------------------------------------------------------------------------ 

 

The first line estimates the model with citations as a dependent variable and fines and 

fines2 as independent variables. fines2 is the one we defined previously as max(fines-9.9,0). The 

second line calls f_able to identify that fines2 is a constructed variable, and the last step estimates the 

 
6 Some commands, like logit, probit and poisson, also require to include the option numerical ,  to use 

numerical derivatives. 
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marginal effects using nochainrule. The results are the same as the ones done by hand, or those using 

nl command. They can also be replicated using the npregress series. 

. npregress series citations fines, spline(1) knots(1) 

 

Computing approximating function 

 

Computing average derivatives 

 

Linear-spline estimation                   Number of obs      =            500 

                                           Number of knots    =              1 

------------------------------------------------------------------------------ 

             |               Robust 

   citations |     Effect   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       fines |  -7.926694   .4772213   -16.61   0.000     -8.86203   -6.991357 

------------------------------------------------------------------------------ 

Note: Effect estimates are averages of derivatives. 

 

Notice that while the point estimates are the same, the standard errors produced by npregress 

series are somewhat larger than those produced with nl or with the proposed strategy. 

We can also compare f_able to the output we could obtain using factor notation:  

qui:regress citations c.fines##c.fines##c.fines 

. margins, dydx(fines) 

Average marginal effects                        Number of obs     =        500 

Model VCE    : OLS 

Expression   : Linear prediction, predict() 

dy/dx w.r.t. : fines 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       fines |  -7.928817   .4226225   -18.76   0.000    -8.759168   -7.098465 

------------------------------------------------------------------------------ 

 

  

. frep fines2=fines^2 

(500 real changes made) 

. fgen fines3=fines^3 

. qui:regress citations fines fines2 fines3 

. f_able, nlvar(fines2 fines3) 

. margins, dydx(fines) nochainrule 

 

Average marginal effects                        Number of obs     =        500 

Model VCE    : OLS 

Expression   : Fitted values, predict() 

dy/dx w.r.t. : fines 

 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       fines |  -7.928819   .4226228   -18.76   0.000    -8.757144   -7.100493 

------------------------------------------------------------------------------ 
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As can be seen, this method replicates the results when using factor notation up to 5 decimal 

places, but some degree of precision is lost due to forced use of numerical derivatives.  

Lastly, we do a more challenging estimation that combines the use of factor notation with 

f_able and compares it to the output of the npregress series. 

. npregress series citations fines i.csize, spline(2) knots(1) 

 

Computing approximating function 

 

Computing average derivatives 

 

Quadratic-spline estimation                Number of obs      =            500 

                                           Number of knots    =              1 

------------------------------------------------------------------------------------ 

                   |               Robust 

         citations |     Effect   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------------+---------------------------------------------------------------- 

             fines |  -7.590817   .3533786   -21.48   0.000    -8.283427   -6.898208 

                   | 

             csize | 

(medium vs small)  |    5.48074   .5827045     9.41   0.000      4.33866    6.622819 

 (large vs small)  |   10.69879   .6043375    17.70   0.000     9.514311    11.88327 

------------------------------------------------------------------------------------ 

Note: Effect estimates are averages of derivatives for continuous covariates and averages 

of contrasts for factor covariates. 

The same can be replicated using regress and f_able: 

. webuse dui,clear 

. fgen double fines2=fines^2 

. fgen double fines3=max(fines-9.9,0)^2 

. qui:regress citations c.(fines fines2 fines3)##i.csize 

. f_able, nlvar(fines2 fines3) 

. margins, dydx(fines csize) nochainrule  

Average marginal effects                        Number of obs     =        500 

Model VCE    : OLS 

 

Expression   : Fitted values, predict() 

dy/dx w.r.t. : fines 2.csize 3.csize 

 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       fines |  -7.590817   .3350831   -22.65   0.000    -8.247568   -6.934066 

             | 

       csize | 

     medium  |   5.480738   .6522748     8.40   0.000     4.202303    6.759174 

      large  |   10.69879   .6171921    17.33   0.000     9.489118    11.90847 

------------------------------------------------------------------------------ 

Note: dy/dx for factor levels is the discrete change from the base level. 
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Once again, we can replicate the output with very small differences in the point estimates, 

but some differences in terms of the standard errors, possibly due to how degrees of freedom are 

used in npregress.  

We can also use this strategy for models other than OLS. Consider, for example, the 

dataset mksp2. Similar to the example provided in the help file for the command mkspline,  I 

create 4 variables to allow for a linear spline with 4 knots, and estimate a logit model of outcome 

against dosage and the constructed variables. Margins need to include the options nochain and 

numerical. I produce both the predicted probabilities and the marginal effects across various 

values of dosage: 

webuse mksp2, clear 

fgen dos1=max(dosage-17.5,0) 

fgen dos2=max(dosage-36.5,0) 

fgen dos3=max(dosage-55.5,0) 

fgen dos4=max(dosage-81.5,0) 

qui:logit outcome dosage dos1 dos2 dos3 dos4  

f_able, nl(dos1 dos2 dos3 dos4) 

qui:margins ,   nochain numerical at(dosage=(0(2)100)) 

marginsplot, name(m1) 

qui:margins ,  dydx(dosage) nochain numerical at(dosage=(0(2)100)) 

marginsplot, name(m2) 

graph combine m1 m2, xsize(8) scale(1.5) 

 

Figure 1. Predicted probabilities and Marginal effects 

 

  



17 

 

5. Conclusion 

In this article, I have described how marginal effects can be estimated based using analytical 

derivatives, as well as numerical derivatives. I have also introduced 2 small programs that enable margins 

to estimate marginal effects when using transformations beyond variable interactions and polynomials.  

These commands can be used to estimate marginal effects for other official Stata commands, as 

well as other community-contributed commands that can produce sensible predicted outcomes. The 

strategy does have four limitations: first, the estimated marginal effects depend on the precision of the 

forced numerical derivatives; second, it requires the original variable to be present in the model 

specification so that marginal effects can be used; third, the information for the variable construction is 

limited to 80 characters, based on the limit of variables labels length; and forth, because f_able is 

forcing margins to do something it is not meant to do, one may experience difficulties estimating 

marginal effects and standard errors when the request is particularly complex. 

While the limitation regarding the precision of the estimates is unavoidable, the other limitations 

can be circumvented to some extent. First, the original variable can be added to the list of explanatory 

variables using “o.”. This omits the original variable from the estimation but keeps it in the list of 

explanatory variables, allowing the estimation of margins. Second, it is possible to modify the programs 

to store and gather the transformation information as a variable note. This has fewer limits on the 

length of the stored information. 

The last limitation can be addressed with careful troubleshooting. While the option nochain 

forces most commands to use numerical derivatives for the estimation of marginal effects, some 

commands like probit, logit, and Poisson require you to use the options nochain numerical. If 

point estimates appear as missing, the option  noestimcheck can be used to bypass some of the safety 

checks in margins that produce this error. Finally, if standard errors are missing when estimating 
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marginal effects for multiple points of interest, they could still be estimated by using fewer points of 

interest or even using one point of interest at the time.  
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