
1

f_able: Estimation of marginal effects for models with alternative variable transformations

by

Fernando Rios-Avila

Levy Economics Institute

Abstract

margins is a powerful post-estimation command that allows the

estimation of marginal effects for official and community-contributed

commands, with well-defined predicted outcomes (see predict). While

the use of factor variable notation allows us to easily estimate

marginal effects when interactions and polynomials are used, estimation

of marginal effects of when other types of transformations such as

splines, logs, or fractional polynomials, among others, are used remains a

challenge. This paper describes how margins capabilities can be

extended to analyze other variable transformations using the command

f_able.

2

1. Introduction

margins is a powerful post-estimation command that was introduced in Stata 11, allowing the

estimation of marginal effects for all official estimation commands, and any community-contributed

command with a properly defined predicted outcome program (see predict). As described in Williams

(2012) the introduction of margins, at its companion marginsplot (in Stata 12), provides a great tool for

analyzing and providing meaningful information that is easier to interpret and describe. Furthermore, in

combination with factor variable notation (also introduced in Stata 11), it also allows users to easily

estimate marginal effects when interactions and polynomials of continuous variables, and interactions

with discreet variables, are used without any additional work from the user.

Despite these features, the ability of margins to estimate marginal effects is limited to the use of

simple polynomials and interactions. There is a reason for this. Unless further information is provided to a

command, Stata cannot identify the possible interdependencies across explanatory variables.

As far as I know, there are only 2 commands where this limitation is not binding. As described in

Poi (2008), nl can be used to easily obtain marginal effects when using functions other than interactions

of polynomials, even when the model is nonlinear in parameters, but assuming an additive error.

npregress series, one of the newest additions to Stata 16 nonparametric analysis, can also estimate

marginal effects of arbitrary transformations of the independent variables (splines, B-splines and

polynomials), based on numerical derivations. Unfortunately, both models are based on least-squares

type of estimators, they cannot be used in the case of nonlinear models like logit or probit, and in the case

of npregress series users cannot freely choose what transformations to use. The only other program

that proposes a strategy that may help to obtain marginal effects, more specifically marginal means, using

transformed covariates was proposed by Royston (2013). Their command, marginscontplot uses a

predefined mapping between original and transformed covariates to appropriately handle the constructed

variables in margins.

3

In this article, I describe a simple strategy, implemented by f_able, that allows the estimation of

marginal effects of a larger set of nonlinear transformations using margins and the option nochain

[numerical noestimcheck]. Section 2 provides a review of how marginal effects should be

estimated, emphasizing on some of the computational challenges that are bypassed by the use of factor

notation. Section 3 provides a simple approach for the estimation of marginal effects for the case of

Spline regressions and compares it to a simplified case using npregress series. Section 4 introduces

3 commands that would help to prepare the data for the estimation of marginal effects for any arbitrary

variable transformation and shows how it can be used to estimate marginal effects using any variable

transformation. Section 5 concludes.

2. Marginal effects: Theoretical approach

As mentioned before, marginal effects are useful statistics to measure the impact that a change in

the independent variables will have on the dependent variable, assuming other covariates remaining

constant. At the beginning of most introductory econometric courses, very little emphasis is put on

understanding this concept because, for the case of linear regressions, marginal effects are typically equal

to the coefficient associated with the variable analyzed. Consider the following linear regression model:

𝑦𝑖 = 𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + 𝑒𝑖 (1)

Under the standard assumptions of exogeneity and correct model specifications (see for example

Wooldridge (2016)), the coefficients of this model can be estimated using Ordinary Least Squares (OLS).

In this simple model, the marginal effect of 𝑥1 on 𝑦 and 𝑥2 on 𝑦 will be given by 𝑏1 and 𝑏2, respectively.

Mathematically, it would be:

𝜕𝑦𝑖

𝜕𝑥1𝑖
= 𝑏1 ;

𝜕𝑦𝑖

𝜕𝑥2𝑖
= 𝑏2

4

 This implies that for a simple linear regression (like equation(1)), where each variable appears

only once, and without any transformation, marginal effects are directly identified by the estimated

coefficients.

Soon after, students are introduced to the idea that nonlinear transformations and interactions of

the dependent variables can also be included in the linear regression model. Because the model is still

linear in parameters it can be estimated using OLS. However, additional care needs to be taken when

estimating the marginal effects, to account for the interdependence of variable transformations. Consider,

for example, the following model:

𝑦𝑖 = 𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥1𝑖
2 + 𝑏3𝑥2𝑖 + 𝑏4𝑥1𝑖𝑥2𝑖 + 𝑒𝑖 (2)

In this model, the marginal effect of 𝑥1 on 𝑦 is no longer a constant, and it now depends on the

values of 𝑥1 and also of 𝑥2. Using calculus, however, it is easy to derive the marginal effects from this

model:

𝜕𝑦𝑖

𝜕𝑥1𝑖
= 𝑏1 + 2𝑏2𝑥1𝑖 + 𝑏4𝑥2𝑖;

𝜕𝑦𝑖

𝜕𝑥2𝑖
= 𝑏3 + 𝑏4𝑥1𝑖

Because these effects are no longer constant, one has to decide what to report as the presentative

marginal effect. While one can always report plots showing all possible values these marginal effects will

take, the standard practice is presenting average marginal effects or the marginal effects at the mean. For

the example above, they both will be the same:

𝐸 (
𝜕𝑦𝑖

𝜕𝑥1𝑖
) = 𝐸(𝑏1 + 2𝑏2𝑥1𝑖 + 𝑏4𝑥2𝑖) = 𝑏1 + 2𝑏2�̅�1 + 𝑏4�̅�2

𝐸 (
𝜕𝑦𝑖

𝜕𝑥2𝑖
) = 𝐸(𝑏3 + 𝑏4𝑥1𝑖) = 𝑏3 + 𝑏4�̅�1

5

With this information in hand, and assuming 𝑥1 and 𝑥2 are non-stochastic, standard errors

associated with this average marginal effects can be estimated right away,1 and the technical part of the

analysis would be done.

The problem with most software (including Stata) is that, unless additional information is

provided, it may not recognized that some variables are interrelated to each other by constructions and

that the assumption of “everything else remaining constant” is incorrect. In the case of Stata, until factor

variables came along, it could not automatically adjust for these interrelations, providing incorrect

estimations of marginal effects, unless further steps were considered. It still fails to grasp these

interrelations when we step beyond simple interactions or polynomials.

3. Marginal effects: Empirical approach

For this section I will use the dataset “Fictional data on monthly drunk driving citations”,

available online. Consider now the following model:

𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑏0 + 𝑏1𝑓𝑖𝑛𝑒𝑠𝑖 + 𝑏2𝑓𝑖𝑛𝑒𝑠𝑖
2 + 𝑒𝑖 (3)

Before Stata 11 and factor notation, if we wanted to estimate a model like this, we would need to

create all variables before including them in the model. For example, creating a variable named fines2

to be equal to 𝑓𝑖𝑛𝑒𝑠𝑖
2:

webuse dui,clear

gen fines2=fines^2

and fit the model using the command regress:

regress citations fines fines2

 Source | SS df MS Number of obs = 500

-------------+---------------------------------- F(2, 497) = 189.57

 Model | 20750.38 2 10375.19 Prob > F = 0.0000

1 A detailed explanation of how standard errors are estimated using margins can be found

https://www.stata.com/support/faqs/statistics/compute-standard-errors-with-margins/

https://www.stata.com/support/faqs/statistics/compute-standard-errors-with-margins/

6

 Residual | 27200.458 497 54.7292917 R-squared = 0.4327

-------------+---------------------------------- Adj R-squared = 0.4305

 Total | 47950.838 499 96.0938637 Root MSE = 7.3979

--

 citations | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 fines | -47.10883 7.691611 -6.12 0.000 -62.22091 -31.99674

 fines2 | 1.98084 .3885844 5.10 0.000 1.21737 2.744311

 _cons | 293.0067 37.94286 7.72 0.000 218.4585 367.5549

Because there is no way for Stata to know that fines2=fines^2, using margins to calculate

marginal effect of fines on citations would produce the wrong answer, since fines2 would not be

handled correctly.

margins, dydx(fines)

Average marginal effects Number of obs = 500

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : fines

--

 | Delta-method

 | dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 fines | -47.10883 7.691611 -6.12 0.000 -62.22091 -31.99674

--

However, using calculus, average marginal effects can be easily derived by hand by taking the

derivative of equation 3 with respect to fines, estimating the average as the point of reference, and use a

command like lincom to calculate the marginal effects and standard errors:

sum fines, meanonly

lincom _b[fines]+2*_b[fines2]*`r(mean)'

 (1) fines + 19.7904*fines2 = 0

--

 citations | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 (1) | -7.907201 .4236816 -18.66 0.000 -8.739629 -7.074773

--

7

Of course, ever since Stata 11, estimating marginal effects for a model like this is much easier.

Using factor notation we simply add the squared parameter, and let margins handle the interaction on its

own:

qui:regress citations fines c.fines#c.fines

margins, dydx(fines)

Average marginal effects Number of obs = 500

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : fines

--

 | Delta-method

 | dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 fines | -7.907201 .4236816 -18.66 0.000 -8.739629 -7.074773

--

My understanding of how this works is that whoever did the coding behind margins and factor

notation was able to “teach” Stata how to take derivatives of polynomials. In other words, Stata

recognizes that when there is an expression like “c.var1#c.var1”, internally it “knows” the analytical

derivative is 2*c.var1. Thus, margins simply uses this information to handle the squared parameter

(c.fines#c.fines), before providing you with the result.

While this has been a big improvement for a better understanding of marginal effects, it does

have its limitations. For example, margins would not be able to estimate marginal effects for the

following models:

Model 1: 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑏0 + 𝑏1(1/𝑓𝑖𝑛𝑒𝑠𝑖) + 𝑒𝑖

Model 2: 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑏0 + 𝑏1𝑓𝑖𝑛𝑒𝑠𝑖
0.5 + 𝑒𝑖

Model 3: 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑏0 + 𝑏1𝑓𝑖𝑛𝑒𝑠 + 𝑏2 max(𝑓𝑖𝑛𝑒𝑠 − 9.9,0) + 𝑒𝑖

(4)

Even though, mathematically, the average marginal effects (AME), and marginal effects at the

means (MEM) can be derived straight forward:

8

 AME MEM

Model 1:
𝑏1𝐸 (−

1

𝑓𝑖𝑛𝑒𝑠𝑖
2) −𝑏1

1

𝐸(𝑓𝑖𝑛𝑒𝑠𝑖)2

Model 2: 0.5 ∗ 𝑏1𝐸(𝑓𝑖𝑛𝑒𝑠𝑖
−0.5) 0.5 ∗ 𝑏1𝐸(𝑓𝑖𝑛𝑒𝑠𝑖)−0.5

Model 3: 𝑏1 + 𝑏2𝐸(1(𝑓𝑖𝑛𝑒𝑠𝑖 > 9.9)) 𝑏1 + 𝑏21(𝐸(𝑓𝑖𝑛𝑒𝑠𝑖) > 9.9)

Which can be used to estimate the average marginal effects by hand. For simplicity, I will

concentrate on the estimation of the average marginal effects:

. webuse dui, clear

(Fictional data on monthly drunk driving citations)

. gen i_fines=1/fines

. gen ni_fines2=-1/fines^2

. gen fines05=fines^.5

. gen i_fines05=0.5*fines^-.5

. gen fines_99=max((fines-9.9),0)

. gen dfines_99=fines>9.9

* model 1

. qui:regress citations i_fines

. sum ni_fines2, meanonly

. lincom _b[i_fines]*`r(mean)'

 (1) - .0104108*i_fines = 0

--

 citations | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 (1) | -8.091099 .4224389 -19.15 0.000 -8.921081 -7.261117

--

* model 2

. qui:regress citations fines05

. sum i_fines05, meanonly

. lincom _b[fines05]*`r(mean)'

 (1) .1593264*fines05 = 0

--

 citations | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 (1) | -8.010351 .4314167 -18.57 0.000 -8.857972 -7.162729

--

* model 3

. qui:regress citations fines fines_99

. sum dfines_99, meanonly

. lincom _b[fines]+_b[fines_99]*`r(mean)'

 (1) fines + .5*fines_99 = 0

--

 citations | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 (1) | -7.926694 .4271729 -18.56 0.000 -8.765981 -7.087407

--

9

Of course, for these models, one also have the option of using nl, to estimate the marginal

effects, which requires less work:2

qui:nl (citations = {b0}+{b1}/fines), variable(fines)

margins, dydx(fines)

qui:nl (citations = {b0}+{b1}*fines^.5), variable(fines)

margins, dydx(fines)

qui:nl (citations = {b0}+{b1}*fines+{b2}*max((fines-9.9),0)), variable(fines)

margins, dydx(fines)

This flexibility of nl to estimate marginal effects with non-standard transformations motivates

the questions: why is it that nl can “correctly” estimate marginal effects, whereas regress can’t? The

answer is rather simple. We are not using a constructed variable in the model, instead, we are using the

original variable and letting nl handle the construction of the new variable.

This means that, while we see this model is being estimated:

citations = {b0}+{b1}*fines^.5

What may be happening in the background is that Stata identifies what elements of this code are

parameters to be estimated (those within brackets), and what elements need to be created (fines^.5),

before fitting the model. In other words, Stata is simply estimating the following:

citations = {b0}+{b1}*__000000

where __000000 is a temporary variable, you never see, that was constructed as fines^.5. The

difference is that nl knows that __000000= fines^.5.

But, how is it that nl knows what the derivative of 𝑓𝑖𝑛𝑒𝑠0.5 is 0.5𝑓𝑖𝑛𝑒𝑠−0.5. The answer is that

nl does not know. The only type of analytical derivatives Stata may know about is when you have

interactions (again factor notation). However, because it “remembers” how a variable was constructed, it

can use numerical derivatives to make a reasonable approximation for the analytical derivative.

2 For this to work, we need to indicate to nl that fines is a variable in the model. Outputs are identical to the ones

produced by hand.

10

For the simplified case above, the numerical derivative for the transformation 𝑓𝑖𝑛𝑒𝑠0.5 can be

approximated as follows:

𝜕(𝑓𝑖𝑛𝑒𝑠𝑖
0.5)

𝜕𝑓𝑖𝑛𝑒𝑠𝑖
=

(𝑓𝑖𝑛𝑒𝑠𝑖 + ℎ).5 − (𝑓𝑖𝑛𝑒𝑠𝑖 − ℎ).5

2ℎ
 for a sufficiently small h

 This expression is surprisingly accurate.3 For this example, when ℎ = 1 the largest absolute

difference between the numerical and analytical derivative is 0.000423, whereas when ℎ = 1/2^16, the

largest difference is 6.58e-09. This simply implies that margins does not need to know how to obtain

analytical derivatives, since it can use numerical derivatives instead, and use this information to estimate

the appropriate marginal effects.

4. f_able: marginal effects for arbitrary variable transformations

In the previous sections, I sketched out how marginal effects should be estimated, and how to use

that information to obtain average marginal effects, comparing the step-by-step procedure with what

margins does. I also described that nl is capable to estimate marginal effects for variable transformations

other than interactions, using numerical derivatives to approximate the analytical derivatives. As a matter

of fact, when nonlinear models are estimated, numerical derivatives are already used to estimate marginal

effects.4

In other words, Stata already has the capabilities to estimate marginal effects when

transformations other than interactions and polynomials are used in a model. There is only one aspect that

needs to be addressed. How to tell Stata that a variable 𝑍 is constructed based on another variable X

within the model specification?. One possible solution, which I suggest in this paper, is to use the variable

3 As a matter of fact, as indicated on its help file, the function deriv() in mata uses this approximation to compute

numerical derivatives.
4 This is partially correct. Some of nonlinear models implemente in Stata, like logit, probit, poisson, among others,

have been programmed so they obtain marginal effects using analytical derivates rather than numerical ones.

However, one can still request marginal effects to be estimated using numerical derivatives.

11

label to “store” the transformation used to create the variable of interest. To automatize this procedure, I

propose two small programs that “wrap” around Stata’s built-in commands generate and replace:

program fgen

 syntax newvarname =/exp [if] [in]

 gen `typelist' `varlist'=`exp'

 label var `varlist' "`exp'"

end

program frep

 syntax varname =/exp [if] [in]

 replace `varlist'=`exp'

 label var `varlist' "`exp'"

end

These two commands simply do one thing. When a new variable is created, it will label it with

the expression used to create it, and if the values are replaced, it will change the label to the new

expression used.

Consider model 3 from equation (4). I can create the variable of interest using the command

defined above. Since I made a mistake while creating this code, I will rectify it, using the second

command and replace the values fines2 with the correct content:

. fgen fines2=max(fines-9,0)

. describe fines2

 storage display value

variable name type format label variable label

--

fines2 float %9.0g max(fines-9,0)

. frep fines2=max(fines-9.9,0)

(420 real changes made)

. describe fines2

 storage display value

variable name type format label variable label

fines2 float %9.0g max(fines-9.9,0)

In addition to setting up the data for the next step of the estimation of marginal effects, these

commands may also be useful for keeping track of how variables are created or modified.

12

The final step is to explicitly tell Stata that a particular variable is constructed based on other

variables in the model, and that when marginal effects are estimated, the constructed variable needs to be

updated every time the original variable changes. This can be done with the two following programs:

program f_able, eclass

 syntax, [* NLvar(varlist)]

 _ms_dydx_parse `nlvar'

 if "`e(predict_old)'"=="" {

 ereturn local predict_old `e(predict)'

 ereturn local predict f_able_p

 }

 foreach i of varlist `nlvar' {

 local fnc:variable label `i'

 ereturn hidden local _`i' `fnc'

 }

 ereturn local nldepvar `nlvar'

end

program f_able_p

 syntax newvarname [if] [in], [*]

 local idepvar `e(nldepvar)'

 foreach i of local idepvar {

 tempvar _`i'

 qui:clonevar `_`i''=`i'

 qui:recast double `i'

 qui:replace `i'=`e(_`i')'

 }

 `e(predict_old)' `0'

 foreach i of local idepvar {

 if "`i'"!="_cons" {

 qui:replace `i'=`_`i''

 }

 }

end

The first program, f_able, does three things. First, it adds information, to any previously

estimated model, indicating which variables are constructed variables using e(nldepvar). It

also adds hidden macros with information regarding the data transformation used.5 Lastly, it

redirects predict from the original e(predict) command to the one I defined below as

f_able_p, but keeping the original information in e(predict_old).

The second program, f_able_p, has the only purpose of updating the constructed

variables, identified in e(nldepvar), before proceeding to obtain the predicted values

5 While this step is unnecessary in most cases I have considered, in some examples margins “drops” the variable

label information. In those cases, storing the information as part of the estimation commands seems to be better

alternative.

13

appropriate for the estimated command e(predict_old), using the information previously

stored in the hidden macros.

With these two pieces of code, the last step is to simply call margins for the estimation

of the marginal effects, using the option nochainrule.6 This is an option often ignored when

using official Stata commands. However, as its help file indicates:

“nochainrule is safer because it makes no assumptions about how the parameters and

covariates join to form the response.”

This implies that when a model like the following is estimated:

regress citations fines fines2

f_able, nl(fines2)

Marginal effects concerning will be calculated using the coefficient of fines, and the

coefficient of fines2 times the numerical derivative of fines2 with respect to fines if fines2

was declared as a constructed variable. Let see how this works.

. qui:regress citations fines fines2

. f_able, nlvar(fines2)

. margins, dydx(fines) nochainrule

Average marginal effects Number of obs = 500

Model VCE : OLS

Expression : Fitted values, predict()

dy/dx w.r.t. : fines

--

 | Delta-method

 | dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--

 fines | -7.926694 .4271729 -18.56 0.000 -8.763937 -7.089451

--

The first line estimates the model with citations as a dependent variable and fines and

fines2 as independent variables. fines2 is the one we defined previously as max(fines-9.9,0). The

second line calls f_able to identify that fines2 is a constructed variable, and the last step estimates the

6 Some commands, like logit, probit and poisson, also require to include the option numerical , to use

numerical derivatives.

14

marginal effects using nochainrule. The results are the same as the ones done by hand, or those using

nl command. They can also be replicated using the npregress series.

. npregress series citations fines, spline(1) knots(1)

Computing approximating function

Computing average derivatives

Linear-spline estimation Number of obs = 500

 Number of knots = 1

--

 | Robust

 citations | Effect Std. Err. z P>|z| [95% Conf. Interval]

-------------+--

 fines | -7.926694 .4772213 -16.61 0.000 -8.86203 -6.991357

--

Note: Effect estimates are averages of derivatives.

Notice that while the point estimates are the same, the standard errors produced by npregress

series are somewhat larger than those produced with nl or with the proposed strategy.

We can also compare f_able to the output we could obtain using factor notation:

qui:regress citations c.fines##c.fines##c.fines

. margins, dydx(fines)

Average marginal effects Number of obs = 500

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : fines

--

 | Delta-method

 | dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 fines | -7.928817 .4226225 -18.76 0.000 -8.759168 -7.098465

--

. frep fines2=fines^2

(500 real changes made)

. fgen fines3=fines^3

. qui:regress citations fines fines2 fines3

. f_able, nlvar(fines2 fines3)

. margins, dydx(fines) nochainrule

Average marginal effects Number of obs = 500

Model VCE : OLS

Expression : Fitted values, predict()

dy/dx w.r.t. : fines

--

 | Delta-method

 | dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--

 fines | -7.928819 .4226228 -18.76 0.000 -8.757144 -7.100493

--

15

As can be seen, this method replicates the results when using factor notation up to 5 decimal

places, but some degree of precision is lost due to forced use of numerical derivatives.

Lastly, we do a more challenging estimation that combines the use of factor notation with

f_able and compares it to the output of the npregress series.

. npregress series citations fines i.csize, spline(2) knots(1)

Computing approximating function

Computing average derivatives

Quadratic-spline estimation Number of obs = 500

 Number of knots = 1

--

 | Robust

 citations | Effect Std. Err. z P>|z| [95% Conf. Interval]

-------------------+--

 fines | -7.590817 .3533786 -21.48 0.000 -8.283427 -6.898208

 |

 csize |

(medium vs small) | 5.48074 .5827045 9.41 0.000 4.33866 6.622819

 (large vs small) | 10.69879 .6043375 17.70 0.000 9.514311 11.88327

--

Note: Effect estimates are averages of derivatives for continuous covariates and averages

of contrasts for factor covariates.

The same can be replicated using regress and f_able:

. webuse dui,clear

. fgen double fines2=fines^2

. fgen double fines3=max(fines-9.9,0)^2

. qui:regress citations c.(fines fines2 fines3)##i.csize

. f_able, nlvar(fines2 fines3)

. margins, dydx(fines csize) nochainrule

Average marginal effects Number of obs = 500

Model VCE : OLS

Expression : Fitted values, predict()

dy/dx w.r.t. : fines 2.csize 3.csize

--

 | Delta-method

 | dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--

 fines | -7.590817 .3350831 -22.65 0.000 -8.247568 -6.934066

 |

 csize |

 medium | 5.480738 .6522748 8.40 0.000 4.202303 6.759174

 large | 10.69879 .6171921 17.33 0.000 9.489118 11.90847

--

Note: dy/dx for factor levels is the discrete change from the base level.

16

Once again, we can replicate the output with very small differences in the point estimates,

but some differences in terms of the standard errors, possibly due to how degrees of freedom are

used in npregress.

We can also use this strategy for models other than OLS. Consider, for example, the

dataset mksp2. Similar to the example provided in the help file for the command mkspline, I

create 4 variables to allow for a linear spline with 4 knots, and estimate a logit model of outcome

against dosage and the constructed variables. Margins need to include the options nochain and

numerical. I produce both the predicted probabilities and the marginal effects across various

values of dosage:

webuse mksp2, clear

fgen dos1=max(dosage-17.5,0)

fgen dos2=max(dosage-36.5,0)

fgen dos3=max(dosage-55.5,0)

fgen dos4=max(dosage-81.5,0)

qui:logit outcome dosage dos1 dos2 dos3 dos4

f_able, nl(dos1 dos2 dos3 dos4)

qui:margins , nochain numerical at(dosage=(0(2)100))

marginsplot, name(m1)

qui:margins , dydx(dosage) nochain numerical at(dosage=(0(2)100))

marginsplot, name(m2)

graph combine m1 m2, xsize(8) scale(1.5)

Figure 1. Predicted probabilities and Marginal effects

17

5. Conclusion

In this article, I have described how marginal effects can be estimated based using analytical

derivatives, as well as numerical derivatives. I have also introduced 2 small programs that enable margins

to estimate marginal effects when using transformations beyond variable interactions and polynomials.

These commands can be used to estimate marginal effects for other official Stata commands, as

well as other community-contributed commands that can produce sensible predicted outcomes. The

strategy does have four limitations: first, the estimated marginal effects depend on the precision of the

forced numerical derivatives; second, it requires the original variable to be present in the model

specification so that marginal effects can be used; third, the information for the variable construction is

limited to 80 characters, based on the limit of variables labels length; and forth, because f_able is

forcing margins to do something it is not meant to do, one may experience difficulties estimating

marginal effects and standard errors when the request is particularly complex.

While the limitation regarding the precision of the estimates is unavoidable, the other limitations

can be circumvented to some extent. First, the original variable can be added to the list of explanatory

variables using “o.”. This omits the original variable from the estimation but keeps it in the list of

explanatory variables, allowing the estimation of margins. Second, it is possible to modify the programs

to store and gather the transformation information as a variable note. This has fewer limits on the

length of the stored information.

The last limitation can be addressed with careful troubleshooting. While the option nochain

forces most commands to use numerical derivatives for the estimation of marginal effects, some

commands like probit, logit, and Poisson require you to use the options nochain numerical. If

point estimates appear as missing, the option noestimcheck can be used to bypass some of the safety

checks in margins that produce this error. Finally, if standard errors are missing when estimating

18

marginal effects for multiple points of interest, they could still be estimated by using fewer points of

interest or even using one point of interest at the time.

6. References

Poi, B. P. 2008. "Stata tip 58: nl is not just for nonlinear models." Stata Journal 8 (1):139-141.

Royston, Patrick. 2013. "marginscontplot: Plotting the marginal effects of continuous predictors." The

Stata Journal 13 (3):510-527.

Williams, Richard. 2012. "Using the margins command to estimate and interpret adjusted predictions and

marginal effects." The Stata Journal 12 (2):308-331.

Wooldridge, Jeffrey M. 2016. Introductory econometrics: A modern approach: Nelson Education.

