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Introduction

My path to economics was not linear. | didn’t major in economics, for
instance. | didn't even take an economics course in college. |
majored in English, for Pete’s sake. My ambition was to become a
poet. But then | became intrigued with the idea that humans can
form plausible beliefs about causal effects even without a
randomized experiment. Twenty-five years ago, | wouldn’t have had
a clue what that sentence even meant, let alone how to do such an
experiment. So how did | get here? Maybe you would like to know
how | got to the point where | felt | needed to write this book. The
TL;DR version is that | followed a windy path from English to causal

inference.l First, | fell in love with economics. Then | fell in love with
empirical research. Then | noticed that a growing interest in causal
inference had been happening in me the entire time. But let me tell
the longer version.

| majored in English at the University of Tennessee at Knoxville
and graduated with a serious ambition to become a professional
poet. But, while | had been successful writing poetry in college, |
quickly realized that finding the road to success beyond that point
was probably not realistic. | was newly married, with a baby on the
way, and working as a qualitative research analyst doing market

research. Slowly, | had stopped writing poetry altogether.2

My job as a qualitative research analyst was eye opening, in part
because it was my first exposure to empiricism. My job was to do
“‘grounded theory”™—a kind of inductive approach to generating
explanations of human behavior based on observations. | did this by
running focus groups and conducting in-depth interviews, as well as
through other ethnographic methods. | approached each project as
an opportunity to understand why people did the things they did
(even if what they did was buy detergent or pick a cable provider).



While the job inspired me to develop my own theories about human
behavior, it didn’t provide me a way of falsifying those theories.

| lacked a background in the social sciences, so | would spend my
evenings downloading and reading articles from the Internet. | don’t
remember how | ended up there, but one night | was on the
University of Chicago Law and Economics working paper series
website when a speech by Gary Becker caught my eye. It was his
Nobel Prize acceptance speech on how economics applies to all of
human behavior [Becker, 1993], and reading it changed my life. |
thought economics was about stock markets and banks until | read
that speech. | didn't know economics was an engine that one could
use to analyze all of human behavior. This was overwhelmingly
exciting, and a seed had been planted.

But it wasn’t until | read an article on crime by Lott and Mustard
[1997] that | became truly enamored of economics. | had no idea that
there was an empirical component where economists sought to
estimate causal effects with quantitative data. A coauthor of that
paper was David Mustard, then an associate professor of economics
at the University of Georgia, and one of Gary Becker’'s former
students. | decided that | wanted to study with Mustard, and so |
applied to the University of Georgia’'s doctoral program in
economics. | moved to Athens, Georgia, with my wife, Paige, and
our infant son, Miles, and started classes in the fall of 2002.

After passing my first-year comprehensive exams, | took Mustard’s
labor economics field class and learned about a variety of topics that
would shape my interests for years. These topics included the
returns to education, inequality, racial discrimination, crime, and
many other fascinating topics in labor. We read many, many
empirical papers in that class, and afterwards | knew that | would
need a strong background in econometrics to do the kind of research
| cared about. In fact, | decided to make econometrics my main field
of study. This led me to work with Christopher Cornwell, an
econometrician and labor economist at Georgia. | learned a lot from
Chris, both about econometrics and about research itself. He
became a mentor, coauthor, and close friend.



Econometrics was difficult. | won’t even pretend | was good at it. |
took all the econometrics courses offered at the University of
Georgia, some more than once. They included classes covering
topics like probability and statistics, cross-sections, panel data, time
series, and qualitative dependent variables. But while | passed my
field exam in econometrics, | struggled to understand econometrics
at a deep level. As the saying goes, | could not see the forest for the
trees. Something just wasn'’t clicking.

| noticed something, though, while | was writing the third chapter of
my dissertation that | hadn’t noticed before. My third chapter was an
investigation of the effect of abortion legalization on the cohort’s
future sexual behavior [Cunningham and Cornwell, 2013]. It was a
revisiting of Donohue and Levitt [2001]. One of the books | read in
preparation for my study was Levine [2004], which in addition to
reviewing the theory of and empirical studies on abortion had a little
table explaining the difference-in-differences identification strategy.
The University of Georgia had a traditional econometrics pedagogy,
and most of my field courses were theoretical (e.g., public
economics, industrial organization), so | never really had heard the
phrase “identification strategy,” let alone “causal inference.” Levine’s
simple difference-in-differences table for some reason opened my
eyes. | saw how econometric modeling could be used to isolate the
causal effects of some treatment, and that led to a change in how |
approach empirical problems.

What Is Causal Inference?

My first job out of graduate school was as an assistant professor at
Baylor University in Waco, Texas, where | still work and live today. |
was restless the second | got there. | could feel that econometrics
was indispensable, and yet | was missing something. But what? It
was a theory of causality. | had been orbiting that theory ever since
seeing that difference-in-differences table in Levine [2004]. But |
needed more. So, desperate, | did what | always do when | want to
learn something new—I developed a course on causality to force
myself to learn all the things | didn’t know.



| named the course Causal Inference and Research Design and
taught it for the first time to Baylor master’s students in 2010. At the
time, | couldn’t really find an example of the sort of class | was
looking for, so | cobbled together a patchwork of ideas from several
disciplines and authors, like labor economics, public economics,
sociology, political science, epidemiology, and statistics. You name it.
My class wasn’t a pure econometrics course; rather, it was an
applied empirical class that taught a variety of contemporary
research designs, such as difference-in-differences, and it was filled
with empirical replications and readings, all of which were built on
the robust theory of causality found in Donald Rubin’s work as well
as the work of Judea Pearl. This book and that class are in fact very

similar to one another.2

So how would | define causal inference? Causal inference is the
leveraging of theory and deep knowledge of institutional details to
estimate the impact of events and choices on a given outcome of
interest. It is not a new field; humans have been obsessing over
causality since antiquity. But what is new is the progress we believe
we’'ve made in estimating causal effects both inside and outside the
laboratory. Some date the beginning of this new, modern causal
inference to Fisher [1935], Haavelmo [1943], or Rubin [1974]. Some
connect it to the work of early pioneers like John Snow. We should
give a lot of credit to numerous highly creative labor economists from
the late 1970s to late 1990s whose ambitious research agendas
created a revolution in economics that continues to this day. You
could even make an argument that we owe it to the Cowles
Commission, Philip and Sewall Wright, and the computer scientist
Judea Pearl.

But however you date its emergence, causal inference has now
matured into a distinct field, and not surprisingly, you’re starting to
see more and more treatments of it as such. It's sometimes reviewed
in a lengthy chapter on “program evaluation” in econometrics
textbooks [Wooldridge, 2010], or even given entire book-length
treatments. To name just a few textbooks in the growing area, there’s
Angrist and Pischke [2009], Morgan and Winship [2014], Imbens and



Rubin [2015], and probably a half dozen others, not to mention
numerous, lengthy treatments of specific strategies, such as those
found in Angrist and Krueger [2001] and Imbens and Lemieux
[2008]. The market is quietly adding books and articles about
identifying causal effects with data all the time.

So why does Causal Inference: The Mixtape exist? Well, to put it
bluntly, a readable introductory book with programming examples,
data, and detailed exposition didn’t exist until this one. My book is an
effort to fill that hole, because | believe what researchers really need
is a guide that takes them from knowing almost nothing about causal
inference to a place of competency. Competency in the sense that
they are conversant and literate about what designs can and cannot
do. Competency in the sense that they can take data, write code
and, using theoretical and contextual knowledge, implement a
reasonable design in one of their own projects. If this book helps
someone do that, then this book will have had value, and that is all |
can and should hope for.

But what books out there do | like? Which ones have inspired this
book? And why don't | just keep using them? For my classes, |
mainly relied on Morgan and Winship [2014], Angrist and Pischke
[2009], as well as a library of theoretical and empirical articles.
These books are in my opinion definitive classics. But they didn't
satisfy my needs, and as a result, | was constantly jumping between
material. Other books were awesome but not quite right for me
either. Imbens and Rubin [2015] cover the potential outcomes model,
experimental design, and matching and instrumental variables, but
not directed acyclic graphical models (DAGs), regression
discontinuity, panel data, or synthetic control. Morgan and Winship
[2014] cover DAGs, the potential outcomes model, and instrumental
variables, but have too light a touch on regression discontinuity and
panel data for my tastes. They also don’t cover synthetic control,
which has been called the most important innovation in causal
inference of the last 15 years by Athey and Imbens [2017b]. Angrist
and Pischke [2009] is very close to what | need but does not include
anything on synthetic control or on the graphical models that | find so
critically useful. But maybe most importantly, Imbens and Rubin



[2015], Angrist and Pischke [2009], and Morgan and Winship [2014]
do not provide any practical programming guidance, and | believe it

is in replication and coding that we gain knowledge in these areas.#

This book was written with a few different people in mind. It was
written first and foremost for practitioners, which is why it includes
easy-to-download data sets and programs. It's why | have made
several efforts to review papers as well as replicate the models as
much as possible. | want readers to understand this field, but as
important, | want them to feel empowered so that they can use these
tools to answer their own research questions.

Another person | have in mind is the experienced social scientist
who wants to retool. Maybe these are people with more of a
theoretical bent or background, or maybe they’re people who simply
have some holes in their human capital. This book, | hope, can help
guide them through the modern theories of causality so common in
the social sciences, as well as provide a calculus in directed acyclic
graphical models that can help connect their knowledge of theory
with estimation. The DAGs in particular are valuable for this group, |
think.

A third group that I'm focusing on is the nonacademic person in
industry, media, think tanks, and the like. Increasingly, knowledge
about causal inference is expected throughout the professional
world. It is no longer simply something that academics sit around
and debate. It is crucial knowledge for making business decisions as
well as for interpreting policy.

Finally, this book is written for people very early in their careers, be
they undergraduates, graduate students, or newly minted PhDs. My
hope is that this book can give them a jump start so that they don’t
have to meander, like many of us did, through a somewhat
labyrinthine path to these methods.

Do Not Confuse Correlation with Causality

It is very common these days to hear someone say “correlation does
not mean causality.” Part of the purpose of this book is to help
readers be able to understand exactly why correlations, particularly



in observational data, are unlikely to be reflective of a causal
relationship. When the rooster crows, the sun soon after rises, but
we know the rooster didn’t cause the sun to rise. Had the rooster
been eaten by the farmer’s cat, the sun still would have risen. Yet so
often people make this kind of mistake when naively interpreting
simple correlations.

But weirdly enough, sometimes there are causal relationships
between two things and yet no observable correlation. Now that is
definitely strange. How can one thing cause another thing without
any discernible correlation between the two things? Consider this
example, which is illustrated in Eigure 1. A sailor is sailing her boat
across the lake on a windy day. As the wind blows, she counters by
turning the rudder in such a way so as to exactly offset the force of
the wind. Back and forth she moves the rudder, yet the boat follows
a straight line across the lake. A kindhearted yet naive person with
no knowledge of wind or boats might look at this woman and say,
“‘Someone get this sailor a new rudder! Hers is broken!” He thinks
this because he cannot see any relationship between the movement
of the rudder and the direction of the boat.



Figure 1. No correlation doesn’t mean no causality. Artwork by Seth Hahne
© 2020.

But does the fact that he cannot see the relationship mean there
isn’t one? Just because there is no observable relationship does not
mean there is no causal one. Imagine that instead of perfectly
countering the wind by turning the rudder, she had instead flipped a
coin—heads she turns the rudder left, tails she turns the rudder right.
What do you think this man would have seen if she was sailing her
boat according to coin flips? If she randomly moved the rudder on a
windy day, then he would see a sailor zigzagging across the lake.
Why would he see the relationship if the movement were
randomized but not be able to see it otherwise? Because the sailor is
endogenously moving the rudder in response to the unobserved
wind. And as such, the relationship between the rudder and the
boat’s direction is canceled—even though there is a causal
relationship between the two.

This sounds like a silly example, but in fact there are more serious
versions of it. Consider a central bank reading tea leaves to discern



when a recessionary wave is forming. Seeing evidence that a
recession is emerging, the bank enters into open-market operations,
buying bonds and pumping liquidity into the economy. Insofar as
these actions are done optimally, these open-market operations will
show no relationship whatsoever with actual output. In fact, in the
ideal, banks may engage in aggressive trading in order to stop a
recession, and we would be unable to see any evidence that it was
working even though it was!

Human beings engaging in optimal behavior are the main reason
correlations almost never reveal causal relationships, because rarely
are human beings acting randomly. And as we will see, it is the
presence of randomness that is crucial for identifying causal effect.

Optimization Makes Everything Endogenous

Certain presentations of causal inference methodologies have
sometimes been described as atheoretical, but in my opinion, while
some practitioners seem comfortable flying blind, the actual methods
employed in causal designs are always deeply dependent on theory
and local institutional knowledge. It is my firm belief, which | will
emphasize over and over in this book, that without prior knowledge,
estimated causal effects are rarely, if ever, believable. Prior
knowledge is required in order to justify any claim of a causal finding.
And economic theory also highlights why causal inference is
necessarily a thorny task. Let me explain.

There’'s broadly thought to be two types of data. There’s
experimental data and non-experimental data. The latter is also
sometimes called observational data. Experimental data is collected
in something akin to a laboratory environment. In a traditional
experiment, the researcher participates actively in the process being
recorded. It's more difficult to obtain data like this in the social
sciences due to feasibility, financial cost, or moral objections,
although it is more common now than was once the case. Examples
include the Oregon Medicaid Experiment, the RAND health
insurance experiment, the field experiment movement inspired by



Esther Duflo, Michael Kremer, Abhijit Banerjee, and John List, and
many others.

Observational data is usually collected through surveys in a
retrospective manner, or as the by-product of some other business
activity (“big data”). In many observational studies, you collect data
about what happened previously, as opposed to collecting data as it
happens, though with the increased use of web scraping, it may be
possible to get observational data closer to the exact moment in
which some action occurred. But regardless of the timing, the
researcher is a passive actor in the processes creating the data
itself. She observes actions and results but is not in a position to
interfere with the environment in which the units under consideration
exist. This is the most common form of data that many of us will ever
work with.

Economic theory tells us we should be suspicious of correlations
found in observational data. In observational data, correlations are
almost certainly not reflecting a causal relationship because the
variables were endogenously chosen by people who were making
decisions they thought were best. In pursuing some goal while facing
constraints, they chose certain things that created a spurious
correlation with other things. And we see this problem reflected in
the potential outcomes model itself: a correlation, in order to be a
measure of a causal effect, must be based on a choice that was
made independent of the potential outcomes under consideration.
Yet if the person is making some choice based on what she thinks is
best, then it necessarily is based on potential outcomes, and the
correlation does not remotely satisfy the conditions we need in order
to say it is causal. To put it as bluntly as | can, economic theory says
choices are endogenous, and therefore since they are, the
correlations between those choices and outcomes in the aggregate
will rarely, if ever, represent a causal effect.

Now we are veering into the realm of epistemology. ldentifying
causal effects involves assumptions, but it also requires a particular
kind of belief about the work of scientists. Credible and valuable
research requires that we believe that it is more important to do our
work correctly than to try and achieve a certain outcome (e.g.,



confirmation bias, statistical significance, asterisks). The foundations
of scientific knowledge are scientific methodologies. True scientists
do not collect evidence in order to prove what they want to be true or
what others want to believe. That is a form of deception and
manipulation called propaganda, and propaganda is not science.
Rather, scientific methodologies are devices for forming a particular
kind of belief. Scientific methodologies allow us to accept
unexpected, and sometimes undesirable, answers. They are process
oriented, not outcome oriented. And without these values, causal
methodologies are also not believable.

Example: Identifying Price Elasticity of Demand
One of the cornerstones of scientific methodologies is empirical

analysis.2 By empirical analysis, | mean the use of data to test a
theory or to estimate a relationship between variables. The first step
in conducting an empirical economic analysis is the careful
formulation of the question we would like to answer. In some cases,
we would like to develop and test a formal economic model that
describes mathematically a certain relationship, behavior, or process
of interest. Those models are valuable insofar as they both describe
the phenomena of interest and make falsifiable (testable)
predictions. A prediction is falsifiable insofar as we can evaluate, and

potentially reject, the prediction with data.8 A model is the framework
with which we describe the relationships we are interested in, the

intuition for our results, and the hypotheses we would like to test.”

After we have specified a model, we turn it into what is called an
econometric model, which can be estimated directly with data. One
clear issue we immediately face is regarding the functional form of
the model, or how to describe the relationships of the variables we
are interested in through an equation. Another important issue is
how we will deal with variables that cannot be directly or reasonably
observed by the researcher, or that cannot be measured very well,
but which play an important role in our model.

A generically important contribution to our understanding of causal
inference is the notion of comparative statics. Comparative statics



are theoretical descriptions of causal effects contained within the
model. These kinds of comparative statics are always based on the
idea of ceteris paribus—or “all else constant.” When we are trying to
describe the causal effect of some intervention, for instance, we are
always assuming that the other relevant variables in the model are
not changing. If they were changing, then they would be correlated

with the variable of interest and it would confound our estimation.8

To illustrate this idea, let's begin with a basic economic model:
supply and demand equilibrium and the problems it creates for
estimating the price elasticity of demand. Policy-makers and
business managers have a natural interest in learning the price
elasticity of demand because knowing it enables firms to maximize
profits and governments to choose optimal taxes, and whether to
restrict quantity altogether [Becker et al., 2006]. But the problem is
that we do not observe demand curves, because demand curves are
theoretical objects. More specifically, a demand curve is a collection
of paired potential outcomes of price and quantity. We observe price
and quantity equilibrium values, not the potential price and potential
quantities along the entire demand curve. Only by tracing out the
potential outcomes along a demand curve can we calculate the
elasticity.

To see this, consider this graphic from Philip Wright's Appendix B
[Wright, 1928], which we’ll discuss in greater detail later (Eigure 2).
The price elasticity of demand is the ratio of percentage changes in
quantity to price for a single demand curve. Yet, when there are
shifts in supply and demand, a sequence of quantity and price pairs
emerges in history that reflect neither the demand curve nor the
supply curve. In fact, connecting the points does not reflect any
meaningful or useful object.



Q Q, Q X
Figure 2. Wright’s graphical demonstration of the identification problem.

Figure from Wright, P. G. (1928). The Tariff on Animal and Vegetable QOils. The
Macmillan Company.

The price elasticity of demand is the solution to the following
equation:

G_ ologQ
~ dlogP

But in this example, the change in P is exogenous. For instance, it
holds supply fixed, the prices of other goods fixed, income fixed,
preferences fixed, input costs fixed, and so on. In order to estimate
the price elasticity of demand, we need changes in P that are
completely and utterly independent of the otherwise normal
determinants of supply and the other determinants of demand.
Otherwise we get shifts in either supply or demand, which creates



new pairs of data for which any correlation between P and Q will not
be a measure of the elasticity of demand.

The problem is that the elasticity is an important object, and we
need to know it, and therefore we need to solve this problem. So
given this theoretical object, we must write out an econometric model
as a starting point. One possible example of an econometric model
would be a linear demand function:

logQy=a +dlogP+yX+u

where a is the intercept, d is the elasticity of demand, X is a matrix of
factors that determine demand like the prices of other goods or
income, y is the coefficient on the relationship between X and Qg

and u is the error term.2

Foreshadowing the content of this mixtape, we need two things to
estimate price elasticity of demand. First, we need numerous rows of
data on price and quantity. Second, we need for the variation in price
in our imaginary data set to be independent of u. We call this kind of
independence exogeneity. Without both, we cannot recover the price
elasticity of demand, and therefore any decision that requires that
information will be based on stabs in the dark.

Conclusion

This book is an introduction to research designs that can recover
causal effects. But just as importantly, it provides you with hands-on
practice to implement these designs. Implementing these designs
means writing code in some type of software. | have chosen to
illustrate these designs using two popular software languages: Stata
(most commonly used by economists) and R (most commonly used
by everyone else).

The book contains numerous empirical exercises illustrated in the
Stata and R programs. These exercises are either simulations
(which don’t need external data) or exercises requiring external data.
The data needed for the latter have been made available to you at
Github. The Stata examples will download files usually at the start of



the program using the following command: use
github.com/scunning1975/mixtape/raw/master/DATAFILENAME.DTA
, where DATAFILENAME.DTA is the name of a particular data set.
For R users, it is a somewhat different process to load data into
memory. In an effort to organize and clean the code, my students
Hugo Sant’Anna and Terry Tsai created a function to simplify the
data download process. This is partly based on a library called
haven, which is a package for reading data files. It is secondly based
on a set of commands that create a function that will then download

the data directly from Github.12

Some readers may not be familiar with either Stata or R but
nonetheless wish to follow along. | encourage you to use this
opportunity to invest in learning one or both of these languages. It is
beyond the scope of this book to provide an introduction to these
languages, but fortunately, there are numerous resources online. For
instance, Christopher Baum has written an excellent introduction to
Stata at https://fmwww.bc.edu/GStat/docs/Statalntro.pdf. Stata is
popular among microeconomists, and given the amount of
coauthoring involved in modern economic research, an argument
could be made for investing in it solely for its ability to solve basic
coordination problems between you and potential coauthors. But a
downside to Stata is that it is proprietary and must be purchased.
And for some people, that may simply be too big of a barrier—
especially for anyone simply wanting to follow along with the book. R
on the other hand is open-source and free. Tutorials on Basic R can
be found at https://cran.r-project.org/doc/contrib/Paradis-
rdebuts_en.pdf, and an introduction to Tidyverse (which is used
throughout the R  programming) can be found at
https://r4ds.had.co.nz. Using this time to learn R would likely be well
worth your time.

Perhaps you already know R and want to learn Stata. Or perhaps
you know Stata and want to learn R. Then this book may be helpful
because of the way in which both sets of code are put in sequence
to accomplish the same basic tasks. But, with that said, in many
situations, although | have tried my best to reconcile results from



https://fmwww.bc.edu/GStat/docs/StataIntro.pdf
https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
https://r4ds.had.co.nz/

Stata and R, | was not always able to do so. Ultimately, Stata and R
are different programming languages that sometimes yield different
results because of different optimization procedures or simply
because the programs are built slightly differently. This has been
discussed occasionally in articles in which authors attempt to better
understand what accounts for the differing results. | was not always
able to fully reconcile different results, and so | offer the two
programs as simply alternative approaches. You are ultimately
responsible for anything you do on your own using either language
for your research. | leave it to you ultimately to understand the
method and estimating procedure contained within a given software
and package.

In conclusion, simply finding an association between two variables
might be suggestive of a causal effect, but it also might not.
Correlation doesn’t mean causation unless key assumptions hold.
Before we start digging into the causal methodologies themselves,
though, | need to lay down a foundation in statistics and regression
modeling. Buckle up! This is going to be fun.

Notes

1 “Too long; didn’t read.”

2 Rilke said you should quit writing poetry when you can imagine yourself
living without it [Rilke, 2012]. | could imagine living without poetry, so | took his
advice and quit. Interestingly, when | later found economics, | went back to
Rilke and asked myself if | could live without it. This time, | decided | couldn't,
or wouldn’t—I wasn’t sure which. So | stuck with it and got a PhD.

3 | decided to write this book for one simple reason: | didn’t feel that the
market had provided the book that | needed for my students. So | wrote this
book for my students and me so that we’d all be on the same page. This book
is my best effort to explain causal inference to myself. | felt that if | could
explain causal inference to myself, then | would be able to explain it to others
too. Not thinking the book would have much value outside of my class, |
posted it to my website and told people about it on Twitter. | was surprised to
learn that so many people found the book helpful.

4 Although Angrist and Pischke [2009] provides an online data warehouse
from dozens of papers, | find that students need more pedagogical walk-
throughs and replications for these ideas to become concrete and familiar.



S It is not the only cornerstone, or even necessarily the most important
cornerstone, but empirical analysis has always played an important role in
scientific work.

6 You can also obtain a starting point for empirical analysis through an
intuitive and less formal reasoning process. But economics favors formalism
and deductive methods.

7 Scientific models, be they economic ones or otherwise, are abstract, not
realistic, representations of the world. That is a strength, not a weakness.
George Box, the statistician, once quipped that “all models are wrong, but
some are useful.” A model’s usefulness is its ability to unveil hidden secrets
about the world. No more and no less.

8 One of the things implied by ceteris paribus that comes up repeatedly in
this book is the idea of covariate balance. If we say that everything is the same
except for the movement of one variable, then everything is the same on both
sides of that variable’s changing value. Thus, when we invoke ceteris paribus,
we are implicitly invoking covariate balance—both the observable and the
unobservable covariates.

9 More on the error term later.

10 This was done solely for aesthetic reasons. Often the URL was simply
too long for the margins of the book otherwise.



Probability and Regression Review

Numbers is hardly real and they never have feelings. But you push too hard,
even numbers got limits.
Mos Def

Basic probability theory. In practice, causal inference is based on
statistical models that range from the very simple to extremely
advanced. And building such models requires some rudimentary
knowledge of probability theory, so let's begin with some definitions.
A random process is a process that can be repeated many times
with different outcomes each time. The sample space is the set of all
the possible outcomes of a random process. We distinguish between
discrete and continuous random processes Table 1 below. Discrete
processes produce, integers, whereas continuous processes
produce fractions as well.

We define independent events two ways. The first refers to logical
independence. For instance, two events occur but there is no reason
to believe that the two events affect each other. When it is assumed
that they do affect each other, this is a logical fallacy called post hoc
ergo propter hoc, which is Latin for “after this, therefore because of
this.” This fallacy recognizes that the temporal ordering of events is
not sufficient to be able to say that the first thing caused the second.

Table 1. Examples of discrete and continuous random processes.

Description Type Potential outcomes

12-sided die Discrete 1,2,3,4,5,6,7,8,9,10,11,12
Coin Discrete Heads, Tails

Deck of cards Discrete 2<,39,...King ©, Ace ©

Gas prices Continuous P=0




The second definition of an independent event is statistical
independence. We'll illustrate the latter with an example from the
idea of sampling with and without replacement. Let’s use a randomly
shuffled deck of cards for an example. For a deck of 52 cards, what
is the probability that the first card will be an ace?

CountAces _ 4 _ 1 _ ..
Sample Space 52 13

Pr(Ace) =

There are 52 possible outcomes in the sample space, or the set of
all possible outcomes of the random process. Of those 52 possible
outcomes, we are concerned with the frequency of an ace occurring.
There are four aces in the deck, so 4 52 = 0.077.

Assume that the first card was an ace. Now we ask the question
again. If we shuffle the deck, what is the probability the next card
drawn is also an ace? It is no longer 13 1 because we did not
sample with replacement. We sampled without replacement. Thus
the new probability is

Pr (Ace | Card1= Ace) = % =0.059

Under sampling without replacement, the two events—ace on Card1
and an ace on Card2 if Card1 was an ace—aren’t independent
events. To make the two events independent, you would have to put
the ace back and shuffle the deck. So two events, A and B, are
independent if and only if:

Pr(A | B) =Pr(A)

An example of two independent events would be rolling a 5 with one
die after having rolled a 3 with another die. The two events are
independent, so the probability of rolling a 5 is always 0.17
regardless of what we rolled on the first die.?

But what if we want to know the probability of some event
occurring that requires that multiple events first to occur? For



instance, let's say we’re talking about the Cleveland Cavaliers
winning the NBA championship. In 2016, the Golden State Warriors
were 3—1 in a best-of-seven playoff. What had to happen for the
Warriors to lose the playoff? The Cavaliers had to win three in a row.
In this instance, to find the probability, we have to take the product of
all marginal probabilities, or Pr(:),, where Pr(:) is the marginal

probability of one event occurring, and n is the number of repetitions
of that one event. If the unconditional probability of a Cleveland win
is 0.5, and each game is independent, then the probability that
Cleveland could come back from a 3—1 deficit is the product of each
game’s probability of winning:

Win probability = Pr(W,W, W) = (0.5)3=0.125

Another example may be helpful. In Texas Hold’em poker, each
player is dealt two cards facedown. When you are holding two of a

kind, you say you have two “in the pocket.” So, what is the

probability of being dealt pocket aces? It's ;2 % 531 = (.0045. That's

right: it's 0.45%.

Let’'s formalize what we’ve been saying for a more generalized
case. For independent events, to calculate joint probabilities, we
multiply the marginal probabilities:

Pr(A,B) = Pr(A)Pr(B)

where Pr(A,B) is the joint probability of both A and B occurring, and
Pr(A) is the marginal probability of A event occurring.

Now, for a slightly more difficult application. What is the probability
of rolling a 7 using two six-sided dice, and is it the same as the
probability of rolling a 37 To answer this, let's compare the two
probabilities. We’ll use a table to help explain the intuition. First, let’s
look at all the ways to get a 7 using two six-sided dice. There are 36

total possible outcomes (62 =36) when rolling two dice. In Table 2 we
see that there are six different ways to roll a 7 using only two dice.
So the probability of rolling a 7 is 6/36 = 16.67%. Next, let’s look at



all the ways to roll a 3 using two six-sided dice. Table 3 shows that
there are only two ways to get a 3 rolling two six-sided dice. So the
probability of rolling a 3 is 2/36 = 5.56%. So, no, the probabilities of
rolling a 7 and rolling a 3 are different.

Table 2. Total number of ways to get a 7 with two six-sided dice.

Die 1 Die 2 Outcome

ok wWwN =
= N W bk~ oo
NN N N N

Table 3. Total number of ways to get a 3 using two six-sided dice.

Die 1 Die 2 Qutcome
1 2 3
2 1 3

Events and conditional probability. First, before we talk about the
three ways of representing a probability, I'd like to introduce some
new terminology and concepts: events and conditional probabilities.
Let A be some event. And let B be some other event. For two
events, there are four possibilities.

1. A and B: Both A and B occur.

2. ~ A and B: A does not occur, but B occurs.

3. A and ~ B: A occurs, but B does not occur.

4. ~ A and ~ B: Neither A nor B occurs.

I'll use a couple of different examples to illustrate how to represent a
probability.

Probability tree. Let’s think about a situation in which you are trying
to get your driver’s license. Suppose that in order to get a driver’s



license, you have to pass the written exam and the driving exam.
However, if you fail the written exam, you’re not allowed to take the
driving exam. We can represent these two events in a probability
tree.

No driver’s
license

o
Written
exam »

s Fail P(Pass U Fail) = 0.75-0.6 = 0.45

% . 4.

Driving

%‘

0.4 P(Pass UPass )=0.75-0.4=0.3

exam

Probability trees are intuitive and easy to interpret.2 First, we see
that the probability of passing the written exam is 0.75 and the
probability of failing the exam is 0.25. Second, at every branching off
from a node, we can further see that the probabilities associated with
a given branch are summing to 1.0. The joint probabilities are also all
summing to 1.0. This is called the law of total probability and it is
equal to the sum of all joint probability of A and B,, events occurring:

— e P(Fail)=0.25

Pr(A) =Y Pr(AUB;)

We also see the concept of a conditional probability in the driver’s
license tree. For instance, the probability of failing the driving exam,
conditional on having passed the written exam, is represented as
Pr(Fail | Pass) = 0.45.

Venn diagrams and sets. A second way to represent multiple events
occurring is with a Venn diagram. Venn diagrams were first
conceived by John Venn in 1880. They are used to teach elementary
set theory, as well as to express set relationships in probability and
statistics. This example will involve two sets, A and B.



The University of Texas’s football coach has been on the razor’s
edge with the athletic director and regents all season. After several
mediocre seasons, his future with the school is in jeopardy. If the
Longhorns don’'t make it to a great bowl game, he likely won’t be
rehired. But if they do, then he likely will be rehired. Let's discuss
elementary set theory using this coach’s situation as our guiding
example. But before we do, let’'s remind ourselves of our terms. A
and B are events, and U is the universal set of which A and B are
subsets. Let A be the probability that the Longhorns get invited to a
great bowl game and B be the probability that their coach is rehired.
Let Pr(A) = 0.6 and let Pr(B)=0.8. Let the probability that both A and
B occur be Pr(A,B)=0.5.

Note, that A+ ~ A = U, where ~ A is the complement of A. The
complement means that it is everything in the universal set that is
not A. The same is said of B. The sum of B and ~ B = U. Therefore:

A+~A=B+~B
We can rewrite out the following definitions:

A=B+~B—-~A

B=A+~A—-~B



Whenever we want to describe a set of events in which either A or
B could occur, it is: AuB. And this is pronounced “A union B,” which
means it is the new set that contains every element from A and
every element from B. Any element that is in either set A or set B,
then, is also in the new union set. And whenever we want to
describe a set of events that occurred together—the joint set—it’s
ANB, which is pronounced “A intersect B.” This new set contains
every element that is in both the A and B sets. That is, only things
inside both A and B get added to the new set.

Now let’s look closely at a relationship involving the set A.

A=AUB+AU~B

Notice what this is saying: there are two ways to identify the A set.
First, you can look at all the instances where A occurs with B. But
then what about the rest of A that is not in B? Well, that's the AuB
situation, which covers the rest of the A set.

A similar style of reasoning can help you understand the following
expression.

ANB=AUu~B+~AUB+AUB

To get the A intersect B, we need three objects: the set of A units
outside of B, the set of B units outside A, and their joint set. You get
all those, and you have A N B.

Now it is just simple addition to find all missing values. Recall that
A is your team making playoffs and Pr(A)=0.6. And B is the
probability that the coach is rehired, Pr(B) = 0.8. Also, Pr(A,B) = 0.5,
which is the probability of both A and B occurring. Then we have:



A=AUB+AU~B
AU~B=A—AUB
Pr(A,~ B) = Pr(A) — Pr(A,B)
Pr(A,~B) = 0.6 — 0.5
Pr(A,~B)=0.1

When working with sets, it is important to understand that probability
is calculated by considering the share of the set (for example A)
made up by the subset (for example A U B). When we write down
that the probability that A u B occurs at all, it is with regards to U. But
what if we were to ask the question “What share of A is due to A U
B?” Notice, then, that we would need to do this:

?=AUB-+A
?7=05+-0.6
?=0.83

Table 4. Twoway contingency table.

Event labels Coach is rehired Coach is notrehired Total

(~B) (B)
(A) Bowl game Pr(A,~ B) =0.1 Pr(A,B)=0.5 Pr(A)=0.6
(~A) No bowlgame Pr(~A,~B)=01 Pr(~AB)=0.3 Pr(B)=0.4
Total Pr(~B)=0.2 Pr(B)=0.8 1.0

| left this intentionally undefined on the left side so as to focus on the
calculation itself. But now let's define what we are wanting to
calculate: In a world where A has occurred, what is the probability
that B will also occur? This is:



Pr(A,B) 0.5

Prob(B | A) = —=>_.
obB14) = 5y =56 = 083
Pr(A,B) 0.5
Prob(A | B) = —=>_063
A =5 T 08

Notice, these conditional probabilities are not as easy to see in the
Venn diagram. We are essentially asking what percentage of a
subset—e.g., Pr(A)—is due to the joint set, for example, Pr(A,B).
This reasoning is the very same reasoning used to define the
concept of a conditional probability.

Contingency tables. Another way that we can represent events is
with a contingency table. Contingency tables are also sometimes
called twoway tables. Table 4 is an example of a contingency table.
We continue with our example about the worried Texas coach.

Recall that Pr(A)=0.6, Pr(B)=0.8, and Pr(A,B)=0.5. Note that to
calculate conditional probabilities, we must know the frequency of
the element in question (e.g., Pr(A,B)) relative to some other larger
event (e.g., Pr(A)). So if we want to know what the conditional
probability of B is given A, then it’s:

Pr(AB) 0.5

0.83

But note that knowing the frequency of AuUB in a world where B

occurs is to ask the following:

Pr(A | B) Pr(A,B) 0.5
15) = Pr(B) — 0.8

=0.63

So, we can use what we have done so far to write out a definition
of joint probability. Let's start with a definition of conditional
probability first. Given two events, A and B:



Pr(A,B)

PrA|B) = i 21)
Pr(B|A) = P;(r?,ﬁ) (2.2)
Pr(A,B) = Pr(B,A) (2.3)
Pr(A) = Pr(A,~ B) + Pr(A,B) (2.4)
Pr(B) = Pr(A,B) + Pr(~ A, B) (2.5)

Using equations 2.1 and 2.2, | can simply write down a definition of
joint probabilities.

Pr(A,B) =Pr(A | B)Pr(B) (2.6)
Pr(B,A) = Pr(B| A)Pr(A) (2.7)
And this is the formula for joint probability. Given equation 2.3, and

using the definitions of (Pr(A,B and Pr(B,A)), | can also rearrange
terms, make a substitution, and rewrite it as:

Pr(A|B)Pr(B)=Pr(B|A)Pr(A)
Pr(B | A)Pr(A) (2.8)
Pr(B)

Pr(A|B) =

Equation 2.8 is sometimes called the naive version of Bayes’s rule.
We will now decompose this equation more fully, though, by
substituting equation 2.5 into equation 2.8.

Pr(B|A)Pr(A)
Pr(A,B) + Pr(~A,B)

Pr(A|B) = (2.9)
Substituting equation 2.6 into the denominator for equation 2.9
yields:

Pr(B|A)Pr(A)

Pr(B | A)Pr(A) + Pr(~A,B) (2.10)

Pr(A|B) =




Finally, we note that using the definition of joint probability, that
Pr(B,~ A) = Pr(B |~ A)Pr(~ A), which we substitute into the
denominator of equation 2.10 to get:

Pr(B|A)Pr(A)
Pr(B|A)Pr(A)+Pr(B |~ A)Pr(~A)

Pr(A | B) = (2.11)

That's a mouthful of substitutions, so what does equation 2.11
mean? This is the Bayesian decomposition version of Bayes’s rule.
Let’'s use our example again of Texas making a great bowl game. A
is Texas making a great bowl game, and B is the coach getting
rehired. And ANB is the joint probability that both events occur. We
can make each calculation using the contingency tables. The
questions here is this: If the Texas coach is rehired, what's the
probability that the Longhorns made a great bowl game? Or formally,
Pr(A | B). We can use the Bayesian decomposition to find this
probability.

Pr(B|A)Pr(A)
Pr(B | A)Pr(A) +Pr(B |~ A)Pr(~ A)
0.83-0.6
T 0.83.06+0.75-04
0.498

~ 0.498+0.3

0.498
~0.798

Pr(A| B) = 0.624

Pr(A|B) =

Check this against the contingency table using the definition of joint
probability:

Pr(A,B) 0.5

PrAlB) =55 ~0s

= 0.625




So, if the coach is rehired, there is a 63 percent chance we made a
great bowl game.2

Monty Hall example. Let's use a different example, the Monty Hall
example. This is a fun one, because most people find it
counterintuitive. It even is used to stump mathematicians and

statisticians.# But Bayes’s rule makes the answer very clear—so
clear, in fact, that it's somewhat surprising that Bayes’s rule was
actually once controversial [McGrayne, 2012].

Let's assume three closed doors: door 1 (D,), door 2 (D,), and

door 3 (D3). Behind one of the doors is a million dollars. Behind each

of the other two doors is a goat. Monty Hall, the game-show host in
this example, asks the contestants to pick a door. After they pick the
door, but before he opens the door they picked, he opens one of the
other doors to reveal a goat. He then asks the contestant, “Would
you like to switch doors?”

A common response to Monty Hall's offer is to say it makes no
sense to change doors, because there’s an equal chance that the
million dollars is behind either door. Therefore, why switch? There’s
a 50-50 chance it's behind the door picked and there’'s a 50-50
chance it's behind the remaining door, so it makes no rational sense
to switch. Right? Yet, a little intuition should tell you that’'s not the
right answer, because it would seem that when Monty Hall opened
that third door, he made a statement. But what exactly did he say?

Let’s formalize the problem using our probability notation. Assume
that you chose door 1, D,. The probability that D, had a million

dollars when you made that choice is Pr(D4 = 1 million) = 1/3. We will
call that event A,. And the probability that D4 has a million dollars at

the start of the game is 1/3 because the sample space is 3 doors, of
which one has a million dollars behind it. Thus, Pr(A;) = 1/3. Also, by

the law of total probability, Pr(~ A,) = 2/3. Let’s say that Monty Hall
had opened door 2, D,, to reveal a goat. Then he asked, “Would you
like to change to door number 37"



We need to know the probability that door 3 has the million dollars
and compare that to Door 1’s probability. We will call the opening of
door 2 event B. We will call the probability that the million dollars is
behind door i, A.We now write out the question just asked formally

and decompose it using the Bayesian decomposition. We are
ultimately interested in knowing what the probability is that door 1
has a million dollars (event A,) given that Monty Hall opened door 2

(event B), which is a conditional probability question. Let’'s write out
that conditional probability using the Bayesian decomposition from
equation 2.11.

PF(B | A‘|) PT(A‘|)
Pr(B | A1) Pr(A;) +Pr(B | A2) Pr(A2) + Pr(B | A3) Pr(As)
(2.12)

Pr(A; | B) =

There are basically two kinds of probabilities on the right side of
the equation. There’s the marginal probability that the million dollars
is behind a given door, Pr(A;). And there’s the conditional probability

that Monty Hall would open door 2 given that the million dollars is
behind door A;, Pr(B | A)).

The marginal probability that door / has the million dollars behind it
without our having any additional information is 1/3. We call this the
prior probability, or prior belief. It may also be called the
unconditional probability.

The conditional probability, Pr(B|A;), requires a little more careful

thinking. Take the first conditional probability, Pr(B | A,). If door 1 has

the million dollars behind it, what's the probability that Monty Hall
would open door 27?
Let's think about the second conditional probability: Pr(B | A,). If

the money is behind door 2, what's the probability that Monty Hall
would open door 27?
And then the last conditional probability, Pr(B | A3). In a world

where the money is behind door 3, what’s the probability Monty Hall
will open door 27?



Each of these conditional probabilities requires thinking carefully
about the feasibility of the events in question. Let's examine the
easiest question: Pr(B | A,). If the money is behind door 2, how likely

is it for Monty Hall to open that same door, door 2? Keep in mind:
this is a game show. So that gives you some idea about how the
game-show host will behave. Do you think Monty Hall would open a
door that had the million dollars behind it? It makes no sense to think
he'd ever open a door that actually had the money behind it—he will
always open a door with a goat. So don’t you think he’s only opening
doors with goats? Let’'s see what happens if take that intuition to its
logical extreme and conclude that Monty Hall never opens a door if it
has a million dollars. He only opens a door if the door has a goat.
Under that assumption, we can proceed to estimate Pr(A, | B) by

substituting values for Pr(B | A;) and Pr(A) into the right side of

equation 2.12.
What then is Pr(B | A4)? That is, in a world where you have chosen

door 1, and the money is behind door 1, what is the probability that
he would open door 2? There are two doors he could open if the
money is behind door 1—he could open either door 2 or door 3, as
both have a goat behind them. So Pr(B | A;) = 0.5.

What about the second conditional probability, Pr(B | A,)? If the

money is behind door 2, what’s the probability he will open it? Under
our assumption that he never opens the door if it has a million
dollars, we know this probability is 0.0. And finally, what about the
third probability, Pr(B | A3)? What is the probability he opens door 2

given that the money is behind door 3?7 Now consider this one
carefully—the contestant has already chosen door 1, so he can’t
open that one. And he can’t open door 3, because that has the
money behind it. The only door, therefore, he could open is door 2.
Thus, this probability is 1.0. Furthermore, all marginal probabilities,
Pr(A;), equal 1/3, allowing us to solve for the conditional probability

on the left side through substitution, multiplication, and division.



Pr(A: | B) = =

W[ =

N

w| =
w| =
w| =

+ (o] =
N

Aha. Now isn'’t that just a little bit surprising? The probability that the
contestant chose the correct door is 1/3, just as it was before Monty
Hall opened door 2.

But what about the probability that door 3, the door you're holding,
has the million dollars? Have your beliefs about that likelihood
changed now that door 2 has been removed from the equation?
Let’'s crank through our Bayesian decomposition and see whether
we learned anything.

PF(B | Ag) PI'(A:;)

Pr(As | B) =
r(As | B) Pr(B | As)Pr(As) + Pr(B | A,) Pr(A,) + Pr(B | A,) Pr(A;)
1
_ 1.0-§
1 T 11
102 +0 24+
-
3

Interestingly, while your beliefs about the door you originally chose
haven’t changed, your beliefs about the other door have changed.
The prior probability, Pr(A3)= 1/3, increased through a process called

updating to a new probability of Pr(A; | B) = 2/3. This new conditional

probability is called the posterior probability, or posterior belief. And it
simply means that having witnessed B, you learned information that



allowed you to form a new belief about which door the money might
be behind.

As was mentioned in footnote 14 regarding the controversy around
vos Sant’'s correct reasoning about the need to switch doors,
deductions based on Bayes'’s rule are often surprising even to smart
people—probably because we lack coherent ways to correctly
incorporate information into probabilities. Bayes’s rule shows us how
to do that in a way that is logical and accurate. But besides being
insightful, Bayes'’s rule also opens the door for a different kind of
reasoning about cause and effect. Whereas most of this book has to
do with estimating effects from known causes, Bayes’s rule reminds
us that we can form reasonable beliefs about causes from known
effects.

Summation operator. The tools we use to reason about causality rest
atop a bedrock of probabilities. We are often working with
mathematical tools and concepts from statistics such as
expectations and probabilities. One of the most common tools we
will use in this book is the linear regression model, but before we can

dive into that, we have to build out some simple notation.2 We'll
begin with the summation operator. The Greek letter (the capital
Sigma) denotes the summation operator. Let xq,x5, . . . ,x, be a

sequence of numbers. We can compactly write a sum of numbers
using the summation operator as:

n
Zx,-zx1+x2—|-...+x,,
i=1

The letter i is called the index of summation. Other letters, such as j
or k, are sometimes used as indices of summation. The subscript
variable simply represents a specific value of a random variable, x.
The numbers 1 and n are the lower limit and the upper limit,
respectively, of the summation. The expression Zf‘=1x, can be stated
in words as “sum the numbers x; for all values of j from 1 to n.” An

example can help clarify:



9

ZX,‘ = Xg + X7 + Xg + Xg
=6

The summation operator has three properties. The first property is
called the constant rule. Formally, it is:

n
For any constant c: Zc =nc (2.13)
i=1

Let’s consider an example. Say that we are given:

3
Y 5=(5+5+5=3-5=15

i=1

A second property of the summation operator is:

n n
Y exi=c) X (2.14)
i=1 i=1
Again let’s use an example. Say we are given:

3
ZSX; = OX1+ 9, + 5X3

i=1

= 5(X7 + X2 + X3)
3
=5 ZX;‘
i=1

We can apply both of these properties to get the following third
property:

n n n
For any constant a and b: Z(ax,- +by)=a Zx,- + bZ

i=1 i=1 j=1



Before leaving the summation operator, it is useful to also note
things which are not properties of this operator. First, the summation
of a ratio is not the ratio of the summations themselves.

iﬁ#2?21xi
i Yi Z?:'ny

Second, the summation of some squared variable is not equal to the
squaring of its summation.

n n 2
D Xt (Zx,-)
i=1 i=1

We can use the summation indicator to make a number of
calculations, some of which we will do repeatedly over the course of
this book. For instance, we can use the summation operator to
calculate the average:

= (2.15)

where X is the average (mean) of the random variable x;. Another

calculation we can make is a random variable’s deviations from its
own mean. The sum of the deviations from the mean is always equal
to O:



Table 5. Sum of deviations equaling 0.

X X—X
10 2
4 —4
13 5
5 -3
Mean=8 Sum=0
n
Y (x—%)=0 (2.16)

i=1

You can see this in Table 5.
Consider a sequence of two numbers {y4,y>, . . . ,¥,} and {x4,xo,

.. . ,X,}. Now we can consider double summations over possible

values of x’s and y’s. For example, consider the case where n = m =

2 2 . ..
2. Then, » © . Z.r’=1 X;y; is equal to xqyq +Xq1y2 +Xo¥4 +Xo¥p. This is
because

X114+ X1Y2 + XoY1 +XoY2 = X1(y1 + Y2) + X2 (Y1 +Y2)

2
= X1 +¥2)
i=1
2 2
L)
i=1 j=1
2 2
=3 (2w)
i=1 j=1
2 2
=225

i=1 j=1



One result that will be very useful throughout the book is:
n n
Y xi—=%?=> X —n®? (2.17)
i=1 i=1

An overly long, step-by-step proof is below. Note that the summation
index is suppressed after the first line for easier reading.

n n
Y i—X)?=) (X —2xXX+X)
i=1 i=1
=Y X —2XY X+nx’
- Zx?—Z%Zx;fo+n?2
2
= ZXf +nx* — % (Zx,-)
= Zx? —|—n(1 ZX,—)Q ~ 2”(1 ZX;)Q
n n
2
— fo —n(% Zx,—)
=Y x*—nx’

A more general version of this result is:

Y i=0@i—9 =) _xi¥i—7)
i=1 i=1

=Y (X —X)y; (2.18)
i=1

e

= ZX:%‘ —n(Xy
i=1



Or:
Z(Xf - X)(yi—y)= in(yi —y)= Z(Xf —X)yi= ZX:‘Y:' —n(xy) (2.19)
i=1 i=1 i=1 =1

Expected value. The expected value of a random variable, also
called the expectation and sometimes the population mean, is simply
the weighted average of the possible values that the variable can
take, with the weights being given by the probability of each value
occurring in the population. Suppose that the variable X can take on
values x4,Xp, . . . ,X,, each with probability f(xq), f(x5), . . . , f(xy),

respectively. Then we define the expected value of X as:

E(X) = x1f(X1) + Xof (X2) + - - - + Xk F (Xk)
k
= ijf(xf)
Jj=1

Let’s look at a numerical example. If X takes on values of -1, 0, and

2, with probabilites 0.3, 0.3, and 0.4, respectively.2 Then the
expected value of X equals:

E(X) =(=1)(0.3) + (0)(0.3) + (2)(0.4)
=0.5

(2.20)

In fact, you could take the expectation of a function of that variable,
too, such as X2. Note that X2 takes only the values 1, 0, and 4, with

probabilities 0.3, 0.3, and 0.4. Calculating the expected value of X2
therefore is:

E(X?) = (=1)%(0.3) + (0)2(0.3) + (2)%(0.4)
=19

The first property of expected value is that for any constant ¢, E(c)
= ¢. The second property is that for any two constants a and b, then



E(aX+b)=E(aX)+E(b)=aE(X)+b. And the third property is that if we
have numerous constants, a4, . . . ,a, and many random variables,

Xy, .. .. X, then the following is true:

E(a1x1 + - +anxn) = a‘IE(XT) + - +anE(Xn)

We can also express this using the expectation operator:

E( > a,—X,—) = aEX)
i=1 i=1

And in the special case where a; = 1, then

E(ZX,-) =Y EX)
i=1 i=1

Variance. The expectation operator, E(-), is a population concept. It
refers to the whole group of interest, not just to the sample available
to us. Its meaning is somewhat similar to that of the average of a
random variable in the population. Some additional properties for the
expectation operator can be explained assuming two random
variables, Wand H.

E(@W +b)=aE(W)+b for any constants a, b
EW+H)=E(W)+E(H)

E( W— E(W)) —0
Consider the variance of a random variable, W:

V(W) =0 = E| (W—EW))* | in the population
We can show

V(W) = E(W?) — E(W)? (2.21)



In a given sample of data, we can estimate the variance by the
following calculation:

S=mn-1" (x—x)7?
i=1

where we divide by n — 1 because we are making a degree-of-
freedom adjustment from estimating the mean. But in large samples,
this degree-of-freedom adjustment has no practical effect on the

value of S2 where S? is the average (after a degree of freedom

correction) over the sum of all squared deviations from the mean.Z
A few more properties of variance. First, the variance of a line is:

V(aX +b) = a?V(X)

And the variance of a constant is O (i.e., V(c) = 0 for any constant,
c¢). The variance of the sum of two random variables is equal to:

VX +Y) = VX)+ V(Y)+ Z(E(XY) - E(X)E(Y)) (2.22)

If the two variables are independent, then E(XY)=E(X)E(Y) and V(X+
Y) is equal to the sum of V(X)+V(Y).

Covariance. The last part of equation 2.22 is called the covariance.
The covariance measures the amount of linear dependence between
two random variables. We represent it with the C(X,Y) operator. The
expression C(X,Y) > 0 indicates that two variables move in the same
direction, whereas C(X,Y) < 0 indicates that they move in opposite
directions. Thus we can rewrite equation 2.22 as:

VIX+Y)=V(X)+V(Y)+2CX,Y)

While it's tempting to say that a zero covariance means that two
random variables are unrelated, that is incorrect. They could have a
nonlinear relationship. The definition of covariance is



C(X,Y) = E(XY) — EQOE(Y) (2.23)

As we said, if X and Y are independent, then C(X,Y) = 0 in the
population. The covariance between two linear functions is:

C(a) +biX,a, +byY) = b1b,C(X,Y)

The two constants, a; and a,, zero out because their mean is

themselves and so the difference equals 0.
Interpreting the magnitude of the covariance can be tricky. For

that, we are better served by looking at correlation. We define
X —E(X) Y —E(Y)

correlation as follows. Let W = o0 and Z= Y0 Then:
C(X,)Y)
Corr(W,2) = (2.24)
JVXOV(Y)

The correlation coefficient is bounded by -1 and 1. A positive
(negative) correlation indicates that the variables move in the same
(opposite) ways. The closer the coefficient is to 1 or -1, the stronger
the linear relationship is.

Population model. We begin with cross-sectional analysis. We will
assume that we can collect a random sample from the population of
interest. Assume that there are two variables, x and y, and we want

to see how y varies with changes in x.8

There are three questions that immediately come up. One, what if
y is affected by factors other than x? How will we handle that? Two,
what is the functional form connecting these two variables? Three, if
we are interested in the causal effect of x on y, then how can we
distinguish that from mere correlation? Let's start with a specific
model.

y=pBo+px+u (2.25)

This model is assumed to hold in the population. Equation 2.25
defines a linear bivariate regression model. For models concerned



with capturing causal effects, the terms on the left side are usually
thought of as the effect, and the terms on the right side are thought
of as the causes.

Equation 2.25 explicitly allows for other factors to affect y by
including a random variable called the error term, u. This equation
also explicitly models the functional form by assuming that y is
linearly dependent on x. We call the B, coefficient the intercept

parameter, and we call the 8, coefficient the slope parameter. These

describe a population, and our goal in empirical work is to estimate
their values. We never directly observe these parameters, because
they are not data (I will emphasize this throughout the book). What
we can do, though, is estimate these parameters using data and
assumptions. To do this, we need credible assumptions to accurately
estimate these parameters with data. We will return to this point
later. In this simple regression framework, all unobserved variables
that determine y are subsumed by the error term u.

First, we make a simplifying assumption without loss of generality.
Let the expected value of u be zero in the population. Formally:

E(u) =0 (2.26)

where E(-) is the expected value operator discussed earlier. If we
normalize the u random variable to be 0, it is of no consequence.
Why? Because the presence of B, (the intercept term) always allows

us this flexibility. If the average of u is different from O—for instance,
say that it's ag—then we adjust the intercept. Adjusting the intercept

has no effect on the 8, slope parameter, though. For instance:

Y= (Po+ao)+ fiX+ (U—ao)

where ag = E(u). The new error term is u—a,, and the new intercept
term is By + ag. But while those two terms changed, notice what did
not change: the slope, ;.



Mean independence. An assumption that meshes well with our
elementary treatment of statistics involves the mean of the error term
for each “slice” of the population determined by values of x:

E(u | x) = E(u) for all values x (2.27)

where E(u | x) means the “expected value of u given x.” If equation
2.27 holds, then we say that u is mean independent of x.

An example might help here. Let's say we are estimating the effect
of schooling on wages, and u is unobserved ability. Mean
independence requires that E(ability | x=8)=E(ability | x=12)=E(ability
| x= 16) so that the average ability is the same in the different
portions of the population with an eighth-grade education, a twelfth-
grade education, and a college education. Because people choose
how much schooling to invest in based on their own unobserved
skills and attributes, equation 2.27 is likely violated—at least in our
example.

But let's say we are willing to make this assumption. Then
combining this new assumption, E(u | x) = E(u) (the nontrivial
assumption to make), with E(u)=0 (the normalization and trivial
assumption), and you get the following new assumption:

E(u|x) =0, for all values x (2.28)

Equation 2.28 is called the zero conditional mean assumption and is
a key identifying assumption in regression models. Because the
conditional expected value is a linear operator, E(u | x)=0 implies that

E(y | x) = po+ pix

which shows the population regression function is a linear function of
x, or what Angrist and Pischke [2009] call the conditional expectation
function.2 This relationship is crucial for the intuition of the
parameter, B4, as a causal parameter.



Ordinary least squares. Given data on x and y, how can we estimate
the population parameters, B, and 8,7 Let the pairs of (x; and y)):

=1, 2, .. . ,n} be random samples of size from the population. Plug
any observation into the population equation:

Yi=Po+ HXi+ Ui

where j indicates a particular observation. We observe y; and x; but
not u;.. We just know that u; is there. We then use the two population
restrictions that we discussed earlier:

E(uy=0
E(u|x)=0

to obtain estimating equations for B, and B4. We talked about the first

condition already. The second one, though, means that the mean
value of x does not change with different slices of the error term.
This independence assumption implies E(xu) = 0, we get E(u) = 0,
and C(x,u) = 0. Notice that if C(x,u) = 0, then that implies x and u are
independent.12 Next we plug in for u, which is equal to y—8,—-x:

E(y—Po—px)=0
(xty = o — pix1) = 0

These are the two conditions in the population that effectively
determine B, and B4. And again, note that the notation here is

population concepts. We don’t have access to populations, though
we do have their sample counterparts:



=" (vi—Bo—Pxi) =0 (2.29)
n - (Xr' I:yf —Bo— 131){:']) =0 (2.30)

where 3, and f, are the estimates from the data.l! These are two
linear equations in the two unknowns /i, and ;. Recall the properties
of the summation operator as we work through the following sample

properties of these two equations. We begin with equation 2.29 and
pass the summation operator through.

—Z(.V: Bo— 1X;)— Z(V:)——Zﬁo——231xr
lz ._g_g(lzx.)
n i=1 yr ’ 1 L i=1 I

=Y —po—BX

where y = %ZL y; which is the average of the n numbers {y;: 1

,n}. For emphasis we will call y the sample average. We have
already shown that the first equation equals zero (equation 2.29), so
this implies y = f§, + ;X. So we now use this equation to write the
intercept in terms of the slope:

fo=y - px

We now plug ;?n into the second equation, 37 , xi(yi — Bo—Prx) =0
This gives us the following (with some simple algebraic
manipulation):



Zn:x;[yf— (Y—B?ﬂ—ﬁ}xf] =0

ZX;(,V; _.7) =B;|:ZX;(Xj—)_()i|
i=T i=1
So the equation to solve is12

Z(Xf —X) i —Y) =B [Z(X; —7)2}
i=1 i=1
If Y7, (x; —X)? # 0, we can write:

Y i =Xy —Y)

> (Xi —X)?

Sample covariance(x;,y;)
- Sample variance(x;)

B—

(2.31)

The previous formula for ;}1 is important because it shows us how
to take data that we have and compute the slope estimate. The
estimate, ;}1, is commonly referred to as the ordinary least squares
(OLS) slope estimate. It can be computed whenever the sample
variance of x; isn't 0. In other words, it can be computed if x; is not

constant across all values of i. The intuition is that the variation in x
is what permits us to identify its impact in y. This also means,
though, that we cannot determine the slope in a relationship if we
observe a sample in which everyone has the same years of
schooling, or whatever causal variable we are interested in.

Once we have calculated ;}1, we can compute the intercept value,
fip @S iy = ¥ — [iX. This is the OLS intercept estimate because it is
calculated using sample averages. Notice that it is straightforward
because i, is linear in . With computers and statistical
programming languages and software, we let our computers do
these calculations because even when n is small, these calculations
are quite tedious.



For any candidate estimates, f,, /i, we define a fitted value for
each j as:

¥i = Po + Bixi

Recall that i = {1, . . . ,n}, so we have n of these equations. This is
the value we predict for y; given that x = x;. But there is prediction

error because y = y;. We call that mistake the residual, and here use
the 0; notation for it. So the residual equals:

QZ%—ﬁ
Ui=Yyi— Bo— BiX;

While both the residual and the error term are represented with a u,
it is important that you know the differences. The residual is the
prediction error based on our fitted ¥ and the actual y. The residual
is therefore easily calculated with any sample of data. But u without
the hat is the error term, and it is by definition unobserved by the
researcher. Whereas the residual will appear in the data set once
generated from a few steps of regression and manipulation, the error
term will never appear in the data set. It is all of the determinants of
our outcome not captured by our model. This is a crucial distinction,
and strangely enough it is so subtle that even some seasoned
researchers struggle to express it.

Suppose we measure the size of the mistake, for each i, by
squaring it. Squaring it will, after all, eliminate all negative values of
the mistake so that everything is a positive value. This becomes
useful when summing the mistakes if we don’t want positive and
negative values to cancel one another out. So let’'s do that: square
the mistake and add them all up to get 57" . G;*:



Y U= -y
i=1 i=1
=" (yi—ho-Bix)
i=1

This equation is called the sum of squared residuals because the
residual is {; = y—y. But the residual is based on estimates of the

slope and the intercept. We can imagine any number of estimates of
those values. But what if our goal is to minimize the sum of squared
residuals by choosing fi, and £,? Using calculus, it can be shown

that the solutions to that problem yield parameter estimates that are
the same as what we obtained before.
Once we have the numbers g, and f; for a given data set, we

write the OLS regression line:

Y =Po+ pix (2.32)

Let's consider a short simulation.



STATA

(continued)



R (continued)

7 y=55%+12%u
8 )
9
10 reg_tb <-tb %>%
11 Im(y ~x,.) %>%
12 print()
13
14 reg_tbScoefficients
15
16 th<-th %>%
17  mutate(
18  yhat1 = predict(Im(y ~ x, .)),
19 yhat2 = 0.0732608 + 5.685033*x,
20  uhat1 = residuals(Im(y ~ x, .)),
21 uhat2 =y - yhat2
22 )
23
24 summary(tb[-1:-3])
25
26 th %>%
27  Im(y ~x,.) %>%
28  ggplot(aes(x=x, y=y)) +
29  ggtitle("OLS Regression Line") +
30 geom_point(size = 0.05, color = "black", alpha = 0.5) +
31 geom_smooth(method = Im, color = "black") +
32 annotate("text", x =-1.5, y = 30, color = "red",

33 label = paste("Intercept = *,-0.0732608)) +
34 annotate("text", x = 1.5, y = -30, color = "blue",
35 label = paste("Slope =", 5.685033))

Let’s look at the output from this. First, if you summarize the data,
you'll see that the fitted values are produced both using Stata’s
Predict command and manually using the Generate command. |
wanted the reader to have a chance to better understand this, so did
it both ways. But second, let’s look at the data and paste on top of it
the estimated coefficients, the y-intercept and slope on x in Eigure 3.
The estimated coefficients in both are close to the hard coded values
built into the data-generating process.
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Figure 3. Graphical representation of bivariate regression from y on x.

Once we have the estimated coefficients and we have the OLS
regression line, we can predict y (outcome) for any (sensible) value
of x. So plug in certain values of x, and we can immediately calculate
what y will probably be with some error. The value of OLS here lies
in how large that error is: OLS minimizes the error for a linear
function. In fact, it is the best such guess at y for all linear estimators
because it minimizes the prediction error. There’'s always prediction
error, in other words, with any estimator, but OLS is the least worst.

Notice that the intercept is the predicted value of y if and when x =

0. In this sample, that value is -0.0750109.12 The slope allows us to
predict changes in y for any reasonable change in x according to:

AY = B, Ax

And if Ax = 1, then x increases by one unit, and so F = 5.598296 in
our numerical example because ;?1 = 5.598296.



Now that we have calculated f, and f;, we get the OLS fitted
values by plugging x; into the following equation fori=1, ... ,n:

ﬁ=%+@m

The OLS residuals are also calculated by:

U =y — fo — piX;

Most residuals will be different from O (i.e., they do not lie on the
regression line). You can see this in Figure 3. Some are positive, and
some are negative. A positive residual indicates that the regression
line (and hence, the predicted values) underestimates the true value
of y. And if the residual is negative, then the regression line

overestimates the true value.
Recall that we defined the fitted value as ¥; and the residual, G, as

y~¥ - Notice that the scatter-plot relationship between the residuals

and the fitted values created a spherical pattern, suggesting that
they are not correlated (Eigure 4). This is mechanical—least squares
produces residuals which are uncorrelated with fitted values. There’s
no magic here, just least squares.

Algebraic Properties of OLS. Remember how we obtained f, and #;
? When an intercept is included, we have:

n

Z(YI_EO_EXI) =0

i=1

The OLS residual always adds up to zero, by construction.
Y G=0 (2.33)
i=1

Sometimes seeing is believing, so let’s look at this together. Type the
following into Stata verbatim.
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Figure 4. Distribution of residuals around regression line.
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STATA
ols2.do
clear
set seed 1234
set obs 10

gen x = 9*rnormal()

gen u = 36*rnormal()

geny =3+2*x+u

regyx

predict yhat

predict residuals, residual

su residuals

list

collapse (sum) x u y yhat residuals
list

20




ols2.R
library(tidyverse)

set.seed(1)

tb <- tibble(
x = 9*rnorm(10),
u = 36*rnorm(10),
y=3+2*x+u,
yhat = predict(Im(y ~ x)),
10  uhat = residuals(Im(y ~ x))
1 )
12
13 summary(tb)
14 colSums(tb)

o~ Oy R WN =

o

Output from this can be summarized as in the following table
(Table 6).

Notice the difference between the u, y and §j columns. When we
sum these ten lines, neither the error term nor the fitted values of y
sum to zero. But the residuals do sum to zero. This is, as we said,
one of the algebraic properties of OLS—coefficients were optimally
chosen to ensure that the residuals sum to zero.

Because y; = y; + 4, by definition (which we can also see in Table

6), we can take the sample average of both sides:
T Tea Tea
- = — i+ — Ui
DL PN PP

and so F:? because the residuals sum to zero. Similarly, the way
that we obtained our estimates yields

Zn:x,-(y; — Ao —B}x,-) =0

i=1



The sample covariance (and therefore the sample correlation)
between the explanatory variables and the residuals is always zero
(see Table 6).

Table 6. Simulated data showing the sum of residuals equals zero.

no. X u y % 0 XU yu
1. —4.381653 —32.95803 —38.72134 —3.256034 —35.46531 155.3967 115.4762
2. —13.28403 —8.028061 —31.59613 —26.30994 —5.28619 70.22192 139.0793
3. —.0982034 17.80379 20.60738 7.836532 12.77085 —1.254141 100.0792
4, —.1238423 —9.443188 —6.690872 7.770137 —14.46101 1.790884 -112.364
5. 4.640209 13.18046 25.46088 20.10728 5.353592 24.84179 107.6462
6. —1.252096 —34.64874 —34.15294 4.848374 —39.00131 48.83337 —189.0929
7. 11.58586 9.118524 35.29023 38.09396 —2.80373 —32.48362 —106.8052
8. —5.289957 82.23296 74.65305 —5.608207 80.26126 —424.5786 —450.1217
9. —.2754041 11.60571 14.0549 7.377647 6.677258 —1.838944 49.26245
10. —19.77159 —14.61257 —51.15575 —43.11034 —8.045414 159.0706 346.8405
Sum —28.25072 34.25085 7.749418 7.749418 1.91e-06 —6.56e — 06 .0000305

n
Z X,‘lj} =0
i=1

Because the y; are linear functions of the x;, the fitted values and
residuals are uncorrelated too (see Table 6):

yiti =0
i=1
Both properties hold by construction. In other words, ¥, and y ; were

selected to make them true. %

A third property is that if we plug in the average for x, we predict
the sample average for y. That is, the point (Xx,y) is on the OLS
regression line, or:

y=Po+ X
Goodness-of-fit. For each observation, we write

yi=Yi+u



Define the total sum of squares (SST), explained sum of squares
(SSE), and residual sum of squares (SSR) as

SST=Y (i—7) (2.34)
i=1

SSE=Y (% —¥)* (2.35)
i=1

SSR=Y "G/ (2.36)
i=1

15 SST

These are sample variances when divided by n-1. i is the

, S55E . . -~ SSR .
sample variance of y;, - 18 the sample variance of y;, and i1

the sample variance of ;. With some simple manipulation rewrite
equation 2.34:

SST= 3"/~
i=1

n —

2
Y [6-5-G-7)

P 2
= ui—(yi —y)]
Since equation 2.34 shows that the fitted values are uncorrelated

with the residuals, we can write the following equation:

SST = SSE + SSR

Assuming SST > 0, we can define the fraction of the total variation in
y; that is explained by x; (or the OLS regression line) as



SSE SSR

RP=—=1-—

SST SST
which is called the R-squared of the regression. It can be shown to
be equal to the square of the correlation between y; and ¥y,

Therefore 0 < R2 < 1. An R-squared of zero means no linear
relationship between y; and x;, and an R-squared of one means a

perfect linear relationship (e.g., y; = x; +2). As R? increases, the y;

are closer and closer to falling on the OLS regression line.

| would encourage you not to fixate on R-squared in research
projects where the aim is to estimate some causal effect, though. It's
a useful summary measure, but it does not tell us about causality.
Remember, you aren’t trying to explain variation in y if you are trying
to estimate some causal effect. The R? tells us how much of the
variation in y; is explained by the explanatory variables. But if we are

interested in the causal effect of a single variable, R? is irrelevant.
For causal inference, we need equation 2.28.

Expected value of OLS. Up until now, we motivated simple
regression using a population model. But our analysis has been
purely algebraic, based on a sample of data. So residuals always
average to zero when we apply OLS to a sample, regardless of any
underlying model. But our job gets tougher. Now we have to study
the statistical properties of the OLS estimator, referring to a

population model and assuming random sampling.18

The field of mathematical statistics is concerned with questions.
How do estimators behave across different samples of data? On
average, for instance, will we get the right answer if we repeatedly
sample? We need to find the expected value of the OLS estimators
—in effect, the average outcome across all possible random
samples—and determine whether we are right, on average. This
leads naturally to a characteristic called unbiasedness, which is
desirable of all estimators.



EB)=p (2.37)

Remember, our objective is to estimate B4, which is the slope
population parameter that describes the relationship between y and
x. Our estimate, £, is an estimator of that parameter obtained for a
specific sample. Different samples will generate different estimates (
/i) for the “true” (and unobserved) B,. Unbiasedness means that if

we could take as many random samples on Y as we want from the
population and compute an estimate each time, the average of the
estimates would be equal to B;.

There are several assumptions required for OLS to be unbiased.
The first assumption is called linear in the parameters. Assume a
population model

y=po+pix+u

where B, and B4 are the unknown population parameters. We view x

and u as outcomes of random variables generated by some data-
generating process. Thus, since y is a function of x and u, both of
which are random, then y is also random. Stating this assumption
formally shows that our goal is to estimate B, and S;.

Our second assumption is random sampling. We have a random
sample of size n, {(x,y;):i=1, ... ,n}, following the population model.

We know how to use this data to estimate B, and B, by OLS.

Because each i is a draw from the population, we can write, for each
I

Yi= Po+ pXi+ Ui

Notice that u; here is the unobserved error for observation i. It is not

the residual that we compute from the data.
The third assumption is called sample variation in the explanatory
variable. That is, the sample outcomes on x; are not all the same

value. This is the same as saying that the sample variance of x is not



zero. In practice, this is no assumption at all. If the x; all have the

same value (i.e., are constant), we cannot learn how x affects y in
the population. Recall that OLS is the covariance of y and x divided
by the variance in x, and so if x is constant, then we are dividing by
zero, and the OLS estimator is undefined.

With the fourth assumption our assumptions start to have real
teeth. It is called the zero conditional mean assumption and is
probably the most critical assumption in causal inference. In the
population, the error term has zero mean given any value of the
explanatory variable:

Eu|x)=Eu)=0

This is the key assumption for showing that OLS is unbiased, with
the zero value being of no importance once we assume that E(u | x)
does not change with x. Note that we can compute OLS estimates
whether or not this assumption holds, even if there is an underlying
population model.

So, how do we show that ;}1 41 Is an unbiased estimate of S,

(equation 2.37)? We need to show that under the four assumptions
we just outlined, the expected value of f;, when averaged across
random samples, will center on the true value of B4. This is a subtle

yet critical concept. Unbiasedness in this context means that if we
repeatedly sample data from a population and run a regression on
each new sample, the average over all those estimated coefficients
will equal the true value of B4. We will discuss the answer as a series

of steps.
Step 1: Write down a formula for 4. It is convenient to use the
Clx,y) form:
Vi(x) '
n —
E:ZHm—mﬁ

2 (X =X)?



Let's get rid of some of this notational clutter by defining
ZLJ}:,-—E]E = SST, (i.e., total variation in the x;) and rewrite this as:

Z?:‘] (X:' - ?)y;
SST,

7=

Step 2: Replace each y; with y; = By + B4x; + u; which uses the

first linear assumption and the fact that we have sampled data (our
second assumption). The numerator becomes:

Z(Xf —X)yi = Z(Xf —X)(fo + pixi +u))
i=1 i=1

n n

=foY X=X+ Y (i =KX+ Y (Xi+X)u
i=1

i=1 i=1

=0+ 5 Z(X:‘ -X)2 + Z(Xi — X)U;

i=1 i=1

n
=BSSTe+ ) (X =Xy,
i=1

Note, we used 3 7 .(x;—X)=0and Y| (X —X)x; = > |, (X — X)?

to do this. 1t
We have shown that:

E - BTSSTX +Z?:1(XI _Y)Ui
. SST,

S (X —X)Ui
SST,

=p+

Note that the last piece is the slope coefficient from the OLS
regression of u; on x; i- 1, . . . ,n. 18 We cannot do this regression



(% —X)

SST, so that we

because the u; are not observed. Now define w; =
have the following:

n
Pri=pi+ > wi;
=

This has showed us the following: First, j, is a linear function of the
unobserved errors, u;. The w; are all functions of {x4, . . . ,x,}.

Second, the random difference between 3, and the estimate of it, ;}1,

is due to this linear function of the unobservables.
Step 3: Find E( ;}1). Under the random sampling assumption and
the zero conditional mean assumption, E(u; | x4, . . . ,x,)=0, that

means conditional on each of the x variables:
E(wiu; | xa,...,X:) = WiE(Ui | X1,...,X,) =0

because w; is a function of {x4, . . . ,x,}. This would be true if in the

population u and x are correlated.
Now we can complete the proof: conditional on {x4, . . . ,x,},

E(Br) = 5(51 + ZWfo)
i1
=B+ ) Ewiu)
i=1

=pi+ > WEW)
i=1

=p+0
= P



Remember, B, is the fixed constant in the population. The estimator,

f, varies across samples and is the random outcome: before we
collect our data, we do not know what ;}1 will be. Under the four
aforementioned assumptions, E(fi,) = By and E(;) = Bs.

| find it helpful to be concrete when we work through exercises like
this. So let’s visualize this. Let’s create a Monte Carlo simulation. We
have the following population model:

y=34+2x+u (2.38)

where x ~ Normal (0,9), u ~ Normal (0,36). Also, x and u are
independent. The following Monte Carlo simulation will estimate OLS
on a sample of data 1,000 times. The true B8 parameter equals 2. But
what will the average ﬁ equal when we use repeated sampling?

STATA

ols3.do
clear all
program define ols, rclass
version 14.2
syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]

clear

drop _all

set obs 10000

gen x = 9*rnormal()
10 gen u = 36*rnormal()
11 geny =3+2*x+u
12 regyx

13 end

14

15 simulate beta=_bl[x], reps(1000): ols
16 su

17 hist beta

0 NS ER W =

7=



ols3.R
1 library(tidyverse)
2
3 Im<- lapply(
4 1:1000,
5 function(x) tibble(
6  x=9*norm(10000),
7 u=36*norm(10000),
8 y=3+2*x+u
9 ) %%
10  Im(y~x,.)
11 )
12

13 as_tibble(t(sapply(Im, coef))) %>%
14  summary(x)

15
16 as_tibble(t(sapply(Im, coef))) %>%
17  ggplot()+

18  geom_histogram(aes(x), binwidth = 0.01)

Table 7 gives us the mean value of ;}1 over the 1,000 repetitions
(repeated sampling). Your results will differ from mine here only in
the randomness involved in the simulation. But your results should
be similar to what is shown here. While each sample had a different
estimated slope, the average for ;}1 over all the samples was

1.998317, which is close to the true value of 2 (see equation 2.38).
The standard deviation in this estimator was 0.0398413, which is

close to the standard error recorded in the regression itself.12 Thus,
we see that the estimate is the mean value of the coefficient from
repeated sampling, and the standard error is the standard deviation
from that repeated estimation. We can see the distribution of these
coefficient estimates in Eigure 5.

The problem is, we don’t know which kind of sample we have. Do
we have one of the “almost exactly 2” samples, or do we have one of
the “pretty different from 2” samples? We can never know whether
we are close to the population value. We hope that our sample is



“typical” and produces a slope estimate close to f;} but we can’t
know. Unbiasedness is a property of the procedure of the rule. It is
not a property of the estimate itself. For example, say we estimated
an that 8.2% return on schooling. It is tempting to say that 8.2% is an
unbiased estimate of the return to schooling, but that's technically
incorrect. The rule used to get j}‘] = 0.082 is unbiased (if we believe

that u is unrelated to schooling), not the actual estimate itself.

Table 7. Monte Carlo simulation of OLS.

Variable Obs. Mean SD

beta 1,000 1.998317 0.0398413

10
|

O
1.8 1.9 2 2.1 2.2
_b[x]

Figure 5. Distribution of coefficients from Monte Carlo simulation.

Law of iterated expectations. The conditional expectation function
(CEF) is the mean of some outcome y with some covariate x held



fixed. Let's focus more intently on this function.?? Let's get the
notation and some of the syntax out of the way. As noted earlier, we
write the CEF as E(y; | x;). Note that the CEF is explicitly a function of

x;. And because x; is random, the CEF is random—although
sometimes we work with particular values for x;, like E(y; | x; =8 years
schooling) or E(y; | x; =Female). When there are treatment variables,
then the CEF takes on two values: E(y;| d;=0) and E(y; | d;=1). But

these are special cases only.

An important complement to the CEF is the law of iterated
expectations (LIE). This law says that an unconditional expectation
can be written as the unconditional average of the CEF. In other
words, E(y;)= E{E(y; | x;)}. This is a fairly simple idea: if you want to

know the unconditional expectation of some random variable y, you
can simply calculate the weighted sum of all conditional expectations
with respect to some covariate x. Let’s look at an example. Let’s say
that average grade-point for females is 3.5, average GPA for males
is a 3.2, half the population is female, and half is male. Then:

E[GPA] = E{E(GPA, | Gender;)}
=(0.5x3.5) +(3.2x 0.5)
=3.35

You probably use LIE all the time and didn’t even know it. The proof
is not complicated. Let x; and y; each be continuously distributed.

The joint density is defined as f,,(u,t). The conditional distribution of
y given x = u is defined as f,(t | x; = u). The marginal densities are

gy(t) and g,(u).



E{E(y|x)} = fE(yIX= u)gx(u)du

= f [ [ tfylx(t|x:u)dt}gx(u)du

=fftfy|x(t|x=u)gx(u)dudt

=[t[ffylx(t\x=u)gx(u)du]dt

= [ tlf,., duldt

-~ f tg, (t)dt
=E)

Check out how easy this proof is. The first line uses the definition of
expectation. The second line uses the definition of conditional
expectation. The third line switches the integration order. The fourth
line uses the definition of joint density. The fifth line replaces the prior
line with the subsequent expression. The sixth line integrates joint
density over the support of x which is equal to the marginal density
of y. So restating the law of iterated expectations: E(y;) = E{E(y | x;)}.

CEF decomposition property. The first property of the CEF we will
discuss is the CEF decomposition property. The power of LIE comes
from the way it breaks a random variable into two pieces—the CEF
and a residual with special properties. The CEF decomposition
property states that

Yi=EWi | x)+ei

where (i) €; is mean independent of x;, That is,

E(ei | x)) =0



and (ii) &; is not correlated with any function of x;.

The theorem says that any random variable y; can be decomposed
into a piece that is explained by x; (the CEF) and a piece that is left
over and orthogonal to any function of x;. I'll prove the (i) part first.
Recall that ¢, = y; — E(y; | x;) as we will make a substitution in the
second line below.

Eer 1 %) =E (yi — E(ri 1) | x;)

=EWi [x) —EWi | X)
=0
The second part of the theorem states that ¢; is uncorrelated with

any function of x;. Let h(x;) be any function of x;. Then E(h(x)¢;) =
E{h(x)E(s; | x;)} The second term in the interior product is equal to

zero by mean independence.2!

CEF prediction property. The second property is the CEF prediction
property. This states that E(y; | x) = argmin,(,;) E[(y — m(x;)?], where
m(x;) is any function of x;. In words, this states that the CEF is the
minimum mean squared error of y; given x;. By adding E(y; | x;)—-E(y; |
x;)=0 to the right side we get

[Yf —m(xf)r = [(J/f —Elyi | x:1) + (Ei 1 %) —m(Xf))]z

| personally find this easier to follow with simpler notation. So replace
this expression with the following terms:

(@a—b+b—c)?

Distribute the terms, rearrange them, and replace the terms with
their original values until you get the following:



argmin (y, £, 1)) +2(E; 1) ~m)) < (v~ E; %))
+ (E(Vf | Xi) + m(Xf))2

Now minimize the function with respect to m(x;). When minimizing
this function with respect to m(x;), note that the first term (y,—E(y; |

x;))? doesn’t matter because it does not depend on m(x;). So it will
zero out. The second and third terms, though, do depend on m(Xx;).
So rewrite 2(E(y; | x;) — m(x;)) as h(x;). Also set ¢; equal to [y; — E(y; |
x;)] and substitute

2
argmine? +h(x;)e; + [E(}’f | Xi) + m(Xf)}
Now minimizing this function and setting it equal to zero we get
h' (xp)e;
which equals zero by the decomposition property.

ANOVA theory. The final property of the CEF that we will discuss is
the analysis of variance theorem, or ANOVA. According to this
theorem, the unconditional variance in some random variable is
equal to the variance in the conditional expectation plus the
expectation of the conditional variance, or

Vo =V[Exi 1) | +E[VEi 10|
where V' is the variance and V(y; | x;) is the conditional variance.

Linear CEF theorem. As you probably know by now, the use of least
squares in applied work is extremely common. That's because
regression has several justifications. We discussed one—
unbiasedness under certain assumptions about the error term. But



I'd like to present some slightly different arguments. Angrist and
Pischke [2009] argue that linear regression may be useful even if the
underlying CEF itself is not linear, because regression is a good
approximation of the CEF. So keep an open mind as | break this
down a little bit more.

Angrist and Pischke [2009] give several arguments for using
regression, and the linear CEF theorem is probably the easiest. Let’s
assume that we are sure that the CEF itself is linear. So what? Well,
if the CEF is linear, then the linear CEF theoremstates that the
population regression is equal to that linear CEF. And if the CEF is
linear, and if the population regression equals it, then of course you
should use the population regression to estimate CEF. If you need a
proof for what could just as easily be considered common sense, |
provide one. If E(y; | x;) is linear, then E(y; | x;) = x'ﬁ for some vector

ﬁ. By the decomposition property, you get:
E(x(y —E(y| x)) - E(x(y _ x’E‘)) =0
And then when you solve this, you get ﬁ = B. Hence E(y | x) = xB.

Best linear predictor theorem. There are a few other linear theorems
that are worth bringing up in this context. For instance, recall that the
CEF is the minimum mean squared error predictor of y given x in the
class of all functions, according to the CEF prediction property.
Given this, the population regression function is the best that we can

do in the class of all linear functions.22

Regression CEF theorem. | would now like to cover one more
attribute of regression. The function XB provides the minimum mean
squared error linear approximation to the CEF. That is,

p = argmin€ | [E(y, 1) - xpI’

So? Let’s try and back up for a second, though, and get the big
picture, as all these linear theorems can leave the reader asking, “So



what?” I'm telling you all of this because | want to present to you an
argument that regression is appealing; even though it’s linear, it can
still be justified when the CEF itself isn’t. And since we don’t know
with certainty that the CEF is linear, this is actually a nice argument
to at least consider. Regression is ultimately nothing more than a
crank turning data into estimates, and what I'm saying here is that
crank produces something desirable even under bad situations. Let’s
look a little bit more at this crank, though, by reviewing another
theorem which has become popularly known as the regression
anatomy theorem.

Regression anatomy theorem. In addition to our discussion of the
CEF and regression theorems, we now dissect the regression itself.
Here we discuss the regression anatomy theorem. The regression
anatomy the orem is based on earlier work by Frisch andWaugh

[1933] and Lovell [1963].22 | find the theorem more intuitive when |
think through a specific example and offer up some data
visualization. In my opinion, the theorem helps us interpret the
individual coefficients of a multiple linear regression model. Say that
we are interested in the causal effect of family size on labor supply.
We want to regress labor supply on family size:

Yi=po+ /1 Xi+ U

where Y is labor supply, and X'is family size.
If family size is truly random, then the number of kids in a family is

uncorrelated with the unobserved error term.2% This implies that
when we regress labor supply on family size, our estimate, ;}1, can
be interpreted as the causal effect of family size on labor supply. We
could just plot the regression coefficient in a scatter plot showing all
pairs of data; the slope coefficient would be the best linear fit of the
data for this data cloud. Furthermore, under randomized number of
children, the slope would also tell us the average causal effect of
family size on labor supply.

But most likely, family size isn’t random, because so many people
choose the number of children to have in their family—instead of,



say, flipping a coin. So how do we interpret ;}1 if the family size is not
random? Often, people choose their family size according to
something akin to an optimal stopping rule. People pick both how
many kids to have, when to have them, and when to stop having
them. In some instances, they may even attempt to pick the gender.
All of these choices are based on a variety of unobserved and
observed economic factors that may themselves be associated with
one’s decision to enter the labor market. In other words, using the
language we’ve been using up until now, it's unlikely that E(u | X) =
E(u) = 0.

But let’'s say that we have reason to think that the number of kids
in a family is conditionally random. To make this tractable for the
sake of pedagogy, let’s say that a particular person’s family size is as

good as randomly chosen once we condition on race and age.?®
While unrealistic, | include it to illustrate an important point regarding
multivariate regressions. If this assumption were to be true, then we
could write the following equation:

Yi=Po+ /iXi+ 7R+ 2Ai + U,

where Y is labor supply, X is number of kids, R is race, A is age, and
u is the population error term.

If we want to estimate the average causal effect of family size on
labor supply, then we need two things. First, we need a sample of
data containing all four of those variables. Without all four of the
variables, we cannot estimate this regression model. Second, we
need for the number of kids, X, to be randomly assigned for a given
set of race and age.

Now, how do we interpret ;}1? And how might we visualize this

coefficient given that there are six dimensions to the data? The
regression anatomy theorem both tells us what this coefficient
estimate actually means and also lets us visualize the data in only
two dimensions.

To explain the intuition of the regression anatomy theorem, let’s
write down a population model with multiple variables. Assume that



your main multiple regression model of interest has K covariates. We
can then write it as:

Yi= o+ fiXai+ -+ PiXui + - - + PxXki + € (2.39)

Now assume an auxiliary regression in which the variable xy; is
regressed on all the remaining independent variables:

X1i = 70 + Yk—1Xk—1i + Pke1Xkati + -+ - + yrXki + i (2.40)

and R.“:xa”_}“.“- is the residual from that auxiliary regression.
Then the parameter 3, can be rewritten as:

C(yi,X)

VI (2.47)

b=

Notice that again we see that the coefficient estimate is a scaled
covariance, only here, the covariance is with respect to the outcome
and residual from the auxiliary regression, and the scale is the
variance of that same residual.

To prove the theorem, note that E[x,] = E[x.]— E[Xy] = E[f:],
and plug y; and residual X,; from x,; auxiliary regression into the

covariance cov(y;,X,;):

coV(fo + PriXxii+ -+ + PiXui + - - + PrXki + €5, Xki)
Var(ik,')

cov(fo + SiXai+ -+ + PiXui + - - - + PrXki + €, i)
var(f;)

P

Since by construction E[f] = O, it follows that the term ByE[f] = O.
Since f; is a linear combination of all the independent variables with
the exception of x,;, it must be that

PEfixi] =+ = BeaElfiXk—1il = B ElfiXknil = - -+ = PcElfiXki] =0



Consider now the term E[ef]. This can be written as
Eleifi] = Eleifi]
= E[eiXi]
=E [e;(xk; —‘;?k,-)]
= E[eixyi] — E[eiXxi]

Since e; is uncorrelated with any independent variable, it is also
uncorrelated with x,;. Accordingly, we have E[ex,;] = 0. With regard

to the second term of the subtraction, substituting the predicted
value from the x,; auxiliary regression, we get

EleiXki] = E[ef(% + 71X + -+ Pk—ti + Pk Xeri + +?;<Xm)]

Once again, since e; is uncorrelated with any independent

variable, the expected value of the terms is equal to zero. It follows
that E[e;f] = 0.

The only remaining term, then, is [B,x,f], which equals E[B,X,X,il,
since f; = X,;. The term x,; can be substituted by rewriting the auxiliary
regression model, x,;, such that

Xii = E[Xki | Xk + X
This gives
E[SiXkiXki] = )BkEI:iki(E[xki | X1+ iki)]
= B EIRE] + ELEDX0 | X801 |

= B var(X)



which follows directly from the orthogonality between E[x,; | X_,] and
Xy;- From previous derivations we finally get

COV(Yi, Xki) = Bk var(Xi)

which completes the proof.
| find it helpful to visualize things. Let’s look at an example in Stata
using its popular automobile data set. I'll show you:

STATA
reganat.do
1 sscinstall reganat, replace
2 sysuse auto.dta, replace
3 regress price length
4 regress price length weight headroom mpg
5 reganat price length weight headroom mpg, dis(length) biline
R
reganat.R
1 library(tidyverse)
2 library(haven)
3
4 read_data < function(df)
5 {
6  full_path <- paste("https:/raw.github.com/scunning1975/mixtape/master/",
7 df, sep="")
8  df <-read_dta(full_path)
9 return(df)
10 }
11
12
13 auto <- read_data("auto.dta") %>%
14  mutate(length = length - mean(length))
15
16 Im1 <- Im(price ~ length, auto)
17 Im2 <- Im(price ~ length + weight + headroom + mpg, auto)
18
19

(continued)



R (continued)

20 coef_Im1 <-Im18coefficients
21 coef_lm2 <- Im2$coefficients
22 resid_Im2 <- Im2S$residuals

23

24 y_single <- tibble(price = coef_Im1[1] + coef_Im1[2]*autoSlength,
25 length = autoSlength)

26

27 y_multi <- tibble(price = coef_Im1[1] + coef_Im2[2]*autoSlength,
28 length = autoSlength)

29

30

31 ggplot(auto) +

32 geom_point(aes(x = length, y = price)) +

33 geom_smooth(aes(x = length, y = price), data = y_multi, color = "blue") +
34 geom_smooth(aes(x = length, y = price), data = y_single, color="red")

Let’'s walk through both the regression output that I've reproduced
in Table 8 as well as a nice visualization of the slope parameters in
what I'll call the short bivariate regression and the longer multivariate
regression. The short regression of price on car length yields a
coefficient of 57.20 on length. For every additional inch, a car is $57
more expensive, which is shown by the upward-sloping, dashed line
in Figure 6. The slope of that line is 57.20.

It will eventually become second nature for you to talk about
including more variables on the right side of a regression as
“‘controlling for” those variables. But in this regression anatomy
exercise, | hope to give a different interpretation of what you're doing
when you in fact “control for” variables in a regression. First, notice
how the coefficient on length changed signs and increased in
magnitude once we controlled for the other variables. Now, the effect
on length is —94.5. It appears that the length was confounded by
several other variables, and once we conditioned on them, longer
cars actually were cheaper. You can see a visual representation of
this in Eigure 6, where the multivariate slope is negative.



Table 8. Regression estimates of automobile price on length and other
characteristics.

Covariates Short Regression Long Regression
Length 57.20 -94.50
(14.08) (40.40)
Weight 4.34
(1.16)
Headroom —490.97
(388.49)
Miles per gallon —-87.96
(83.59)

Regression Anatomy
Dependent variable: Price

Length (in.)

15,906

Multivariate slope: -94.497 (40.396)
Bivariate slope: 57.202 (14.080)

Covariates: Length (in.), Weight (Ibs.), Headroom (in.), Mileage (mpg).

| Regression lines: Solid = Multivariate, Dashed = Bivariate. |

Figure 6. Regression anatomy display.

So what exactly going on in this visualization? Well, for one, it has
condensed the number of dimensions (variables) from four to only



two. It did this through the regression anatomy process that we
described earlier. Basically, we ran the auxiliary regression, used the

residuals from it, and then calculated the slope coefficient as
coOviy,X;)

var (x;)
residuals paired with their outcome observations and to slice the
slope through them (Eigure 6). Notice that this is a useful way to
preview the multidimensional correlation between two variables from
a multivariate regression. Notice that the solid black line is negative
and the slope from the bivariate regression is positive. The
regression anatomy theorem shows that these two estimators—one
being a multivariate OLS and the other being a bivariate regression
price and a residual—are identical.

. This allowed us to show scatter plots of the auxiliary

Variance of the OLS estimators. That more or less summarizes what
we want to discuss regarding the linear regression. Under a zero
conditional mean assumption, we could epistemologically infer that
the rule used to produce the coefficient from a regression in our
sample was unbiased. That’s nice because it tells us that we have
good reason to believe that result. But now we need to build out this
epistemological justification so as to capture the inherent uncertainty
in the sampling process itself. This added layer of uncertainty is
often called inference. Let’s turn to it now.

Remember the simulation we ran earlier in which we resampled a
population and estimated regression coefficients a thousand times?
We produced a histogram of those 1,000 estimates in Figure 5. The
mean of the coefficients was around 1.998, which was very close to
the true effect of 2 (hard-coded into the data-generating process).
But the standard deviation was around 0.04. This means that,
basically, in repeated sampling of some population, we got different
estimates. But the average of those estimates was close to the true
effect, and their spread had a standard deviation of 0.04. This
concept of spread in repeated sampling is probably the most useful
thing to keep in mind as we move through this section.

Under the four assumptions we discussed earlier, the OLS
estimators are unbiased. But these assumptions are not sufficient to



tell us anything about the variance in the estimator itself. The
assumptions help inform our beliefs that the estimated coefficients,
on average, equal the parameter values themselves. But to speak
intelligently about the variance of the estimator, we need a measure
of dispersion in the sampling distribution of the estimators. As we've
been saying, this leads us to the variance and ultimately to the
standard deviation. We could characterize the variance of the OLS
estimators under the four assumptions. But for now, it's easiest to
introduce an assumption that simplifies the calculations. We’'ll keep
the assumption ordering we've been using and call this the fifth
assumption.

The fifth assumption is the homoskedasticity or constant variance
assumption. This assumption stipulates that our population error
term, u, has the same variance given any value of the explanatory
variable, x. Formally, this is:

V(u|x)=o? (2.42)

When | was first learning this material, | always had an unusually

hard time wrapping my head around 2. Part of it was because of my
humanities background; | didn’t really have an appreciation for
random variables that were dispersed. | wasn’t used to taking a lot of
numbers and trying to measure distances between them, so things

were slow to click. So if you're like me, try this. Think of 02 as just a
positive number like 2 or 8. That number is measuring the spreading
out of underlying errors themselves. In other words, the variance of
the errors conditional on the explanatory variable is simply some
finite, positive number. And that number is measuring the variance of
the stuff other than x that influence the value of y itself. And because
we assume the zero conditional mean assumption, whenever we
assume homoskedasticity, we can also write:

E(W? | x) =% =E(U?) (2.43)

Now, under the first, fourth, and fifth assumptions, we can write:



E(y [ X) = fo+ px

(2.44)
Viy|x) =0

So the average, or expected, value of y is allowed to change with x,
but if the errors are homoskedastic, then the variance does not
change with x. The constant variance assumption may not be
realistic; it must be determined on a case-by-case basis.

Theorem: Sampling variance of OLS. Under assumptions 1 and 2,
we get:

2

-~ o
V(ﬂ‘l | X) = n
: X — X 2
2= (% =X) (2.45)
~ QQT.
2 1 n 2
R 7\ 5 2 i Xi
To show this, write, as before,
n
pr=p+ Z wiu; (2.47)
i=1
where w; = “;S_Tﬂ' We are treating this as nonrandom in the

derivation. Because B, is a constant, it does not affect V(). Now,

we need to use the fact that, for uncorrelated random variables, the
variance of the sum is the sum of the variances. The {u;i=1, ... ,n}

are actually independent across i and uncorrelated. Remember: if we
know x, we know w. So:



V(Br | x)=Var(Bi+ > wiu; | X)

i=1
n
— Var (Zw,-u,- | x)
i=1

n

= ZVar(w,—u,— | X)
i=1
n

— Zw,?\/ar(u,- | X)
i=1

n
= Zw,?az
i=1
n
=02 ZW,Q
i=1

(2.48)

(2.49)

(2.50)

(2.57)

(2.52)

(2.53)

where the penultimate equality condition used the fifth assumption

so that the variance of u; does not depend on x;.

(X —
Z Z SSTQ

_ Zf:T(XI_X)Z
- SST?2

SST,

~ SST?
1

~ SST,

We have shown:

V(B) = SST

Now we have:

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)



A couple of points. First, this is the “standard” formula for the
variance of the OLS slope estimator. It is not valid if the fifth
assumption, of homoskedastic errors, doesn't hold. The
homoskedasticity assumption is needed, in other words, to derive
this standard formula. But the homoskedasticity assumption is not
used to show unbiasedness of the OLS estimators. That requires
only the first four assumptions.

Usually, we are interested in B8,. We can easily study the two

factors that affect its variance: the numerator and the denominator.

0.2

SST,

V() = (2.59)

As the error variance increases—that is, as o? increases—so does
the variance in our estimator. The more “noise” in the relationship
between y and x (i.e., the larger the variability in u), the harder it is to
learn something about 4. In contrast, more variation in {x;} is a good

thing. As SST, rises, V() |.

Notice that ST‘ is the sample variance in x. We can think of this

as getting close to the population variance of x, r,rf, as n gets large.
This means:

SST, ~ no? (2.60)

which means that as n grows, V(ﬁ]) shrinks at the rate of l This is
n

why more data is a good thing: it shrinks the sampling variance of
our estimators. X
The standard deviation of f, is the square root of the variance. So:

o

v/ SST;

This turns out to be the measure of variation that appears in
confidence intervals and test statistics.

sd(py) = (2.67)




Next we look at estimating the error variance. In the formula,

2
5T we can compute SST, from {x;: i=1, ... ,n}. But we need

to estimate o2. Recall that 02 = E(u?). Therefore, if we could observe
a sample on the errors, {u;z i=1, ... ,n}, an unbiased estimator of ¢?

V() =

would be the sample average:
.l n
— ) 2.62
- ;u (2.62)

But this isn't an estimator that we can compute from the data we
observe, because u; are unobserved. How about replacing each u;

with its “estimate,” the OLS residual §;?
ui=Yi— Po— PiXi (2.63)
G =yi—fo— P (2.64)

Whereas u; cannot be computed, ; can be computed from the data

because it depends on the estimators, ﬁn and ;}1. But, except by
sheer coincidence, u; = g, for any i.

Ui = yi— Po — BXi (2.65)
= (Bo+ prXi + Uj) — Bo — Brxi (2.66)
= Ui — (o — o) — (Br — 1)x; (2.67)

Note that E(fiy) = By and E(i;) = B4, but the estimators almost

always differ from the population values in a sample. So what about
this as an estimator of g2?

T~y 1
— Y G’ =SSR (2.68)
n i=1 n



It is a true estimator and easily computed from the data after OLS.
As it turns out, this estimator is slightly biased: its expected value is

a little less than o2. The estimator does not acc_ount for the two
restrictions on the residuals used to obtain /i o and g

Y Gi=0 (2.69)
i=1
Y xili =0 (2.70)
i=1

There is no such restriction on the unobserved errors. The unbiased

estimator, therefore, of 02 uses a degrees-of-freedom adjustment.
The residuals have only n-2, not n, degrees of freedom. Therefore:

1
52=——=SSR 2.71
0"=—— (2.71)

We now propose the following theorem. The unbiased estimator of
o2 under the first five assumptions is:

E(G?) =02 (2.72)

In most software packages, regression output will include:

c=+0c2 (2.73)
SSR
=% (2.74)

This is an estimator of sd(u), the standard deviation of the population

error. One small glitch is that 7 is not unbiased for .28 This will not
matter for our purposes: 5 is called the standard error of the
regression, which means that it is an estimate of the standard
deviation of the error in the regression. The software package Stata
calls it the root mean squared error.



Given 7, we can now estimate sd(/,) and sd(fi o). The estimates
of these are called the standard errors of the ﬁj. We will use these a

lot. Almost all regression packages report the standard errors in a
column next to the coefficient estimates. We can just plug  in for o:

—_—

A/ SST,

where both the numerator and the denominator are computed from
the data. For reasons we will see, it is useful to report the standard
errors below the corresponding coefficient, usually in parentheses.

se(By) = (2.75)

Robust standard errors. How realistic is it that the variance in the
errors is the same for all slices of the explanatory variable, x? The
short answer here is that it is probably unrealistic. Heterogeneity is
just something I've come to accept as the rule, not the exception, so
if anything, we should be opting in to believing in homoskedasticity,
not opting out. You can just take it as a given that errors are never
homoskedastic and move forward to the solution.

This isn’t completely bad news, because the unbiasedness of our
regressions based on repeated sampling never depended on
assuming anything about the variance of the errors. Those four
assumptions, and particularly the zero conditional mean assumption,
guaranteed that the central tendency of the coefficients under
repeated sampling would equal the true parameter, which for this
book is a causal parameter. The problem is with the spread of the
coefficients. Without homoskedasticity, OLS no longer has the
minimum mean squared errors, which means that the estimated
standard errors are biased. Using our sampling metaphor, then, the
distribution of the coefficients is probably larger than we thought.
Fortunately, there is a solution. Let's write down the variance
equation under heterogeneous variance terms:

> i (X —X) 0}
SST2

Var () = (2.76)



Notice the isubscript in our (}'E term; that means variance is not a
constant When ;:.r — g2 for aII I, this formula reduces to the usual

form, — ssT7 But when that isn’t true, then we have a problem called

heteroskedastic errors. A valid estimator of Var( ,.r;]) for
heteroskedasticity of any form (including homoskedasticity) is

=22
S — %)

Var (b = ==ger

which is easily computed from the data after the OLS regression. We
have Friedhelm Eicker, Peter J. Huber, and Halbert White to thank

for this solution (White [1980]).2Z The solution for heteroskedasticity
goes by several names, but the most common is “robust” standard
error.

Cluster robust standard errors. People will try to scare you by
challenging how you constructed your standard errors.
Heteroskedastic errors, though, aren’t the only thing you should be
worried about when it comes to inference. Some phenomena do not
affect observations individually, but they do affect groups of
observations that involve individuals. And then they affect those
individuals within the group in a common way. Say you want to
estimate the effect of class size on student achievement, but you
know that there exist unobservable things (like the teacher) that
affect all the students equally. If we can commit to independence of
these wunobservables across classes, but individual student
unobservables are correlated within a class, then we have a situation
in which we need to cluster the standard errors. Before we dive into
an example, I'd like to start with a simulation to illustrate the problem.

As a baseline for this simulation, let's begin by simulating
nonclustered data and analyze least squares estimates of that
nonclustered data. This will help firm up our understanding of the

problems that occur with least squares when data is clustered.28
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R (continued)

77

78 # Distribution of the estimator and confidence intervals

79 sim_params <-c(.4,0) #betal = 0: no effect of x ony

80 sim_nocluster <- run_cluster_sim(n_sims = 10000, param = sim_params, rho = 0)
81 hist_nocluster <- ggplot(sim_nocluster, aes(b1)) +

82 geom_histogram(color = 'black') +

83 geom_vline(xintercept = sim_params[2], color = 'red")

84 print(hist_nocluster)

85

86 ci95_nocluster <- ggplot(sample_n(sim_nocluster, 100),
87 aes(x = reorder(id, b1), y = b1,

88 ymin = ci95_lower, ymax = ci95_upper,
89 color = param_caught)) +

90 geom_hline(yintercept = sim_params(2], linetype = 'dashed') +

91 geom_pointrange() +

92 labs(x = 'sim ID', y = 'b1', title = 'Randomly Chosen 100 95% Cls') +

93  scale_color_discrete(name = 'True param value', labels = ¢('missed’, 'hit')) +
94  coord_flip()

95 print(ci95_nocluster)

96

97 sim_nocluster %>% summarize(type1_error = 1 - sum(param_caught)/n())

98

929

As we can see in Eigure 7, the least squares estimate is centered
on its true population parameter.

Setting the significance level at 5%, we should incorrectly reject
the null that 8, =0 about 5% of the time in our simulations. But let’s

check the confidence intervals. As can be seen in Figure 8, about
95% of the 95% confidence intervals contain the true value of B4,

which is zero. In words, this means that we incorrectly reject the null
about 5% of the time.

But what happens when we use least squares with clustered data?
To see that, let's resimulate our data with observations that are no
longer independent draws in a given cluster of observations.



Least squares estimates of non-clustered data
Monte Carlo simulation of the slope
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Figure 7. Distribution of the least squares estimator over 1,000 random

draws.




Least squares estimates of non-clustered data
95% Confidence interval of the slope
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Figure 8. Distribution of the 95% confidence intervals with shading showing
those that are incorrectly rejecting the null.
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R

cluster2.R
1 #- Analysis of Clustered Data - part 2
2 #- Courtesy of Dr. Yuki Yanai,
3  # http://yukiyanai.github.io/teaching/rm1/contents/R/clustered-data-
< analysis.html

4
5 library('arm')
6 library('mvtnorm')
7 library('lme4")
8 library("multiwayvcov')
9 library('clusterSEs')
10 library('ggplot2')
11 library('dplyr')
12 library('haven')
13

14 #Data with clusters

15 sim_params <- c(.4, 0) # betal = 0: no effect of xony

16 sim_cluster_ols <- run_cluster_sim(n_sims = 10000, param = sim_params)
17 hist_cluster_ols <- hist_nocluster %+% sim_cluster_ols

18 print(hist_cluster_ols)

As can be seen in Figure 9, the least squares estimate has a
narrower spread than that of the estimates when the data isn’t
clustered. But to see this a bit more clearly, let's look at the
confidence intervals again.



Least squares estimates of clustered Data
Monte Carlo simulation of the slope
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Figure 9. Distribution of the least squares estimator over 1,000 random
draws.






Least squares estimates of clustered data
95% Confidence interval of the slope
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Figure 10. Distribution of 1,000 95% confidence intervals, with darker region
representing those estimates that incorrectly reject the null.

Eigure 10 shows the distribution of 95% confidence intervals from
the least squares estimates. As can be seen, a much larger number
of estimates incorrectly rejected the null hypothesis when the data
was clustered. The standard deviation of the estimator shrinks under
clustered data, causing us to reject the null incorrectly too often. So
what can we do?

STATA

cluster4.do
* Robust Estimates
clear all
local n_sims = 1000
set obs " n_sims'

* Create the variables that will contain the results of each simulation
generate beta_0_robust =.

generate beta_0_|_robust = .

generate beta_0_u_robust = .

generate beta_1_robust = .

OV o NG RARE WN=

=

(continued)
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100
101
102
103
104
105
106

STATA (continued)

replace beta_1_robust = *b1_robust' in " i'
replace beta_1_|_robust = beta_1_robust - * critical_value'*_se[x]
replace beta_1_u_robust = beta_1_robust + * critical_value'*_se[x]

}
}

* Plot the histogram of the parameters estimates of the robust least squares
gen false = (beta_1_|_robust > 0)

replace false = 2 if beta_1_u_robust < 0

replace false = 3 if false == 0

tab false

* Plot the parameter estimate

hist beta_1_robust, frequency addplot(pci 0 0 110 0) title("Robust least

< squares estimates of clustered data") subtitle(" Monte Carlo simulation of
the slope") legend(label(1 "Distribution of robust least squares
estimates") label(2 "True population parameter")) xtitle("Parameter
estimate”)

L r!

sort beta_1_robust
gen int sim_ID = _n
gen beta_1_True =0

* Plot of the Confidence Interval
twoway rcap beta_1_|_robust beta_1_u_robust sim_ID if beta_1_|_robust > 0 |
< beta_1_u_robust < 0, horizontal Icolor(pink) || || rcap beta_1_|_robust

beta_1_u_robust sim_ID if beta_1_|_robust < 0 & beta_1_u_robust > 0,
horizontal ysc(r(0)) Il || connected sim_ID beta_1_robust || || line sim_ID
beta_1_True, Ipattern(dash) Icolor(black) Iwidth(1) title("Robust least
squares estimates of clustered data") subtitle(" 95% Confidence interval
of the slope”) legend(label(1 "Missed") label(2 "Hit") label(3 "Robust
estimates") label(4 "True population parameter")) xtitle("Parameter

estimates") ytitle("Simulation")

L



R

cluster4.R
#- Analysis of Clustered Data - part 4
#- Courtesy of Dr. Yuki Yanai,
#- http://yukiyanai.github.io/teaching/rm1/contents/R/clustered-data-
< analysis.html

W N =

library('arm')
library('mvtnorm')
library('lme4')
library('multiwayvcov')
9 library('clusterSEs')
(!
(
(

0o~ oy A

10 library('ggplot2')

11 library('dplyr")

12 library('haven')

13

14  #clustered robust

15 sim_params <-c(.4,0) #betal =0: no effect of xony

16 sim_cluster_robust <- run_cluster_sim(n_sims = 10000, param = sim_params,
17 cluster_robust = TRUE)

18

19 hist_cluster_robust <- hist_nocluster %+% sim_cluster_ols

20 print(hist_cluster_robust)

21

22 #Confidence Intervals

23 ci95_cluster_robust <- ci95_nocluster %+% sample_n(sim_cluster_robust, 100)
24 print(ci95_cluster_robust)

25

26 sim_cluster_robust %>% summarize(typel_error = 1 - sum(param_caught)/n())

Now in this case, notice that we included the “, cluster(cluster_ID)”
syntax in our regression command. Before we dive in to what this
syntax did, let’s look at how the confidence intervals changed. Figure
11 shows the distribution of the 95% confidence intervals where,
again, the darkest region represents those estimates that incorrectly
rejected the null. Now, when there are observations whose errors are
correlated within a cluster, we find that estimating the model using
least squares leads us back to a situation in which the type | error
has decreased considerably.



Robust least squares estimates of clustered data
95% Confidence interval of the slope
1000

800 |

600 -

Simulation

400 - 1
1
[ |
1 :

e 1 == Missed
1 Hit
: —&— Robust estimates

. N o = = Trye population parameter

-4 -2 0 2 4
Parameter estimates

Figure 11. Distribution of 1,000 95% confidence intervals from a clustered
robust least squares regression, with dashed region representing those
estimates that incorrectly reject the null.

This leads us to a natural question: what did the adjustment of the
estimator’s variance do that caused the type | error to decrease by
so much? Whatever it's doing, it sure seems to be working! Let’s
dive in to this adjustment with an example. Consider the following
model:

Yig=Xj;f+Uygy wherel,. .G

and
Eluigu]
which equals zero if g = g' and equals o), if g = g
Let’s stack the data by cluster first.



Yg = XgB + Ug

The OLS estimator is still 5 = E[XX]"'XY. We just stacked the data,

which doesn’t affect the estimator itself. But it does change the
variance.

V(B) = E[[X’X]—TX’QX[X’X]—T]

With this in mind, we can now write the variance-covariance matrix
for clustered data as

G
V(B) = [X'X]™ {Zx’gﬁ‘gﬁ'g] X' X1
i=1

Adjusting for clustered data will be quite common in your applied
work given the ubiquity of clustered data in the first place. It's
absolutely essential for working in the panel contexts, or in repeated
cross-sections like the difference-in-differences design. But it also
turns out to be important for experimental design, because often, the
treatment will be at a higher level of aggregation than the microdata
itself. In the real world, though, you can never assume that errors are
independent draws from the same distribution. You need to know
how your variables were constructed in the first place in order to
choose the correct error structure for calculating your standard
errors. If you have aggregate variables, like class size, then you'll
need to cluster at that level. If some treatment occurred at the state
level, then you’ll need to cluster at that level. There’s a large
literature available that looks at even more complex error structures,
such as multi-way clustering [Cameron et al., 2011].

But even the concept of the sample as the basis of standard errors
may be shifting. I's becoming increasingly less the case that
researchers work with random samples; they are more likely working
with administrative data containing the population itself, and thus the

concept of sampling uncertainty becomes strained.22 For instance,
Manski and Pepper [2018] wrote that “random sampling assumptions



. . are not natural when considering states or counties as units of
observation.” So although a metaphor of a superpopulation may be
useful for extending these classical uncertainty concepts, the
ubiquity of digitized administrative data sets has led econometricians
and statisticians to think about uncertainty in other ways.

New work by Abadie et al. [2020] explores how sampling-based
concepts of the standard error may not be the right way to think
about uncertainty in the context of causal inference, or what they call
design-based uncertainty. This work in many ways anticipates the
next two chapters because of its direct reference to the concept of
the counterfactual. Design-based uncertainty is a reflection of not
knowing which values would have occurred had some intervention
been different in counterfactual. And Abadie et al. [2020] derive
standard errors for design-based uncertainty, as opposed to
sampling-based uncertainty. As luck would have it, those standard
errors are usually smaller.

Let’s now move into these fundamental concepts of causality used
in applied work and try to develop the tools to understand how
counterfactuals and causality work together.

Notes

41 The probability rolling a 5 using one six-sided die is 16 = 0.167.

2 The set notation U means “union” and refers to two events occurring
together.

3 Why are they different? Because 0.83 is an approximation of Pr(B | A),
which was technically 0.833 . . . trailing.

4 There’s an ironic story in which someone posed the Monty Hall question to
the columnist, Marilyn vos Savant. Vos Savant had an extremely high IQ and
so people would send in puzzles to stump her. Without the Bayesian
decomposition, using only logic, she got the answer right. Her column enraged
people, though. Critics wrote in to mansplain how wrong she was, but in fact it
was they who were wrong.

5 For a more complete review of regression, see Wooldridge [2010] and
Wooldridge [2015]. | stand on the shoulders of giants.

6 The law of total probability requires that all marginal probabilities sum to
unity.



7 Whenever possible, | try to use the “hat” to represent an estimated
statistic. Hence §2 instead of just S2. Butitis probably more common to see

the sample variance represented as s2,

8 This is not necessarily causal language. We are speaking first and
generally in terms of two random variables systematically moving together in
some measurable way.

9 Notice that the conditional expectation passed through the linear function
leaving a constant, because of the first property of the expectation operator,
and a constant times x. This is because the conditional expectation of E[X | X]
= X. This leaves us with E[u | X] which under zero conditional mean is equal to
0.

10 See equation 2.23.

11 Notice that we are dividing by n, not n — 1. There is no degrees-of-
freedom correction, in other words, when using samples to calculate means.
There is a degrees-of-freedom correction when we start calculating higher
moments.

12 Recall from much earlier that:

Y xi=0Wi-Y) =) _x(i—y)
i=1 i=1
=Y (=X
i=1

n
=Y _xiyi —n(Xy)

i=1

13 It isn’t exactly 0 even though u and x are independent. Think of it as u
and x are independent in the population, but not in the sample. This is
because sample characteristics tend to be slightly different from population
properties due to sampling error.

14 Using the Stata code from Table 6, you can show these algebraic
properties yourself. | encourage you to do so by creating new variables
equaling the product of these terms and collapsing as we did with the other
variables. That sort of exercise may help convince you that the
aforementioned algebraic properties always hold.

15 Recall the earlier discussion about degrees-of-freedom correction.

16 This section is a review of traditional econometrics pedagogy. We cover
it for the sake of completeness. Traditionally, econometricians motivated their



discuss of causality through ideas like unbiasedness and consistency.
47 Told you we would use this result a lot.

18 I find it interesting that we see so many % terms when working with

regression. They show up constantly. Keep your eyes peeled.

19 The standard error | found from running this on one sample of data was
0.0403616.

20 | highly encourage the interested reader to study Angrist and Pischke
[2009], who have an excellent discussion of LIE there.

21 Let’s take a concrete example of this proof. Let h(x;) = a + y x;. Then take
the joint expectation E(h(x;)€;)=E([a+y xjl€;). Then take conditional expectations
E(a| x)+ E(y | x)E(x; | X;)E(€ | x;)} = a +x;E(¢; | x;) = O after we pass the
conditional expectation through.

22 See Angrist and Pischke [2009] for a proof.

23 A helpful proof of the Frisch-Waugh-Lovell theorem can be found in
Lovell [2008].

24 \While randomly having kids may sound fun, | encourage you to have kids
when you want to have them. Contact your local high school health teacher to
learn more about a number of methods that can reasonably minimize the
number of random children you create.

25 Almost certainly a ridiculous assumption, but stick with me.

26 There does exist an unbiased estimator of o, but it's tedious and hardly
anyone in economics seems to use it. See Holtzman [1950].

27 No one even bothers to cite White [1980] anymore, just like how no one
cites Leibniz or Newton when using calculus. Eicker, Huber, and White created
a solution so valuable that it got separated from the original papers when it
was absorbed into the statistical toolkit.

28 Hat tip to Ben Chidmi, who helped create this simulation in Stata.

29 Usually we appeal to superpopulations in such situations where the
observed population is simply itself a draw from some “super” population.



Directed Acyclic Graphs

Everyday it rains, so everyday the pain Went ignored and I’'m sure ignorance
was to blame But life is a chain, cause and effected.
Jay-Z

The history of graphical causal modeling goes back to the early
twentieth century and Sewall Wright, one of the fathers of modern
genetics and son of the economist Philip Wright. Sewall developed
path diagrams for genetics, and Philip, it is believed, adapted them

for econometric identification [Matsueda, 2012].1

But despite that promising start, the use of graphical modeling for
causal inference has been largely ignored by the economics
profession, with a few exceptions [Heckman and Pinto, 2015;
Imbens, 2019]. It was revitalized for the purpose of causal inference
when computer scientist and Turing Award winner Judea Pearl
adapted them for his work on artificial intelligence. He explained this
in his mangum opus, which is a general theory of causal inference
that expounds on the usefulness of his directed graph notation
[Pearl, 2009]. Since graphical models are immensely helpful for
designing a credible identification strategy, | have chosen to include
them for your consideration. Let’s review graphical models, one of

Pearl’s contributions to the theory of causal inference.2

Introduction to DAG Notation

Using directed acyclic graphical (DAG) notation requires some
upfront statements. The first thing to notice is that in DAG notation,
causality runs in one direction. Specifically, it runs forward in time.
There are no cycles in a DAG. To show reverse causality, one would
need to create multiple nodes, most likely with two versions of the
same node separated by a time index. Similarly, simultaneity, such
as in supply and demand models, is not straightforward with DAGs



[Heckman and Pinto, 2015]. To handle either simultaneity or reverse
causality, it is recommended that you take a completely different
approach to the problem than the one presented in this chapter.
Third, DAGs explain causality in terms of counterfactuals. That is, a
causal effect is defined as a comparison between two states of the
world—one state that actually happened when some intervention
took on some value and another state that didn't happen (the
“counterfactual”) under some other intervention.

Think of a DAG as like a graphical representation of a chain of
causal effects. The causal effects are themselves based on some
underlying, unobserved structured process, one an economist might
call the equilibrium values of a system of behavioral equations,
which are themselves nothing more than a model of the world. All of
this is captured efficiently using graph notation, such as nodes and
arrows. Nodes represent random variables, and those random
variables are assumed to be created by some data-generating

process.2 Arrows represent a causal effect between two random
variables moving in the intuitive direction of the arrow. The direction
of the arrow captures the direction of causality.

Causal effects can happen in two ways. They can either be direct
(e.g., D — Y), or they can be mediated by a third variable (e.g., D —
X — Y). When they are mediated by a third variable, we are
capturing a sequence of events originating with D, which may or may
not be important to you depending on the question you're asking.

A DAG is meant to describe all causal relationships relevant to the
effect of D on Y. What makes the DAG distinctive is both the explicit
commitment to a causal effect pathway and the complete
commitment to the /ack of a causal pathway represented by missing
arrows. In other words, a DAG will contain both arrows connecting
variables and choices to exclude arrows. And the lack of an arrow
necessarily means that you think there is no such relationship in the
data—this is one of the strongest beliefs you can hold. A complete
DAG will have all direct causal effects among the variables in the
graph as well as all common causes of any pair of variables in the
graph.



At this point, you may be wondering where the DAG comes from.
I's an excellent question. It may be the question. A DAG is
supposed to be a theoretical representation of the state-of-the-art
knowledge about the phenomena you’re studying. It's what an expert
would say is the thing itself, and that expertise comes from a variety
of sources. Examples include economic theory, other scientific
models, conversations with experts, your own observations and
experiences, literature reviews, as well as your own intuition and
hypotheses.

| have included this material in the book because | have found
DAGs to be useful for understanding the critical role that prior
knowledge plays in identifying causal effects. But there are other
reasons too. One, | have found that DAGs are very helpful for
communicating research designs and estimators if for no other
reason than pictures speak a thousand words. This is, in my
experience, especially true for instrumental variables, which have a
very intuitive DAG representation. Two, through concepts such as
the backdoor criterion and collider bias, a well-designed DAG can
help you develop a credible research design for identifying the
causal effects of some intervention. As a bonus, | also think a DAG
provides a bridge between various empirical schools, such as the
structural and reduced form groups. And finally, DAGs drive home
the point that assumptions are necessary for any and all
identification of causal effects, which economists have been
hammering at for years [Wolpin, 2013].

A simple DAG. Let’'s begin with a simple DAG to illustrate a few
basic ideas. | will expand on it to build slightly more complex ones
later.

D——Y

N
X

In this DAG, we have three random variables: X, D, and Y. There
is a direct path from D to Y, which represents a causal effect. That



path is represented by D — Y. But there is also a second path from
D to Y called the backdoor path. The backdoor path is D—X—-Y.
While the direct path is a causal effect, the backdoor path is not
causal. Rather, it is a process that creates spurious correlations
between D and Y that are driven solely by fluctuations in the X
random variable.

The idea of the backdoor path is one of the most important things
we can learn from the DAG. It is similar to the notion of omitted
variable bias in that it represents a variable that determines the
outcome and the treatment variable. Just as not controlling for a
variable like that in a regression creates omitted variable bias,
leaving a backdoor open creates bias. The backdoor path is
D—X—Y. We therefore call X a confounder because it jointly
determines D and Y, and so confounds our ability to discern the
effect of D on Y in naive comparisons.

Think of the backdoor path like this: Sometimes when D takes on
different values, Y takes on different values because D causes Y.
But sometimes D and Y take on different values because X takes on
different values, and that bit of the correlation between D and Y is
purely spurious. The existence of two causal pathways is contained
within the correlation between D and Y.

Let’s look at a second DAG, which is subtly different from the first.
In the previous example, X was observed. We know it was observed
because the direct edges from X to D and Y were solid lines. But
sometimes there exists a confounder that is unobserved, and when
there is, we represent its direct edges with dashed lines. Consider
the following DAG:

Same as before, U is a noncollider along the backdoor path from D
to Y, but unlike before, U is unobserved to the researcher. It exists,
but it may simply be missing from the data set. In this situation, there
are two pathways from D to Y. There’s the direct pathway, D—Y,



which is the causal effect, and there's the backdoor pathway,
D—U—-Y. And since U is unobserved, that backdoor pathway is
open.

Let's now move to another example, one that is slightly more
realistic. A classical question in labor economics is whether college
education increases earnings. According to the Becker human
capital model [Becker, 1994], education increases one’s marginal
product, and since workers are paid their marginal product in
competitive markets, education also increases their earnings. But
college education is not random; it is optimally chosen given an
individual’'s subjective preferences and resource constraints. We
represent that with the following DAG. As always, let D be the
treatment (e.g., college education) and Y be the outcome of interest
(e.g., earnings). Furthermore, let PE be parental education, / be
family income, and B be unobserved background factors, such as
genetics, family environment, and mental ability.

P

-
-
-----
-

This DAG is telling a story. And one of the things | like about DAGs
is that they invite everyone to listen to the story together. Here is my
interpretation of the story being told. Each person has some
background. It's not contained in most data sets, as it measures
things like intelligence, contentiousness, mood stability, motivation,
family dynamics, and other environmental factors—hence, it is
unobserved in the picture. Those environmental factors are likely
correlated between parent and child and therefore subsumed in the
variable B.

Background causes a child’s parent to choose her own optimal
level of education, and that choice also causes the child to choose
their level of education through a variety of channels. First, there is
the shared background factors, B. Those background factors cause



the child to choose a level of education, just as her parent had.
Second, there’s a direct effect, perhaps through simple modeling of
achievement or setting expectations, a kind of peer effect. And third,
there’s the effect that parental education has on family earnings, |/,
which in turn affects how much schooling the child receives. Family
earnings may itself affect the child’s future earnings through
bequests and other transfers, as well as external investments in the
child’s productivity.

This is a simple story to tell, and the DAG tells it well, but | want to
alert your attention to some subtle points contained in this DAG. The
DAG is actually telling two stories. It is telling what is happening, and
it is telling what is not happening. For instance, notice that B has no
direct effect on the child’s earnings except through its effect on
schooling. Is this realistic, though? Economists have long maintained
that unobserved ability both determines how much schooling a child
gets and directly affects the child’s future earnings, insofar as
intelligence and motivation can influence careers. But in this DAG,
there is no relationship between background and earnings, which is
itself an assumption. And you are free to call foul on this assumption
if you think that background factors affect both schooling and the
child’s own productivity, which itself should affect wages. So what if
you think that there should be an arrow from B to Y? Then you would
draw one and rewrite all the backdoor paths between D and Y.

Now that we have a DAG, what do we do? | like to list out all direct
and indirect paths (i.e., backdoor paths) between D and Y. Once |
have all those, | have a better sense of where my problems are. So:

1. D —Y (the causal effect of education on earnings)
2. D —I|—Y (backdoor path 1)

3. D —PE —I| —Y (backdoor path 2)

4. D «—B —PE —| —Y (backdoor path 3)

So there are four paths between D and Y: one direct causal effect
(which arguably is the important one if we want to know the return on
schooling) and three backdoor paths. And since none of the
variables along the backdoor paths is a collider, each of the
backdoors paths is open. The problem, though, with open backdoor



paths is that they create systematic and independent correlations
between D and Y. Put a different way, the presence of open
backdoor paths introduces bias when comparing educated and less-
educated workers.

Colliding. But what is this collider? It's an unusual term, one you may
have never seen before, so let’s introduce it with another example.
I’'m going to show you what a collider is graphically using a simple
DAG, because it's an easy thing to see and a slightly more
complicated phenomenon to explain. So let’s work with a new DAG.
Pay careful attention to the directions of the arrows, which have
changed.

D——Y

N
X

As before, let’s list all paths from D to Y:

1. D —Y (causal effect of D on YY)
2. D -X <Y (backdoor path 1)

Just like last time, there are two ways to get from D to Y. You can get
from D to Y using the direct (causal) path, D —Y. Or you can use the
backdoor path, D —X «Y. But something is different about this
backdoor path; do you see it? This time the X has two arrows
pointing to it, not away from it. When two variables cause a third
variable along some path, we call that third variable a “collider.” Put
differently, X is a collider along this backdoor path because D and
the causal effects of Y collide at X. But so what? What makes a
collider so special? Colliders are special in part because when they
appear along a backdoor path, that backdoor path is closed simply
because of their presence. Colliders, when they are left alone,
always close a specific backdoor path.

Backdoor criterion. We care about open backdoor paths because
they they create systematic, noncausal correlations between the
causal variable of interest and the outcome you are trying to study. In



regression terms, open backdoor paths introduce omitted variable
bias, and for all you know, the bias is so bad that it flips the sign
entirely. Our goal, then, is to close these backdoor paths. And if we
can close all of the otherwise open backdoor paths, then we can
isolate the causal effect of D on Y using one of the research designs
and identification strategies discussed in this book. So how do we
close a backdoor path?

There are two ways to close a backdoor path. First, if you have a
confounder that has created an open backdoor path, then you can
close that path by conditioning on the confounder. Conditioning
requires holding the variable fixed using something like
subclassification, matching, regression, or another method. It is
equivalent to “controlling for” the variable in a regression. The
second way to close a backdoor path is the appearance of a collider
along that backdoor path. Since colliders always close backdoor
paths, and conditioning on a collider always opens a backdoor path,
choosing to ignore the colliders is part of your overall strategy to
estimate the causal effect itself. By not conditioning on a collider, you
will have closed that backdoor path and that takes you closer to your
larger ambition to isolate some causal effect.

When all backdoor paths have been closed, we say that you have
come up with a research design that satisfies the backdoor criterion.
And if you have satisfied the backdoor criterion, then you have in
effect isolated some causal effect. But let's formalize this: a set of
variables X satisfies the backdoor criterion in a DAG if and only if X
blocks every path between confounders that contain an arrow from D
to Y. Let’'s review our original DAG involving parental education,
background and earnings.




The minimally sufficient conditioning strategy necessary to achieve
the backdoor criterion is the control for /, because | appeared as a
noncollider along every backdoor path (see earlier). It might literally
be no simpler than to run the following regression:

Y =« +5D;+ﬂ’;‘ + &;

By simply conditioning on /, your estimated ’5‘ takes on a causal

interpretation.2

But maybe in hearing this story, and studying it for yourself by
reviewing the literature and the economic theory surrounding it, you
are skeptical of this DAG. Maybe this DAG has really bothered you
from the moment you saw me produce it because you are skeptical
that B has no relationship to Y except through D or PE. That
skepticism leads you to believe that there should be a direct
connection from B to Y, not merely one mediated through own

education.

L
- -

1’

Y

Note that including this new backdoor path has created a problem
because our conditioning strategy no longer satisfies the backdoor
criterion. Even controlling for /, there still exist spurious correlations
between D and Y due to the D—B—Y backdoor path. Without more
information about the nature of B—Y and B—D, we cannot say much
more about the partial correlation between D and Y. We just are not
legally allowed to interpret 5 from our regression as the causal effect
ofDon.

More examples of collider bias. The issue of conditioning on a
collider is important, so how do we know if we have that problem or



not? No data set comes with a flag saying “collider” and
“‘confounder.” Rather, the only way to know whether you have
satisfied the backdoor criterion is with a DAG, and a DAG requires a
model. It requires in-depth knowledge of the data-generating process
for the variables in your DAG, but it also requires ruling out
pathways. And the only way to rule out pathways is through logic
and models. There is no way to avoid it—all empirical work requires
theory to guide it. Otherwise, how do you know if you've conditioned
on a collider or a noncollider? Put differently, you cannot identify
treatment effects without making assumptions.

In our earlier DAG with collider bias, we conditioned on some
variable X that was a collider—specifically, it was a descendent of D
and Y. But that is just one example of a collider. Oftentimes, colliders
enter into the system in very subtle ways. Let's consider the
following scenario: Again, let D and Y be child schooling and child
future earnings. But this time we introduce three new variables—U1,
which is father’s unobserved genetic ability; U2, which is mother’s
unobserved genetic ability; and /, which is joint family income.
Assume that / is observed but that U, is unobserved for both parents.

Notice in this DAG that there are several backdoor paths from D to
Y. They are as follows:

1. D—U2-Y

2. D—U1->Y

3. D—U1—-I—U2-Y

4. D—U2—I—U1-=Y



Notice, the first two are open-backdoor paths, and as such, they
cannot be closed, because U1 and U2 are not observed. But what if
we controlled for / anyway? Controlling for / only makes matters
worse, because it opens the third and fourth backdoor paths, as /
was a collider along both of them. It does not appear that any
conditioning strategy could meet the backdoor criterion in this DAG.
And any strategy controlling for / would actually make matters worse.
Collider bias is a difficult concept to understand at first, so I've
included a couple of examples to help you sort through it.

Discrimination and collider bias. Let's examine a real-world example
around the problem of gender discrimination in labor-markets. It is
common to hear that once occupation or other characteristics of a
job are conditioned on, the wage disparity between genders
disappears or gets smaller. For instance, critics once claimed that
Google systematically underpaid its female employees. But Google
responded that its data showed that when you take “location, tenure,
job role, level and performance” into consideration, women’s pay is
basically identical to that of men. In other words, controlling for
characteristics of the job, women received the same pay.

But what if one of the ways gender discrimination creates gender
disparities in earnings is through occupational sorting? If
discrimination happens via the occupational match, then naive
contrasts of wages by gender controlling for occupation
characteristics will likely understate the presence of discrimination in
the marketplace. Let me illustrate this with a DAG based on a simple
occupational sorting model with unobserved heterogeneity.



Notice that there is in fact no effect of female gender on earnings;
women are assumed to have productivity identical to that of men.
Thus, if we could control for discrimination, we’'d get a coefficient of
zero as in this example because women are, initially, just as

productive as men.2

But in this example, we aren’t interested in estimating the effect of
being female on earnings; we are interested in estimating the effect
of discrimination itself. Now you can see several noticeable paths
between discrimination and earnings. They are as follows:

1. D—-0-=Y

2. D-0—A-=Y

The first path is not a backdoor path; rather, it is a path whereby
discrimination is mediated by occupation before discrimination has
an effect on earnings. This would imply that women are
discriminated against, which in turn affects which jobs they hold, and
as a result of holding marginally worse jobs, women are paid less.
The second path relates to that channel but is slightly more
complicated. In this path, unobserved ability affects both which jobs
people get and their earnings.

So let’s say we regress Y onto D, our discrimination variable. This
yields the total effect of discrimination as the weighted sum of both
the direct effect of discrimination on earnings and the mediated
effect of discrimination on earnings through occupational sorting. But
say that we want to control for occupation because we want to
compare men and women in similar jobs. Well, controlling for
occupation in the regression closes down the mediation channel, but
it then opens up the second channel. Why? Because D — O «— A —
Y has a collider O. So when we control for occupation, we open up
this second path. It had been closed because colliders close
backdoor paths, but since we conditioned on it, we actually opened it
instead. This is the reason we cannot merely control for occupation.

Such a control ironically introduces new patterns of bias.®

What is needed is to control for occupation and ability, but since
ability is unobserved, we cannot do that, and therefore we do not



possess an identification strategy that satisfies the backdoor
criterion. Let's now look at code to illustrate this DAG.Z

STATA

collider_discrimination.do
clear all
set obs 10000

* Half of the population is female.
generate female = runiform()>=0.5

* Innate ability is independent of gender.
generate ability = rnormal()

00~ O AWM=

—
o o

* All women experience discrimination.
generate discrimination = female

- =l =k
w N =

* Data generating processes

generate occupation = (1) + (2)*ability + (0)*female + (-2)*discrimination +
< rnormal()

15 generate wage = (1) + (-1)*discrimination + (1)*occupation + 2*ability + rnormal()
16

17 * Regressions

18 regress wage female

19 regress wage female occupation

20 regress wage female occupation ability

21

22

-
N



R
collider_discrimination.R

1 library(tidyverse)

2 library(stargazer)

3

4 tb<-tibble(

5 female = ifelse(runif(10000)>=0.5,1,0),

6  ability = rnorm(10000),

7  discrimination = female,

8 occupation = 1 + 2*ability + 0*female - 2*discrimination + rnorm(10000),

9 wage = 1-T*discrimination + T*occupation + 2*ability + rnorm(10000)
10 )
1

12 Im_1 <- Im(wage ~ female, th)
13 Im_2 <- Im(wage ~ female + occupation, tb)
14 Im_3 <- Im(wage ~ female + occupation + ability, tb)

15

16 stargazer(Im_1,Im_2,Im_3, type = "text",

17 column.labels = c¢("Biased Unconditional”,
18 “Biased",

19 “Unbiased Conditional"))

This simulation hard-codes the data-generating process
represented by the previous DAG. Notice that ability is a random
draw from the standard normal distribution. Therefore it is
independent of female preferences. And then we have our last two
generated variables: the heterogeneous occupations and their
corresponding wages. Occupations are increasing in unobserved
ability but decreasing in discrimination. Wages are decreasing in
discrimination but increasing in higher-quality jobs and higher ability.
Thus, we know that discrimination exists in this simulation because
we are hard-coding it that way with the negative coefficients both the
occupation and wage processes.

The regression coefficients from the three regressions at the end
of the code are presented in Table 9. First note that when we simply
regress wages onto gender, we get a large negative effect, which is
the combination of the direct effect of discrimination on earnings and



the indirect effect via occupation. But if we run the regression that
Google and others recommend wherein we control for occupation,
the sign on gender changes. It becomes positive! We know this is
wrong because we hard-coded the effect of gender to be —-1! The
problem is that occupation is a collider. It is caused by ability and
discrimination. If we control for occupation, we open up a backdoor
path between discrimination and earnings that is spurious and so
strong that it perverts the entire relationship. So only when we
control for occupation and ability can we isolate the direct causal
effect of gender on wages.

Table 9. Regressions illustrating confounding bias with simulated gender
disparity.

Covariates: Biased Biased Unbiased
unconditional biased conditional
Female —3.074%*** 0.607*** —0.994***
(0.000) (0.000) (0.000)
Occupation 1.793*** 0.997***
(0.000) (0.000)
Ability 2.0717*%**
(0.000)
N 10,000 10,000 10,000
Mean of dependent variable 0.45 0.45 0.45

Sample selection and collider bias. Bad controls are not the only kind
of collider bias to be afraid of, though. Collider bias can also be
baked directly into the sample if the sample itself was a collider.
That’'s no doubt a strange concept to imagine, so | have a funny
illustration to clarify what | mean.

A 2009 CNN blog post reported that Megan Fox, who starred in
the movie Transformers, was voted the worst and most attractive
actress of 2009 in some survey about movie stars [Piazza, 2009].
The implication could be taken to be that talent and beauty are



negatively correlated. But are they? And why might they be? What if
they are independent of each other in reality but negatively
correlated in a sample of movie stars because of collider bias? Is

that even possible?8
To illustrate, we will generate some data based on the following
DAG:

Movie Star

Talent Beauty

Let’s illustrate this with a simple program.

STATA

moviestar.do
clear all
set seed 3444

* 2500 independent draws from standard normal distribution
set obs 2500

generate beauty=rnormal()

generate talent=rnormal()

O~ O AW N -

o

* Creating the collider variable (star)
gen score=(beauty+talent)

egen c85=pctile(score), p(85)

gen star=(score>=c85)

label variable star "Movie star"

=0 = = = =y =0
9w -O

* Conditioning on the top 15\%

twoway (scatter beauty talent, mcolor(black) msize(small) msymbol(smx)),

< ytitle(Beauty) xtitle(Talent) subtitle(Aspiring actors and actresses) by(star,
[ tO‘!ﬂl)

—
(=21



R

moviestar.R
library(tidyverse)

set.seed(3444)

star_is_born <- tibble(
beauty = rnorm(2500),
talent = rnorm(2500),
score = beauty + talent,
¢85 = quantile(score, .85),
star = ifelse(score>=c85,1,0)

)

0~ BN =

- el el -
W N = o v

star_is_born %>%
Im(beauty ~ talent, .) %>%
gaplot(aes(x = talent, y = beauty)) +
geom_point(size = 0.5, shape=23) + xlim(-4, 4) + ylim(-4, 4)

e T = S
00~ N 1A

star_is_born %>%
filter(star == 1) %>%
Im(beauty ~ talent, .) %>%
ggplot(aes(x = talent, y = beauty)) +
geom_point(size = 0.5, shape=23) + xlim(-4, 4) + ylim(-4, 4)

NN NN =
W N = O v

24 star_is_born %>%

25 filter(star == 0) %>%

26 Im(beauty ~ talent, .) %>%

27 ggplot(aes(x = talent, y = beauty)) +

28 geom_point(size = 0.5, shape=23) + xlim(-4, 4) + ylim(-4, 4)
29

Eigure 12 shows the output from this simulation. The bottom left
panel shows the scatter plot between talent and beauty. Notice that
the two variables are independent, random draws from the standard
normal distribution, creating an oblong data cloud. But because
“‘movie star” is in the top 85th percentile of the distribution of a linear
combination of talent and beauty, the sample consists of people
whose combined score is in the top right portion of the joint
distribution. This frontier has a negative slope and is in the upper
right portion of the data cloud, creating a negative correlation
between the observations in the movie-star sample. Likewise, the



collider bias has created a negative correlation between talent and
beauty in the non-movie-star sample as well. Yet we know that there
is in fact no relationship between the two variables. This kind of
sample selection creates spurious correlations. A random sample of
the full population would be sufficient to show that there is no
relationship between the two variables, but splitting the sample into
movie stars only, we introduce spurious correlations between the two
variables of interest.

Aspiring actors and actresses Aspiring actors and actresses
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Talent
Graphs by Movie star

Figure 12. Aspiring actors and actresses.

Note: Top left: Non-star sample scatter plot of beauty (vertical axis) and talent
(horizontal axis). Top right: Star sample scatter plot of beauty and talent.
Bottom left: Entire (stars and non-stars combined) sample scatter plot of
beauty and talent.

Collider bias and police use of force. We’'ve known about the
problems of nonrandom sample selection for decades [Heckman,
1979]. But DAGs may still be useful for helping spot what might be



otherwise subtle cases of conditioning on colliders [Elwert and
Winship, 2014]. And given the ubiquitous rise in researcher access
to large administrative databases, it's also likely that some sort of
theoretically guided reasoning will be needed to help us determine
whether the databases we have are themselves rife with collider
bias. A contemporary debate could help illustrate what | mean.

Public concern about police officers systematically discriminating
against minorities has reached a breaking point and led to the
emergence of the Black Lives Matter movement. “Vigilante justice”
episodes such as George Zimmerman'’s killing of teenage Trayvon
Martin, as well as police killings of Michael Brown, Eric Garner, and
countless others, served as catalysts to bring awareness to the
perception that African Americans face enhanced risks for shootings.
Fryer [2019] attempted to ascertain the degree to which there was
racial bias in the use of force by police. This is perhaps one of the
most important questions in policing as of this book’s publication.

There are several critical empirical challenges in studying racial
biases in police use of force, though. The main problem is that all
data on police-citizen interactions are conditional on an interaction
having already occurred. The data themselves were generated as a
function of earlier police-citizen interactions. In this sense, we can
say that the data itself are endogenous. Fryer [2019] collected
several databases that he hoped would help us better understand
these patterns. Two were public-use data sets—the New York City
Stop and Frisk database and the Police-Public Contact Survey. The
former was from the New York Police Department and contained
data on police stops and questioning of pedestrians; if the police
wanted to, they could frisk them for weapons or contraband. The
latter was a survey of civilians describing interactions with the police,
including the use of force.

But two of the data sets were administrative. The first was a
compilation of event summaries from more than a dozen large cities
and large counties across the United States from all incidents in
which an officer discharged a weapon at a civilian. The second was
a random sample of police-civilian interactions from the Houston
Police Department. The accumulation of these databases was by all



evidence a gigantic empirical task. For instance, Fryer [2019] notes
that the Houston data was based on arrest narratives that ranged
from two to one hundred pages in length. From these arrest
narratives, a team of researchers collected almost three hundred
variables relevant to the police use of force on the incident. This is
the world in which we now live, though. Administrative databases
can be accessed more easily than ever, and they are helping break
open the black box of many opaque social processes.

A few facts are important to note. First, using the stop-and-frisk
data, Fryer finds that blacks and Hispanics were more than 50
percent more likely to have an interaction with the police in the raw
data. The racial difference survives conditioning on 125 baseline
characteristics, encounter characteristics, civilian behavior, precinct,
and year fixed effects. In his full model, blacks are 21 percent more
likely than whites to be involved in an interaction with police in which
a weapon is drawn (which is statistically significant). These racial
differences show up in the Police-Public Contact Survey as well, only
here the racial differences are considerably larger. So the first thing
to note is that the actual stop itself appears to be larger for
minorities, which | will come back to momentarily.

Things become surprising when Fryer moves to his rich
administrative data sources. He finds that conditional on a police
interaction, there are no racial differences in officer-involved
shootings. In fact, controlling for suspect demographics, officer
demographics, encounter characteristics, suspect weapon, and year
fixed effects, blacks are 27 percent less likely to be shot at by police
than are nonblack non-Hispanics. The coefficient is not significant,
and it shows up across alternative specifications and cuts of the
data. Fryer is simply unable with these data to find evidence for
racial discrimination in officer-involved shootings.

One of the main strengths of Fryer’s study are the shoe leather he
used to accumulate the needed data sources. Without data, one
cannot study the question of whether police shoot minorities more
than they shoot whites. And the extensive coding of information from
the narratives is also a strength, for it afforded Fryer the ability to
control for observable confounders. But the study is not without



issues that could cause a skeptic to take issue. Perhaps the police
departments most willing to cooperate with a study of this kind are
the ones with the least racial bias, for instance. In other words,
maybe these are not the departments with the racial bias to begin

with.2 Or perhaps a more sinister explanation exists, such as records
being unreliable because administrators scrub out the data on
racially motivated shootings before handing them over to Fryer
altogether.

But | would like to discuss a more innocent possibility, one that
requires no conspiracy theories and yet is so basic a problem that it
is in fact more worrisome. Perhaps the administrative datasource is
endogenous because of conditioning on a collider. If so, then the
administrative data itself may have the racial bias baked into it from
the start. Let me explain with a DAG.

Controls
X

Suspicion

Fryer showed that minorities were more likely to be stopped using
both the stop-and-frisk data and the Police-Public Contact Survey.
So we know already that the D —M pathway exists. In fact, it was a
very robust correlation across multiple studies. Minorities are more
likely to have an encounter with the police. Fryer’s study introduces
extensive controls about the nature of the interaction, time of day,
and hundreds of factors that I've captured with X. Controlling for X
allows Fryer to shut this backdoor path.

But notice M—the stop itself. All the administrative data is
conditional on a stop. Fryer [2019] acknowledges this from the



outset: “Unless otherwise noted, all results are conditional on an
interaction. Understanding potential selection into police data sets
due to bias in who police interacts with is a difficult endeavor” (3). Yet
what this DAG shows is that if police stop people who they believe
are suspicious and use force against people they find suspicious,
then conditioning on the stop is equivalent to conditioning on a
collider. It opens up the D—-M—U—Y mediated path, which
introduces spurious patterns into the data that, depending on the
signs of these causal associations, may distort any true relationship
between police and racial differences in shootings.

Dean Knox, Will Lowe, and Jonathan Mummolo are a talented
team of political scientists who study policing, among other things.
They produced a study that revisited Fryer's question and in my
opinion both yielded new clues as to the role of racial bias in police
use of force and the challenges of using administrative data sources
to do so. | consider Knox et al. [2020] one of the more
methodologically helpful studies for understanding this problem and
attempting to solve it. The study should be widely read by every
applied researcher whose day job involves working with proprietary
administrative data sets, because this DAG may in fact be a more
general problem. After all, administrative data sources are already
select samples, and depending on the study question, they may
constitute a collider problem of the sort described in this DAG. The
authors develop a bias correction procedure that places bounds on
the severity of the selection problems. When using this bounding
approach, they find that even lower-bound estimates of the incidence
of police violence against civilians is as much as five times higher
than a traditional approach that ignores the sample selection
problem altogether.

It is incorrect to say that sample selection problems were unknown
without DAGs. We've known about them and have had some limited
solutions to them since at least Heckman [1979]. What | have tried to
show here is more general. An atheoretical approach to empiricism
will simply fail. Not even “big data” will solve it. Causal inference is
not solved with more data, as | argue in the next chapter. Causal
inference requires knowledge about the behavioral processes that



structure equilibria in the world. Without them, one cannot hope to
devise a credible identification strategy. Not even data is a substitute
for deep institutional knowledge about the phenomenon you'’re
studying. That, strangely enough, even includes the behavioral
processes that generated the samples you're using in the first place.
You simply must take seriously the behavioral theory that is behind
the phenomenon you're studying if you hope to obtain believable
estimates of causal effects. And DAGs are a helpful tool for wrapping
your head around and expressing those problems.

Conclusion. In conclusion, DAGs are powerful tools.’® They are
helpful at both clarifying the relationships between variables and
guiding you in a research design that has a shot at identifying a
causal effect. The two concepts we discussed in this chapter—the
backdoor criterion and collider bias—are but two things | wanted to
bring to your attention. And since DAGs are themselves based on
counterfactual forms of reasoning, they fit well with the potential
outcomes model that | discuss in the next chapter.

Notes

1 I will discuss the Wrights again in the chapter on instrumental variables.
They were an interesting pair.

2 If you find this material interesting, | highly recommend Morgan and
Winship [2014], an all-around excellent book on causal inference, and
especially on graphical models.

3 | leave out some of those details, though, because their presence (usually
just error terms pointing to the variables) clutters the graph unnecessarily.

4 Subsequent chapters discuss other estimators, such as matching.

5 Productivity could diverge, though, if women systematically sort into lower-
quality occupations in which human capital accumulates over time at a lower
rate.

6 Angrist and Pischke [2009] talk about this problem in a different way using
language called “bad controls.” Bad controls are not merely conditioning on
outcomes. Rather, they are any situation in which the outcome had been a
collider linking the treatment to the outcome of interest, like D—O—A—Y.

7 Erin Hengel is a professor of economics at the University of Liverpool. She
and | were talking about this on Twitter one day, and she and | wrote down the



code describing this problem. Her code was better, so | asked if | could
reproduce it here, and she said yes. Erin’s work partly focuses on gender
discrimination. You can see some of that work on her website at
http://www.erinhengel.com.

8 | wish | had thought of this example, but alas the sociologist Gabriel
Rossman gets full credit.

9 | am not sympathetic to this claim. The administrative data comes from
large Texas cities, a large county in California, the state of Florida, and several
other cities and counties racial bias has been reported.

10 There is far more to DAGs than | have covered here. If you are
interested in learning more about them, then | encourage you to carefully read
Pearl [2009], which is his magnum opus and a major contribution to the theory
of causation.



http://www.erinhengel.com/

Potential Outcomes Causal Model

It’s like the more money we come across, the more problems we see.
Notorious B.l.G.

Practical questions about causation have been a preoccupation of
economists for several centuries. Adam Smith wrote about the
causes of the wealth of nations [Smith, 2003]. Karl Marx was
interested in the transition of society from capitalism to socialism
[Needleman and Needleman, 1969]. In the twentieth century the
Cowles Commission sought to better understand identifying causal

parameters [Heckman and Vytlacil, 2007].1 Economists have been
wrestling with both the big ideas around causality and the
development of useful empirical tools from day one.

We can see the development of the modern concepts of causality
in the writings of several philosophers. Hume [1993] described
causation as a sequence of temporal events in which, had the first
event not occurred, subsequent ones would not either. For example,
he said:

We may define a cause to be an object, followed by another, and where all

the objects similar to the first are followed by objects similar to the second.

Or in other words where, if the first object had not been, the second never
had existed.

Mill [2010] devised five methods for inferring causation. Those
methods were (1) the method of agreement, (2) the method of
difference, (3) the joint method, (4) the method of concomitant
variation, and (5) the method of residues. The second method, the
method of difference, is most similar to the idea of causation as a
comparison among counterfactuals. For instance, he wrote:

If a person eats of a particular dish, and dies in consequence, that is, would

not have died if he had not eaten it, people would be apt to say that eating of
that dish was the source of his death. [399]



Statistical inference. A major jump in our understanding of causation
occurs coincident with the development of modern statistics.
Probability theory and statistics revolutionized science in the
nineteenth century, beginning with the field of astronomy. Giuseppe
Piazzi, an early nineteenth-century astronomer, discovered the dwarf
planet Ceres, located between Jupiter and Mars, in 1801. Piazzi
observed it 24 times before it was lost again. Carl Friedrich Gauss
proposed a method that could successfully predict Ceres’s next
location using data on its prior location. His method minimized the
sum of the squared errors; in other words, the ordinary least squares
method we discussed earlier. He discovered OLS at age 18 and

published his derivation of OLS in 1809 at age 24 [Gauss, 1809].2
Other scientists who contributed to our understanding of OLS include
Pierre-Simon LaPlace and Adrien-Marie Legendre.

The statistician G. Udny Yule made early use of regression
analysis in the social sciences. Yule [1899] was interested in the
causes of poverty in England. Poor people depended on either
poorhouses or the local authorities for financial support, and Yule
wanted to know if public assistance increased the number of
paupers, which is a causal question. Yule used least squares
regression to estimate the partial correlation between public
assistance and poverty. His data was drawn from the English
censuses of 1871 and 1881, and | have made his data available at
my website for Stata or the Mixtape library for R users. Here's an
example of the regression one might run using these data:

Pauper = a + dO0utrelief + 4,0ld + g,Pop + u

Let’s run this regression using the data.



STATA

yule.do
1 use https://github.com/scunning1975/mixtape/raw/master/yule.dta, clear
regress paup outrelief old pop

R
yule.R
1 library(tidyverse)
2 library(haven)
3
4 read_data <- function(df)
5 {
6  full_path <- paste("https://raw.github.com/scunning1975/mixtape/master/",
7 df, sep="")
8  df <-read_dta(full_path)
9 return(df)
10 }
11

12 yule < read_data("yule.dta") %>%
13 Im(paup ~ outrelief + old + pop, .)
14 summary(yule)

Each row in this data set is a particular location in England (e.g.,
Chelsea, Strand). So, since there are 32 rows, that means the data
set contains 32 English locations. Each of the variables is expressed
as an annual growth rate. As a result, each regression coefficient
has elasticity interpretations, with one caveat—technically, as |
explained at the beginning of the book, elasticities are actually
causal objects, not simply correlations between two variables. And
it's unlikely that the conditions needed to interpret these as causal
relationships are met in Yule’s data. Nevertheless, let's run the
regression and look at the results, which | report in Table 10.



Table 10. Estimated association between pauperism growth rates and public

assistance.
Dependent variable

Covariates Pauperism growth
Out-relief 0.752

(0.135)
old 0.056

(0.223)
Pop —0.31

(0.067)

In words, a 10-percentage-point change in the out-relief growth
rate is associated with a 7.5-percentage-point increase in the
pauperism growth rate, or an elasticity of 0.75. Yule used his
regression to crank out the correlation between out-relief and
pauperism, from which he concluded that public assistance
increased pauper growth rates.

But what might be wrong with this reasoning? How convinced are
you that all backdoor paths between pauperism and out-relief are
blocked once you control for two covariates in a cross-sectional
database for all of England? Could there be unobserved
determinants of both poverty and public assistance? After all, he
does not control for any economic factors, which surely affect both
poverty and the amount of resources allocated to out-relief. Likewise,
he may have the causality backwards—perhaps increased poverty
causes communities to increase relief, and not merely the other way
around. The earliest adopters of some new methodology or
technique are often the ones who get the most criticism, despite
being pioneers of the methods themselves. It’s trivially easy to beat
up on a researcher from one hundred years ago, working at a time
when the alternative to regression was ideological make-believe.
Plus he isn’t here to reply. | merely want to note that the naive use of
regression to estimate correlations as a way of making causal claims
that inform important policy questions has been the norm for a very
long time, and it likely isn’'t going away any time soon.



Physical Randomization

The notion of physical randomization as the foundation of causal
inference was in the air in the nineteenth and twentieth centuries, but
it was not until Fisher [1935] that it crystallized. The first historically
recognized randomized experiment had occurred fifty years earlier in
psychology [Peirce and Jastrow, 1885]. But interestingly, in that
experiment, the reason for randomization was not as the basis for
causal inference. Rather, the researchers proposed randomization
as a way of fooling subjects in their experiments. Peirce and Jastrow
[1885] used several treatments, and they used physical
randomization so that participants couldn’t guess what would happen
next. Unless I’'m mistaken, recommending physical randomization of
treatments to units as a basis for causal inference is based on
Splawa-Neyman [1923] and Fisher [1925]. More specifically, Splawa-
Neyman [1923] developed the powerful potential outcomes notation
(which we will discuss soon), and while he proposed randomization,
it was not taken to be literally necessary until Fisher [1925]. Fisher
[1925] proposed the explicit use of randomization in experimental

design for causal inference.2

Physical randomization was largely the domain of agricultural
experiments until the mid-1950s, when it began to be used in
medical trials. Among the first major randomized experiments in
medicine—in fact, ever attempted—were the Salk polio vaccine field
trials. In 1954, the Public Health Service set out to determine
whether the Salk vaccine prevented polio. Children in the study were

assigned at random to receive the vaccine or a placebo.? Also, the
doctors making the diagnoses of polio did not know whether the child
had received the vaccine or the placebo. The polio vaccine trial was
called a double-blind, randomized controlled trial because neither the
patient nor the administrator of the vaccine knew whether the
treatment was a placebo or a vaccine. It was necessary for the field
trial to be very large because the rate at which polio occurred in the
population was 50 per 100,000. The treatment group, which
contained 200,745 individuals, saw 33 polio cases. The control
group had 201,229 individuals and saw 115 cases. The probability of



seeing such a big difference in rates of polio because of chance
alone is about one in a billion. The only plausible explanation, it was
argued, was that the polio vaccine caused a reduction in the risk of
polio.

A similar large-scale randomized experiment occurred in
economics in the 1970s. Between 1971 and 1982, the RAND
Corporation conducted a large-scale randomized experiment
studying the causal effect of health-care insurance on health-care
utilization. For the study, Rand recruited 7,700 individuals younger
than age 65. The experiment was somewhat complicated, with
multiple treatment arms. Participants were randomly assigned to one
of five health insurance plans: free care, three plans with varying
levels of cost sharing, and an HMO plan. Participants with cost
sharing made fewer physician visits and had fewer hospitalizations
than those with free care. Other declines in health-care utilization,
such as fewer dental visits, were also found among the cost-sharing
treatment groups. Overall, participants in the cost-sharing plans
tended to spend less on health because they used fewer services.
The reduced use of services occurred mainly because participants in

the cost-sharing treatment groups were opting not to initiate care.2
But the use of randomized experiments has exploded since that
health-care experiment. There have been multiple Nobel Prizes
given to those who use them: Vernon Smith for his pioneering of the
laboratory experiments in 2002, and more recently, Abhijit
Bannerjee, Esther Duflo, and Michael Kremer in 2019 for their
leveraging of field experiments at the service of alleviating global

poverty.8 The experimental design has become a hallmark in applied
microeconomics, political science, sociology, psychology, and more.
But why is it viewed as important? Why is randomization such a key
element of this design for isolating causal effects? To understand
this, we need to learn more about the powerful notation that Splawa-
Neyman [1923] developed, called “potential outcomes.”

Potential outcomes. While the potential outcomes notation goes
back to Splawa-Neyman [1923], it got a big lift in the broader social



sciences with Rubin [1974].L As of this book’s writing, potential
outcomes is more or less the lingua franca for thinking about and
expressing causal statements, and we probably owe Rubin [1974]
for that as much as anyone.

In the potential outcomes tradition [Rubin, 1974; Splawa-Neyman,
1923], a causal effect is defined as a comparison between two states
of the world. Let me illustrate with a simple example. In the first state
of the world (sometimes called the “actual” state of the world), a man
takes aspirin for his headache and one hour later reports the severity
of his headache. In the second state of the world (sometimes called
the “counterfactual” state of the world), that same man takes nothing
for his headache and one hour later reports the severity of his
headache. What was the causal effect of the aspirin? According to
the potential outcomes tradition, the causal effect of the aspirin is the
difference in the severity of his headache between two states of the
world: one where he took the aspirin (the actual state of the world)
and one where he never took the aspirin (the counterfactual state of
the world). The difference in headache severity between these two
states of the world, measured at what is otherwise the same point in
time, is the causal effect of aspirin on his headache. Sounds easy!

To even ask questions like this (let alone attempt to answer them)
is to engage in storytelling. Humans have always been interested in
stories exploring counterfactuals. What if Bruce Wayne’s parents had
never been murdered? What if that waitress had won the lottery?
What if your friend from high school had never taken that first drink?
What if in The Matrix Neo had taken the blue pill? These are fun
hypotheticals to entertain, but they are still ultimately storytelling. We
need Doctor Strange to give us the Time Stone to answer questions
like these.

You can probably see where this is going. The potential outcomes
notation expresses causality in terms of counterfactuals, and since
counterfactuals do not exist, confidence about causal effects must to
some degree be unanswerable. To wonder how life would be
different had one single event been different is to indulge in
counterfactual reasoning, and counterfactuals are not realized in



history because they are hypothetical states of the world. Therefore,
if the answer requires data on those counterfactuals, then the
question cannot be answered. History is a sequence of observable,
factual events, one after another. We don’t know what would have
happened had one event changed because we are missing data on

the counterfactual outcome.8 Potential outcomes exist ex ante as a
set of possibilities, but once a decision is made, all but one outcome

disappears.2

To make this concrete, let’'s introduce some notation and more
specific concepts. For simplicity, we will assume a binary variable
that takes on a value of 1 if a particular unit i receives the treatment

and a 0 if it does not.12 Each unit will have two potential outcomes,
but only one observed outcome. Potential outcomes are defined as
E’T if unit / received the treatment and as /A if the unit did not. Notice
that both potential outcomes have the same |/ subscript—this
indicates two separate states of the world for the exact same person
in our example at the exact same moment in time. We'll call the state
of the world where no treatment occurred the control state. Each unit
i has exactly two potential outcomes: a potential outcome under a

state of the world where the treatment occurred (Y') and a potential

outcome where the treatment did not occur (Y?).
Observable or “actual” outcomes, Y, are distinct from potential

outcomes. First, notice that actual outcomes do not have a
superscript. That is because they are not potential outcomes—they
are the realized, actual, historical, empirical—however you want to
say it—outcomes that unit / experienced. Whereas potential
outcomes are hypothetical random variables that differ across the
population, observable outcomes are factual random variables. How
we get from potential outcomes to actual outcomes is a major
philosophical move, but like any good economist, I'm going to make
it seem simpler than it is with an equation. A unit's observable
outcome is a function of its potential outcomes determined according
to the switching equation:



Yi=DiY] +(1-D)Y! (4.1)

where D; equals 1 if the unit received the treatment and O if it did not.
Notice the logic of the equation. When D; = 1, then ¥, = ‘r’f because
the second term zeroes out. And when D; =0, the first term zeroes

out and therefore Y; = ‘r‘f.”_ Using this notation, we define the unit-

specific treatment effect, or causal effect, as the difference between
the two states of the world:

5=Y =Y}

Immediately we are confronted with a problem. If a treatment ".-"f.':’,
effect requires knowing two states of the world, Y; and but by the
switching equation we observe only one, then we cannot calculate
the treatment effect. Herein lies the fundamental problem of causal
inference—certainty around causal effects requires access to data
that is and always will be missing.

Average treatment effects. From this simple definition of a treatment
effect come three different parameters that are often of interest to
researchers. They are all population means. The first is called the
average treatment effect.

ATE = E[0o]
=E[Y] - Y]
= E[Y]]1—E[Y] (4.2)

Notice, as with our definition of individual-level treatment effects,
that the average treatment effect requires both potential outcomes
for each i unit. Since we only know one of these by the switching
equation, the average treatment effect, or the ATE, is inherently
unknowable. Thus, the ATE, like the individual treatment effect, is not
a quantity that can be calculated. But it can be estimated.



The second parameter of interest is the average treatment effect
for the treatment group. That's a mouthful, but let me explain. There
exist two groups of people in this discussion we’ve been having: a
treatment group and a control group. The average treatment effect
for the treatment group, or ATT for short, is simply that population
mean treatment effect for the group of units that had been assigned
the treatment in the first place according to the switching equation.
Insofar as O; differs across the population, the ATT will likely differ

from the ATE. In observational data involving human beings, it
almost always will be different from the ATE, and that's because
individuals will be endogenously sorting into some treatment based
on the gains they expect from it. Like the ATE, the ATT is
unknowable, because like the ATE, it also requires two observations
per treatment unit i. Formally we write the ATT as:

ATT =Elo; | D;=1]
=E[Y -E|D;=1]
=E[Y] | Di=1]—E[Y} | D;=1] (4.3)
The final parameter of interest is called the average treatment
effect for the control group, or untreated group. It's shorthand is ATU,

which stands for average treatment effect for the untreated. And like
ATT, the ATU is simply the population mean treatment effect for

those units who sorted into the control group.l Given
heterogeneous treatment effects, it's probably the case that the ATT
= ATU, especially in an observational setting. The formula for the
ATU is as follows:

ATU = E[5, | D; = O]
—E[Y' —Y°|D,=0]
=E[Y] | D;=0]-E[Y} | D;=0] (4.4)

Depending on the research question, one, or all three, of these
parameters is interesting. But the two most common ones of interest



are the ATE and the ATT.

Simple difference in means decomposition. This discussion has
been somewhat abstract, so let's be concrete. Let's assume there
are ten patients /i who have cancer, and two medical procedures or
treatments. There is a surgery intervention, D; = 1, and there is a

chemotherapy intervention, D; = 0. Each patient has the following

two potential outcomes where a potential outcome is defined as
post-treatment life span in years: a potential outcome in a world
where they received surgery and a potential outcome where they

had instead received chemo. We use the notation Y' and Y?,
respectively, for these two states of the world.

We can calculate the average treatment effect if we have this
matrix of data, because the average treatment effect is simply the

mean difference between columns 2 and 3. That is, E[Y'] = 5.6, and

E[Y?] = 5, which means that ATE = 0.6. In words, the average
treatment effect of surgery across these specific patients is 0.6
additional years (compared to chemo).

But that is just the average. Notice, though: not everyone benefits
from surgery. Patient 7, for instance, lives only one additional year
post-surgery versus ten additional years post-chemo. But the ATE is
simply the average over these heterogeneous treatment effects.



Table 11. Potential outcomes for ten patients receiving surgery Y! or chemo

YO,

Patient \4 Yo )
1 7 1 6
2 5 6 —1
3 5 1 4
4 7 8 -1
5 4 2 2
6 10 1 9

7 1 10 -9
8 5 6 —1
9 3 7 -4
10 9 8 1

To maintain this fiction, let's assume that there exists the perfect
doctor who knows each person’s potential outcomes and chooses
whichever treatment that maximizes a person’s post-treatment life

span.12 In other words, the doctor chooses to put a patient in surgery
or chemotherapy depending on whichever treatment has the longer
post-treatment life span. Once he makes that treatment assignment,
the doctor observes their post-treatment actual outcome according to
the switching equation mentioned earlier.

Table 12 shows only the observed outcome for treatment and
control group. Table 12 differs from Table 11, which shows each
unit’s potential outcomes. Once treatment has been assigned, we
can calculate the average treatment effect for the surgery group
(ATT) versus the chemo group (ATU). The ATT equals 4.4, and the
ATU equals -3.2. That means that the average post-surgery life
span for the surgery group is 4.4 additional years, whereas the
average post-surgery life span for the chemotherapy group is 3.2

fewer years.13



Table 12. Post-treatment observed life spans in years for surgery D = 1
versus chemotherapy D = 0.

Patients Y D
1 7 1
2 6 0
3 5 1
4 8 0
5 4 T
6 10 T
7 10 0
8 6 0
9 7 0
10 9 1

Now the ATE is 0.6, which is just a weighted average between the

ATT and the ATU."* So we know that the overall effect of surgery is
positive, although the effect for some is negative. There exist
heterogeneous treatment effects, in other words, but the net effect is
positive. What if we were to simply compare the average post-
surgery life span for the two groups? This simplistic estimator is
called the simple difference in means, and it is an estimate of the
ATE equal to

E[Y' [D=1]—E[Y°| D =0]
which can be estimated using samples of data:

SDO =E[Y" | D =1]—E[Y° | D = 0]
n

1 o 1
:N_T;(y"'d’:”_rv_cz(y"'d’:o) (4.5)

i=1

which in this situation is equal to 7-7.4=-0.4. That means that the
treatment group lives 0.4 fewer years post-surgery than the chemo
group when the perfect doctor assigned each unit to its best



treatment. While the statistic is true, notice how misleading it is. This
statistic without proper qualification could easily be used to claim
that, on average, surgery is harmful, when we know that’s not true.

14 ATE=p xATT+(1—p) x ATU=0.5x4.4+0.5x —3.2=0.6.

It's biased because the individuals units were optimally sorting into
their best treatment option, creating fundamental differences
between treatment and control group that are a direct function of the
potential outcomes themselves. To make this as clear as | can make
it, we will decompose the simple difference in means into three parts.
Those three parts are listed below:

E[Y'|D=1—E[Y°|D=0]=ATE
+E[Y°|D=1—E[Y°|D=0]
+ (1= 7 )(ATT — ATU) (4.6)

To understand where these parts on the right-hand side originate, we
need to start over and decompose the parameter of interest, ATE,
into its basic building blocks. ATE is equal to the weighted sum of
conditional average expectations, ATT and ATU.

ATE = zATT + (1— 7)ATU
— zE[Y'|D=1]—zE[Y° | D =1]
+(A—n)E[Y' | D=0]—(1—=)E[Y°| D= 0]
_ {n’E[Y" ID=1+(1—7x)E[Y'|D= 0]}

—[:rE[Y0|D:1]—|—(‘]—7r)E[Y°|D:0]}

where 17 is the share of patients who received surgery and 1 — T is
the share of patients who received chemotherapy. Because the
conditional expectation notation is a little cumbersome, let’s



exchange each term on the left side, ATE, and right side with some
letters. This will make the proof a little less cumbersome:

E[Y'|D=1=a
E[Y'|D=0]=b
E[Y°|D=1]=c
E[Y’|D=0]=d

ATE=e

Now that we have made these substitutions, let's rearrange the
letters by redefining ATE as a weighted average of all conditional
expectations

e={ra+(1—z)b}—{zc+(1—r)d]
e=ra+b—nrb—nc—d+nd
e=nma+b—-nrb—nc—d+rd+(@—a)+(c—c)+(d—d)
O=e—ra—-b+zb+rc+d—rd—a+a—-c+c—-d+d
a—-d=e—-ra-b+zb+rc+d—-rd+a-c+c—d
a-d=e+(c-d)+a—ra—-b+zb—c+nrc+d—nd
a—d=e+(c—d)+(1-m)a—(1—z)b+(1—z)d—(1—7x)c
a—-d=e+(c—-d)+(1-7m)@a—-c)—(1—=)(b—d)
Now, substituting our definitions, we get the following:
E[Y'|D=1]—E[Y° | D=0]=ATE
+(E[Y°|D=1]—E[Y°|D=0])

+ (1= 7)(ATT —ATU) (4.7)



And the decomposition ends. Now the fun part—let’s think about
what we just made! The left side can be estimated with a sample of
data, as both of those potential outcomes become actual outcomes
under the switching equation. That’s just the simple difference in
mean outcomes. It's the right side that is more interesting because it
tells us what the simple difference in mean outcomes is by definition.
Let’s put some labels to it.

1 n n

1
> (ildi=1)— > (i1 di=0) =E[V']—E[Y°
NTH(”' )= g 2 il di=0) = ELY'I — ETY")

i=1 , Average Treatment Effect

Simple Difference in Outcomes

+E[Y®[D=1]—E[Y®|D=0]

Selection bias
+(1—7)(ATT — ATU)

Heterogeneous treatment effect bias

Let's discuss each of these in turn. The left side is the simple
difference in mean outcomes, and we already know it is equal to
—-0.4. Since this is a decomposition, it must be the case that the right
side also equals -0.4.

The first term is the average treatment effect, which is the
parameter of interest, and we know that it is equal to 0.6. Thus, the
remaining two terms must be the source of the bias that is causing
the simple difference in means to be negative.

The second term is called the selection bias, which merits some
unpacking. In this case, the selection bias is the inherent difference
between the two groups if both received chemo. Usually, though, it's
just a description of the differences between the two groups if there
had never been a treatment in the first place. There are in other
words two groups: a surgery group and a chemo group. How do their
potential outcomes under control differ? Notice that the first is a
counterfactual, whereas the second is an observed outcome
according to the switching equation. We can calculate this difference



here because we have the complete potential outcomes in Table 11.
That difference is equal to —4.8.
The third term is a lesser-known form of bias, but it’s interesting.

Plus, if the focus is the ATE, then it is always present.1—5 The
heterogeneous treatment effect bias is simply the different returns to
surgery for the two groups multiplied by the share of the population
that is in the chemotherapy group at all. This final term is 0.5%(4.4-
(-3.2)) or 3.8. Note in case it's not obvious that the reason m=0.5is
because 5 out of 10 units are in the chemotherapy group.

Now that we have all three parameters on the right side, we can
see why the simple difference in mean outcomes is equal to —0.4.

—04=0.6—-48+3.8

What | find interesting—hopeful even—in this decomposition is that it
shows that a contrast between treatment and control group
technically “contains” the parameter of interest. | placed “contains” in
quotes
because while it is clearly visible in the decomposition, the simple
difference in outcomes is ultimately not laid out as the sum of three
parts. Rather, the simple difference in outcomes is nothing more than
a number. The number is the sum of the three parts, but we cannot
calculate each individual part because we do not have data on the
underlying counterfactual outcomes needed to make the
calculations. The problem is that that parameter of interest has been
masked by two forms of bias, the selection bias and the
heterogeneous treatment effect bias. If we knew those, we could just
subtract them out, but ordinarily we don’t know them. We develop
strategies to negate these biases, but we cannot directly calculate
them any more than we can directly calculate the ATE, as these
biases depend on unobservable counterfactuals.

The problem isn’'t caused by assuming heterogeneity either. We
can make the strong assumption that treatment effects are constant,
0; = 0 Vi, which will cause ATU = ATT and make SDO = ATE +

selection bias. But we’d still have that nasty selection bias screwing



things up. One could argue that the entire enterprise of causal
inference is about developing a reasonable strategy for negating the
role that selection bias is playing in estimated causal effects.

Independence assumption. Let's start with the most credible
situation for using SDO to estimate ATE: when the treatment itself
(e.g., surgery) has been assigned to patients independent of their
potential outcomes. But what does this word “independence” mean
anyway? Well, notationally, it means:

YLY% LD (4.8)

What this means is that surgery was assigned to an individual for

reasons that had nothing to do with the gains to surgery.’® Now in
our example, we already know that this is violated because the
perfect doctor specifically chose surgery or chemo based on

potential outcomes. Specifically, a patient received surgery if Y! > Y?
and chemo if Y! < Y9. Thus, in our case, the perfect doctor ensured

that D depended on Y! and Y°. All forms of human-based sorting—
probably as a rule to be honest—uviolate independence, which is the
main reason naive observational comparisons are almost always

incapable of recovering causal effects.1Z
But what if he hadn’t done that? What if he had chosen surgery in

such a way that did not depend on Y or Y?? How does one choose
surgery independent of the expected gains of the surgery? For
instance, maybe he alphabetized them by last name, and the first
five received surgery and the last five received chemotherapy. Or
maybe he used the second hand on his watch to assign surgery to
them: if it was between 1 and 30 seconds, he gave them surgery,
and if it was between 31 and 60 seconds, he gave them

chemotherapy.X® In other words, let's say that he chose some
method for assigning treatment that did not depend on the values of
potential outcomes under either state of the world. What would that
mean in this context? Well, it would mean:



E[Y'ID=1]—E[Y'|D=0]=0 (4.9)
E[Y°|D=1]—-E[Y°|D=0]=0 (4.10)

In other words, it would mean that the mean potential outcome for Y?

or YV is the same (in the population) for either the surgery group or
the chemotherapy group. This kind of randomization of the treatment
assignment would eliminate both the selection bias and the
heterogeneous treatment effect bias. Let's take it in order. The
selection bias zeroes out as follows:

E[Y°|D=1—E[Y°’|D=0]=0

And thus the SDO no longer suffers from selection bias. How does
randomization affect heterogeneity treatment bias from the third line?
Rewrite definitions for ATT and ATU:

ATT=E[Y'|D=1]—E[Y°|D=1]
ATU=E[Y'|D=0]—E[Y°|D=0]
Rewrite the third row bias after 1-r:
ATT —ATU=E[Y'|D=1]—E[Y° | D =1]
—E[Y'|D=0]+E[Y° |D=0]
=0

If treatment is independent of potential outcomes, then:

n n

1 1

— idi=1)— — 1 d:=0)=E[Y']—E[Y°

NTH(}’I ) Nc;j(m ) =E[Y"]—E[Y°]
SDO = ATE

What's necessary in this situation is simply (a) data on observable
outcomes, (b) data on treatment assignment, and (c) (Y',Y?)LD. We



call (c) the independence assumption. To illustrate that this would
lead to the SDO, we use the following Monte Carlo simulation. Note
that ATE in this example is equal to 0.6.

STATA
independence.do
1 clearall
2 program define gap, rclass
3
4 version 14.2
5 syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]
6 clear
7 drop _all
8 set obs 10
9 gen y1=7in1
10 replaceyl =5in2

(continued)



STATA (continued)




R

independence.R
library(tidyverse)

1

2

3 gap < function()
4 {

5 sdo<- tibble(
6 yl1=c(75574710,15309),
7 y0=c(1,6,1821,10,67.8),
8  random = rnorm(10)

9 ) %%
10  arrange(random) %>%
1 mutate(

12 d = c(rep(1,5), rep(0,5)),
13 y=d*yl+(1-d)*y0
14 )%%

15 pull(y)

17  sdo <- mean(sdo[1:5]-sdo[6:10])

19  return(sdo)

20 }

21

22 sim <- replicate(10000, gap())
23 mean(sim)

This Monte Carlo runs 10,000 times, each time calculating the
average SDO under independence—which is ensured by the
random number sorting that occurs. In my running of this program,

the ATE is 0.6, and the SDO is on average equal to 0.59088.12
Before we move on from the SDO, let’s just emphasize something
that is often lost on students first learning the independence concept

and notation. Independence does not imply that E[Y' | D = 1]-E[Y? |
D= 0]=0. Nor does it imply that E[Y" | D= 1]-E[Y? | D= 1]=0. Rather,
it implies

E[Y'|D=1—E[Y'|D=0]=0

in a large population.29 That is, independence implies that the two
groups of units, surgery and chemo, have the same potential
outcome on average in the population.

How realistic is independence in observational data? Economics—
maybe more than any other science—tells us that independence is
unlikely to hold observationally. Economic actors are always



attempting to achieve some optima. For instance, parents are putting
kids in what they perceive to be the best school for them, and that is
based on potential outcomes. In other words, people are choosing
their interventions, and most likely their decisions are related to the
potential outcomes, which makes simple comparisons improper.
Rational choice is always pushing against the independence
assumption, and therefore simple comparison in means will not
approximate the true causal effect. We need unit randomization for
simple comparisons to help us understand the causal effects at play.

SUTVA. Rubin argues that there are a bundle of assumptions behind
this kind of calculation, and he calls these assumptions the stable
unit treatment value assumption, or SUTVA for short. That's a
mouthful, but here’s what it means: our potential outcomes
framework places limits on us for calculating treatment effects. When
those limits do not credibly hold in the data, we have to come up with
a new solution. And those limitations are that each unit receives the
same sized dose, no spillovers (‘externalities”) to other units’
potential outcomes when a unit is exposed to some treatment, and
no general equilibrium effects.

First, this implies that the treatment is received in homogeneous
doses to all units. It's easy to imagine violations of this, though—for
instance, if some doctors are better surgeons than others. In which
case, we just need to be careful what we are and are not defining as
the treatment.

Second, this implies that there are no externalities, because by
definition, an externality spills over to other untreated units. In other
words, if unit 1 receives the treatment, and there is some externality,

then unit 2 will have a different Y° value than if unit 1 had not
received the treatment. We are assuming away this kind of spillover.
When there are such spillovers, though, such as when we are
working with social network data, we will need to use models that
can explicitly account for such SUTVA violations, such as that of
Goldsmith-Pinkham and Imbens [2013].

Related to this problem of spillovers is the issue of general
equilibrium. Let’'s say we are estimating the causal effect of returns



to schooling. The increase in college education would in general
equilibrium cause a change in relative wages that is different from
what happens under partial equilibrium. This kind of scaling-up issue
is of common concern when one considers extrapolating from the
experimental design to the large-scale implementation of an
intervention in some population.

Replicating “demand for learning HIV status.” Rebecca Thornton is a
prolific, creative development economist. Her research has spanned
a number of topics in development and has evaluated critically
important questions regarding optimal HIV policy, demand for
learning, circumcision, education, and more. Some of these papers
have become major accomplishments. Meticulous and careful, she
has become a leading expert on HIV in sub-Saharan Africa. I'd like
to discuss an ambitious project she undertook as a grad student in
rural Malawi concerning whether cash incentives caused people to
learn their HIV status and the cascading effect of that learning on
subsequent risky sexual behavior [Thornton, 2008].

Thornton’s study emerges in a policy context where people
believed that HIV testing could be used to fight the epidemic. The
idea was simple: if people learned their HIV status, then maybe
learning they were infected would cause them to take precautions,
thus slowing the rate of infection. For instance, they might seek
medical treatment, thus prolonging their life and the quality of life
they enjoyed. But upon learning their HIV status, maybe finding out
they were HIV-positive would cause them to decrease high-risk
behavior. If so, then increased testing could create frictions
throughout the sexual network itself that would slow an epidemic. So
commonsense was this policy that the assumptions on which it
rested were not challenged until Thornton [2008] did an ingenious
field experiment in rural Malawi. Her results were, like many studies,
a mixture of good news and bad.

Attempting to understand the demand for HIV status, or the effect
of HIV status on health behaviors, is generally impossible without an
experiment. Insofar as individuals are optimally choosing to learn
about their type or engaging in health behaviors, then it is unlikely



that knowledge about HIV status is independent of potential
outcomes. Almost certainly, it is those very potential outcomes that
shape the decisions both to acquire that information and to engage
in risky behaviors of any sort. Thus, a field experiment would be
needed if we were to test the underlying assumptions behind this
commonsense policy to use testing to fight the epidemic.

How did she do this, though? Respondents in rural Malawi were
offered a free door-to-door HIV test and randomly assigned no
voucher or vouchers ranging from $1-$3. These vouchers were
redeemable once they visited a nearby voluntary counseling and
testing center (VCT). The most encouraging news was that monetary
incentives were highly effective in causing people to seek the results
of tests. On average, respondents who received any cash-value
voucherwere two times as likely to go to the VCT center to get their
test results compared to those individuals who received no
compensation. How big was this incentive? Well, the average
incentive in her experiment was worth about a day’s wage. But she
found positive status-seeking behavior even for the smallest
incentive, which was worth only one-tenth a day’s wage. Thornton
showed that even small monetary nudges could be used to
encourage people to learn their HIV type, which has obvious policy
implications.

The second part of the experiment threw cold water on any
optimism from her first results. Several months after the cash
incentives were given to respondents, Thornton followed up and
interviewed them about their subsequent health behaviors.
Respondents were also given the opportunity to purchase condoms.
Using her randomized assignment of incentives for learning HIV
status, she was able to isolate the causal effect of learning itself on
condom purchase her proxy for engaging in risky sex. She finds that
conditional on learning one’s HIV status from the randomized
incentives, HIV-positive individuals did increase their condom usage
over those HIV-positive individuals who had not learned their results
but only in the form of buying two additional condoms. This study
suggested that some kinds of outreach, such as door-to-door testing,
may cause people to learn their type—particularly when bundled with



incentives—but simply having been incentivized to learn one’s HIV
status may not itself lead HIV-positive individuals to reduce any
engagement in high-risk sexual behaviors, such as having sex
without a condom.

Thorton’s experiment was more complex than | am able to
represent here, and also, | focus now on only the cash-transfer
aspect of the experiment, in the form of vouchers. but | am going to
focus purely on her incentive results. But before | do so, let's take a
look at what she found. Table 13 shows her findings.

Since her project uses randomized assignment of cash transfers
for identifying causal effect on learning, she mechanically creates a
treatment assignment that is independent of the potential outcomes
under consideration. We know this even though we cannot directly
test it (i.e., potential outcomes are unseen) because we know how
the science works. Randomization, in other words, by design assigns
treatment independent of potential outcomes. And as a result, simple
differences in means are sufficient for getting basic estimates of
causal effects.

But Thornton is going to estimate a linear regression model with
controls instead of using a simple difference in means for a few
reasons. One, doing so allows her to include a variety of controls
that can reduce the residual variance and thus improve the precision
of her estimates. This has value because in improving precision, she
is able to rule out a broader range of treatment effects that are
technically contained by her confidence intervals. Although probably
in this case, that’s not terribly important given, as we will see, that
her standard errors are miniscule.

But the inclusion of controls has other value. For instance, if
assignment was conditional on observables, or if the assignment
was done at different times, then including these controls (such as
district fixed effects) is technically needed to isolate the causal
effects themselves. And finally, regression generates nice standard

errors, and maybe for that alone, we should give it a chance.2!



Table 13. Impact of monetary incentives and distance on learning HIV
results [Thornton, 2008].

1 2 3 4 5
Any incentive 0.431%*  (0.309** (.219%x* (.220%** (.219%**
(0.023) (0.026) (0.029) (0.029) (0.029)
Amount of 0.091%% D274 (2745 P 2T3*
incentive (0.012) (0.036) (0.035) (0.036)
Amount of 2 —0.063*** —0.063*** —0.063***
incentive (0.011) (0.011) (0.011)
HIV —0.055* -0.052 —0.05 —0.058* —0.055*
(0.037) (0.032) (0.032) (0.037) (0.031)
Distance (km) —0.076%**
(0.027)
Distance? 0.010%**
(0.005)
Controls Yes Yes Yes Yes Yes
Sample size 2,812 2,812 2,812 2,812 2,812
Average 0.69 0.69 0.69 0.69 0.69
attendance

Note: Columns 1-5 represent OLS coefficients; robust standard errors
clustered by village (for 119 villages) with district fixed effects in parentheses.
All specifications also include a term for age-squared. “Any incentive” is an
indicator if the respondent received any nonzero monetary incentive. “HIV” is
an indicator of being HIV-positive. “Simulated average distance” is an average
distance of respondents’ households to simulated randomized locations of HIV
results centers. Distance is measured as a straight-line spherical distance from
a respondent’s home to a randomly assigned VCT center from geospatial
coordinates and is measured in kilometers. *** Significantly different from zero
at 99 percent confidence level. ** Significantly different from zero at 95 percent
confidence level. * Significantly different from zero at 90 percent confidence
level.

So what did Thornton find? She uses least squares as her primary
model, represented in columns 1-5. The effect sizes that she finds
could be described as gigantic. Because only 34 percent of the



control group participants went to a center to learn their HIV status, it
is impressive that receiving any money caused a 43-percentage-
point increase in learning one’s HIV status. Monetary incentives—
even very small ones—are enough to push many people over the
hump to go collect health data.

Columns 2-5 are also interesting, but | won'’t belabor them here. In
short, column 2 includes a control for the amount of the incentive,
which ranged from US$0 to US$3. This allows us to estimate the
linear impact of each additional dollar on learning, which is relatively
steep. Columns 3-5 include a quadratic and as a result we see that
while each additional dollar increases learning, it does so only at a
decreasing rate. Columns 4 and 5 include controls for distance to the
VCT center, and as with other studies, distance itself is a barrier to
some types of health care [Lindo et al., 2019].

Thornton also produces a simple graphic of her results, showing
box plots with mean and confidence intervals for the treatment and
control group. As we will continually see throughout the book, the
best papers estimating causal effects will always summarize their
main results in smart and effective pictures, and this study is no
exception. As this figure shows, the effects were huge.
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Figure 13. Visual representation of cash transfers on learning HIV test
results [Thornton, 2008].

While learning one’s own HIV status is important, particularly if it
leads to medical care, the gains to policies that nudge learning are
particularly higher if they lead to changes in high-risk sexual
behavior among HIV-positive individuals. In fact, given the multiplier
effects associated with introducing frictions into the sexual network
via risk-mitigating behavior (particularly if it disrupts concurrent
partnerships), such efforts may be so beneficial that they justify
many types of programs that otherwise may not be cost-effective.

Thornton examines in her follow-up survey where she asked all
individuals, regardless of whether they learned their HIV status, the
effect of a cash transfer on condom purchases. Let's first see her
main results in Eigure 14.

It is initially encouraging to see that the effects on condom
purchases are large for the HIV-positive individuals who, as a result
of the incentive, got their test results. Those who bought any
condoms increases from a baseline that’s a little over 30 percent to a



whopping 80 percent with any incentive. But where things get
discouraging is when we examine how many additional condoms this
actually entailed. In columns 3 and 4 of Table 14, we see the
problem.

0.6

0.5

04

0.3

0.2

Percent purchasing condoms

0.1

Did not get results Got results
A. HIV-positive individuals

Figure 14. Visual representation of cash transfers on condom purchases for
HIV-positive individuals [Thornton, 2008].



Table 14. Reactions to learning HIV results among sexually active at
baseline [Thornton, 2008].

Dependent variables Bought Number of
condoms condoms bought
oLsS v oLs v
Got results —0.022 —0.069 —0.193 —0.303
(0.025) (0.062) (0.148) (0.285)
Got results x HIV 0.418*** 0.248 1.778%** 1.689**
(0.143) (0.169) (0.564) (0.784)
HIV —0.175%* —0.073 —0.873 —0.831
(0.085) (0.123) (0.275) (0.375)
Controls Yes Yes Yes Yes
Sample size 1,008 1,008 1,008 1,008
Mean 0.26 0.26 0.95 0.95

Note: Sample includes individuals who tested for HIV and have demographic
data.

Now Thornton wisely approaches the question in two ways for the
sake of the reader and for the sake of accuracy. She wants to know
the effect of getting results, but the results only matter (1) for those
who got their status and (2) for those who were HIV-positive. The
effects shouldn’t matter if they were HIV-negative. And ultimately that
is what she finds, but how is she going to answer the first? Here she
examines the effect for those who got their results and who were
HIV-positive using an interaction. And that’'s column 1: individuals
who got their HIV status and who learned they were HIV positive
were 41% more likely to buy condoms several months later. This
result shrinks, though, once she utilizes the randomization of the
incentives in an instrumental variables framework, which we will
discuss later in the book. The coefficient is almost cut in half and her
confidence intervals are so large that we can’t be sure the effects are
nonexistent.

But let's say that the reason she failed to find an effect on any
purchasing behavior is because the sample size is just small enough



that to pick up the effect with 1V is just asking too much of the data.
What if we used something that had a little more information, like
number of condoms bought? And that’s where things get pessimistic.
Yes, Thornton does find evidence that the HIV-positive individuals
were buying more condoms, but when see how many, we learn that
it is only around 2 more condoms at the follow-up visit (columns 3—
4). And the effect on sex itself (not shown) was negative, small (4%
reduction), and not precise enough to say either way anyway.

In conclusion, Thornton’s study is one of those studies we
regularly come across in causal inference, a mixture of positive and
negative. It's positive in that nudging people with small incentives
leads them to collecting information about their own HIV status. But
our enthusiasm is muted when we learn the effect on actual risk
behaviors is not very large—a mere two additional condoms bought
several months later for the HIV-positive individuals is likely not
going to generate large positive externalities unless it falls on the
highest-risk HIV-positive individuals.

Randomization Inference

Athey and Imbens [2017a], in their chapter on randomized
experiments, note that “in randomization-based inference,
uncertainty in estimates arises naturally from the random assignment
of the treatments, rather than from hypothesized sampling from a
large population” (73). Athey and Imbens are part of a growing trend
of economists using randomization-based methods for inferring the
probability that an estimated coefficient is not simply a result of
change. This growing trend uses randomization-based methods to
construct exact p-values that reflect the likelihood that chance
could’ve produced the estimate.

Why has randomization inference become so population now?
Why not twenty years ago or more? It's not clear why randomization-
based inference has become so popular in recent years, but a few
possibilities could explain the trend. It may be the rise in the
randomized controlled trials within economics, the availability of
large-scale administrative databases that are not samples of some



larger population but rather represent “all the data,” or it may be that
computational power has improved so much that randomization
inference has become ftrivially simple to implement when working
with thousands of observations. But whatever the reason,
randomization inference has become a very common way to talk
about the uncertainty around one’s estimates.

There are at least three reasons we might conduct randomization
inference. First, it may be because we aren’t working with samples,
and since standard errors are often justified on the grounds that they
reflect sampling uncertainty, traditional methods may not be as
meaningful. The core uncertainty within a causal study is not based
on sampling uncertainty, but rather on the fact that we do not know
the counterfactual [Abadie et al., 2020, 2010]. Second, it may be that
we are uncomfortable appealing to the large sample properties of an
estimator in a particular setting, such as when we are working with a
small number of treatment units. In such situations, maybe assuming
the number of units increases to infinity stretches credibility
[Buchmueller et al.,, 2011]. This can be particularly problematic in
practice. Young [2019] shows that in finite samples, it is common for
some observations to experience concentrated leverage. Leverage
causes standard errors and estimates to become volatile and can
lead to overrejection. Randomization inference can be more robust
to such outliers. Finally, there seems to be some aesthetic
preference for these types of placebo-based inference, as many
people find them intuitive. While this is not a sufficient reason to
adopt a methodological procedure, it is nonetheless very common to
hear someone say that they used randomization inference because
it makes sense. | figured it was worth mentioning since you'll likely
run into comments like that as well. But before we dig into it, let's
discuss its history, which dates back to Ronald Fisher in the early
twentieth century.

Lady tasting tea. Fisher [1935] described a thought experiment in
which a woman claims she can discern whether milk or tea was
poured first into a cup of tea. While he does not give her name, we
now know that the woman in the thought experiment was Muriel



Bristol and that the thought experiment in fact did happen.22 Muriel
Bristol was a PhD scientist back in the days when women rarely
were able to become PhD scientists. One day during afternoon tea,
Muriel claimed that she could tell whether the milk was added to the
cup before or after the tea. Incredulous, Fisher hastily devised an
experiment to test her self-proclaimed talent.

The hypothesis, properly stated, is that, given a cup of tea with
milk, a woman can discern whether milk or tea was first added to the
cup. To test her claim, eight cups of tea were prepared; in four the
milk was added first, and in four the tea was added first. How many
cups does she have to correctly identify to convince us of her
uncanny ability?

Fisher [1935] proposed a kind of permutation-based inference—a
method we now call the Fisher’'s exact test. The woman possesses
the ability probabilistically, not with certainty, if the likelihood of her
guessing all four correctly was sufficiently low. There are 8x7x6x5=
1,680 ways to choose a first cup, a second cup, a third cup, and a
fourth cup, in order. There are 4x3x2x1 = 24 ways to order four
cups. So the number of ways to choose four cups out of eight is
1680 24 = 70. Note, the woman performs the experiment by
selecting four cups. The probability that she would correctly identify
all four cups is 1/70, which is p = 0.014.

Maybe you would be more convinced of this method if you could
see a simulation, though. So let's conduct a simple combination
exercise. You can with the following code.

STATA

tea.do
clear
capture log close

* Create the data. 4 cups with tea, 4 cups with milk.

set obs 8
gencup =_n

O N R WN =

(continued)



STATA (continued)




tea.R
library(tidyverse)
library(utils)

correct <- tibble(

cup =c(1:8),

guess = c(1:4,rep(0,4))
)

O NG W N =

-

combo <- correct %$% as_tibble(t(combn(cup, 4))) %>%
transmute(
cup_1=V1,cup_2 =V2,
cup_3 =V3, cup_4 = V4) %>%
mutate(permutation = 1:70) %>%
crossing(., correct) %>%
arrange(permutation, cup) %>%
mutate(correct = case_when(cup_1 ==1 & cup_2==2 &
cup_3==3&cup_4==4~1,
TRUE ~ 0))
sum(combo$correct == 1)
p_value <- sum(comboS$correct == 1)/nrow(combo)

'y
O W oo NG R WN=O

Notice, we get the same answer either way—0.014. So, let’s return
to Dr. Bristol. Either she has no ability to discriminate the order in
which the tea and milk were poured, and therefore chose the correct
four cups by random chance, or she (like she said) has the ability to
discriminate the order in which ingredients were poured into a drink.
Since choosing correctly is highly unlikely (1 chance in 70), it is
reasonable to believe she has the talent that she claimed all along
that she had.

So what exactly have we done? Well, what we have done is
provide an exact probability value that the observed phenomenon
was merely the product of chance. You can never let the
fundamental problem of causal inference get away from you: we
never know a causal effect. We only estimate it. And then we rely on
other procedures to give us reasons to believe the number we
calculated is probably a causal effect. Randomization inference, like
all inference, is epistemological scaffolding for a particular kind of
belief—specifically, the likelihood that chance created this observed
value through a particular kind of procedure.

But this example, while it motivated Fisher to develop this method,
is not an experimental design wherein causal effects are estimated.



So now I'd like to move beyond it. Here, | hope, the randomization
inference procedure will become a more interesting and powerful
tool for making credible causal statements.

Methodology of Fisher’s sharp null. Let's discuss more of what we
mean by randomization inference in a context that is easier to
understand—a literal experiment or quasi-experiment. We will
conclude with code that illustrates how we might implement it. The
main advantage of randomization inference is that it allows us to
make probability calculations revealing whether the data are likely a
draw from a truly random distribution or not.

The methodology can’t be understood without first understanding
the concept of Fisher’s sharp null. Fisher’s sharp null is a claim we
make wherein no unit in our data, when treated, had a causal effect.
While that is a subtle concept and maybe not readily clear, it will be
much clearer once we work through some examples. The value of
Fisher’s sharp null is that it allows us to make an “exact” inference
that does not depend on hypothesized distributions (e.g., Gaussian)

or large sample approximations. In this sense, it is nonparametric.%

Some, when first confronted with the concept of randomization
inference, think, “Oh, this sounds like bootstrapping,” but the two are
in fact completely different. Bootstrapped p-values are random draws
from the sample that are then used to conduct inference. This means
that bootstrapping is primarily about uncertainty in the observations
used in the sample itself. But randomization inference p-values are
not about uncertainty in the sample; rather, they are based on
uncertainty over which units within a sample are assigned to the
treatment itself.

To help you understand randomization inference, let's break it
down into a few methodological steps. You could say that there are
six steps to randomization inference: (1) the choice of the sharp null,
(2) the construction of the null, (3) the picking of a different treatment
vector, (4) the calculation of the corresponding test statistic for that
new treatment vector, (5) the randomization over step 3 as you cycle
through a number of new treatment vectors (ideally all possible
combinations), and (6) the calculation the exact p-value.



Steps to a p value. Fisher and Neyman debated about this first step.
Fisher’'s “sharp” null was the assertion that every single unit had a
treatment effect of zero, which leads to an easy statement that the
ATE is also zero. Neyman, on the other hand, started at the other
direction and asserted that there was no average treatment effect,
not that each unit had a zero treatment effect. This is an important
distinction. To see this, assume that your treatment effect is a 5, but
my treatment effect is =5. Then the ATE = 0 which was Neyman’s
idea. But Fisher’s idea was to say that my treatment effect was zero,
and your treatment effect was zero. This is what “sharp” means—it
means literally that no single unit has a treatment effect. Let's
express this using potential outcomes notation, which can help
clarify what | mean.

Ho:6=Y =Y =0Vi

Now, it may not be obvious how this is going to help us, but consider
this—since we know all observed values, if there is no treatment
effect, then we also know each unit’'s counterfactual. Let me illustrate
my point using the example in Table 15.

Table 15. Example of made-up data for eight people with missing
counterfactuals.

Name D Y YO Y?
Andy 1 10 : 10
Ben 1 5 ) 5
Chad 1 16 . 16
Daniel 1 3 : 3
Edith 0 ) )

Frank 0 7 7

George 0 8 8

Hank 0 10 10

If you look closely at Table 15, you will see that for each unit, we
only observe one potential outcome. But under the sharp null, we



can infer the other missing counterfactual. We only have information
on observed outcomes based on the switching equation. So if a unit

is treated, we know its Y! but not its Y°.

The second step is the construction of what is called a “test
statistic.” What is this? A test statistic #(D,Y) is simply a known,
scalar quantity calculated from the treatment assignments and the
observed outcomes. It is often simply nothing more than a
measurement of the relationship between the Y values by D. In the
rest of this section, we will build out a variety of ways that people
construct test statistics, but we will start with a fairly straightforward
measurement—the simple difference in mean outcome.

Test statistics ultimately help us distinguish between the sharp null
itself and some other hypothesis. And if you want a test statistic with
high statistical power, then you need the test statistic to take on
“‘extreme” values (i.e., large in absolute values) when the null is
false, and you need for these large values to be unlikely when the

null is true.24

As we said, there are a number of ways to estimate a test statistic,
and we will be discussing several of them, but let's start with the
simple difference in mean outcomes. The average values for the
treatment group are 34/4, the average values for the control group
are 30/4, and the difference between these two averages is 1. So
given this particular treatment assignment in our sample—the true
assignment, mind you—there is a corresponding test statistic (the
simple difference in mean outcomes) that is equal to 1.

Now, what is implied by Fisher’s sharp null is one of the more
interesting parts of this method. While historically we do not know
each unit’'s counterfactual, under the sharp null we do know each
unit’s counterfactual. How is that possible? Because if none of the
units has nonzero treatment effects, then it must be that each
counterfactual is equal to its observed outcome. This means that we
can fill in those missing counterfactuals with the observed values
(Table 16).



Table 16. Example of made-up data for eight people with filled-in
counterfactuals according to Fisher’s sharp null hypothesis.

Name D Y YO Y!

Andy 1 10 10 10
Ben 1 5 5 5
Chad 1 16 16 16
Daniel 1 3 3 3
Edith 0 5 5 5
Frank 0 7 7 7
George 0 8 8 8
Hank 0 10 10 10

Note: Under the sharp null, we can infer the missing counterfactual, which |
have represented with bold face.

With these missing counterfactuals replaced by the corresponding
observed outcome, there’s no treatment effect at the unit level and
therefore a zero ATE. So why did we find earlier a simple difference
in mean outcomes of 1 if in fact there was no average treatment
effect? Simple—it was just noise, pure and simple. It was simply a
reflection of some arbitrary treatment assignment under Fisher’s
sharp null, and through random chance it just so happens that this
assignment generated a test statistic of 1.

So, let's summarize. We have a particular treatment assignment
and a corresponding test statistic. If we assume Fisher’s sharp null,
that test statistic is simply a draw from some random process. And if
that’s true, then we can shuffle the treatment assignment, calculate a
new test statistic and ultimately compare this “fake” test statistic with
the real one.

The key insight of randomization inference is that under the sharp
null, the treatment assignment ultimately does not matter. It explicitly
assumes as we go from one assignment to another that the
counterfactuals aren’t changing—they are always just equal to the
observed outcomes. So the randomization distribution is simply a set
of all possible test statistics for each possible treatment assignment
vector. The third and fourth steps extend this idea by literally



shuffling the treatment assignment and calculating the unique test
statistic for each assignment. And as you do this repeatedly (step 5),
in the limit you will eventually cycle through all possible combinations
that will yield a distribution of test statistics under the sharp null.

Once you have the entire distribution of test statistics, you can
calculate the exact p-value. How? Simple—you rank these test
statistics, fit the true effect into that ranking, count the number of
fake test statistics that dominate the real one, and divide that number
by all possible combinations. Formally, that would be this:

Pr(t(D,Y) = t0,Y |6=0)) = Loeo ’(t(D;(Y) =Lillis,

Again, we see what is meant by “exact.” These p-values are exact,
not approximations. And with a rejection threshold of a—for instance,
0.05—then a randomization inference test will falsely reject the sharp
null less than 100 x a percent of the time.

Example. | think this has been kind of abstract, and when things are
abstract, it's easy to be confused, so let's work through an example
with some new data. Imagine that you work for a homeless shelter
with a cognitive behavioral therapy (CBT) program for treating
mental illness and substance abuse. You have enough funding to
enlist four people into the study, but you have eight residents.
Therefore, there are four in treatment and four in control. After
concluding the CBT, residents are interviewed to determine the
severity of their mental illness symptoms. The therapist records their
mental health on a scale of 0 to 20. With the following information,
we can both fill in missing counterfactuals so as to satisfy Fisher’s
sharp null and calculate a corresponding test statistic based on this
treatment assignment. Our test statistic will be the absolute value of
the simple difference in mean outcomes for simplicity. The test
statistic for this particular treatment assignment is simply |34/4-30/4]
= 8.5-7.5 =1, using the data in Table 17.

Now we move to the randomization stage. Let's shuffle the
treatment assignment and calculate the new test statistic for that



new treatment vector. Table 18 shows this permutation. But first, one
thing. We are going to keep the number of treatment units fixed
throughout this example. But if treatment assignment had followed
some random process, like the Bernoulli, then the number of
treatment units would be random and the randomized treatment
assignment would be larger than what we are doing here. Which is
right? Neither is right in itself. Holding treatment units fixed is
ultimately a reflection of whether it had been fixed in the original
treatment assignment. That means that you need to know your data
and the process by which units were assigned to treatment to know
how to conduct the randomization inference.

Table 17. Self-reported mental health for eight residents in a homeless
shelter (treatment and control).

Name D; ($15) Y (health) e Y

Andy T 10 10 10
Ben L S 5 5
Chad L 16 16 16
Daniel 1 3 3 3
Edith 0 5 5 5
Frank 0 7 7 7
George 0 8 8 8
Hank 0 10 10 10




Table 18. First permutation holding the number of treatment units fixed.

l

Name D, Y YO \4

Andy 1 10 10 10
Ben 0 5 5 5
Chad 1 16 16 16
Daniel 1 3 3 3

Edith 0 5 5 5
Frank 1 7 7 7
George 0 8 8 8
Hank 0 10 10 10

With this shuffling of the treatment assignment, we can calculate a
new test statistic, which is |36/4 — 28/4| = 9 - 7 = 2. Now before we
move on, look at this test statistic: that test statistic of 2 is “fake”
because it is not the true treatment assignment. But under the null,
the treatment assignment, was already meaningless, since there
were no nonzero treatment effects anyway. The point is that even
when null of no effect holds, it can and usually will yield a nonzero
effect for no other reason than finite sample properties.

Table 19. Second permutation holding the number of treatment units fixed.

Name Ds Y YO Y'

Andy 1 10 10 10
Ben 0 5 5 5
Chad 1 16 16 16
Daniel 1 3 3 3
Edith 0 5 5 5
Frank 0 7 7 7
George 1 8 8 8
Hank 0 10 10 10




Table 20. The first few permutations for a randomization of treatment
assignments.

Assignment D, D, D3 Dy Ds D¢ D; Dg [T

True D 1 1 1 1 0 0 0 0 1
D, 1 0 1 1 0 1 0 0 2
D 1 0 1 1 0 0 1 0 225

Let’'s write that number 2 down and do another permutation, by
which | mean, let’s shuffle the treatment assignment again. Table 19
shows this second permutation, again holding the number of
treatment units fixed at four in treatment and four in control.

The test statistic associated with this treatment assignment is
|36/4-27/4| = 9-6.75 = 2.25. Again, 2.25 is a draw from a random
treatment assignment where each unit has no treatment effect.

Each time you randomize the treatment assignment, you calculate
a test statistic, store that test statistic somewhere, and then go onto
the next combination. You repeat this over and over until you have
exhausted all possible treatment assignments. Let’s look at the first
iterations of this in Table 20.

The final step is the calculation of the exact p-value. To do this, we
have a couple of options. We can either use software to do it, which
is a fine way to do it, or we can manually do it ourselves. And for
pedagogical reasons, | am partial to doing this manually. So let’s go.
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This program was fairly straightforward because the number of
possible combinations was so small. Out of eight observations, then
four choose eight equals 70. We just had to manipulate the data to
get to that point, but once we did, the actual calculation was
straighforward. So we can see that the estimated ATE cannot reject
the null in the placebo distribution.

But often the data sets we work with will be much larger than eight
observations. In those situations, we cannot use this method, as the
sheer volume of combination grows very fast as n increases. We will
hold off for now reviewing this inference method when n is too large
until we’ve had a chance to cover more ground.

Other test statistics. Recall that the second step in this methodology

was selection of the test statistic.22 We chose the simple difference
in mean outcomes (or the absolute value of such), which is fine
when effects are additive and there are few outliers in the data. But
outliers create problems for that test statistic because of the variation
that gets introduced in the randomization distribution. So other
alternative test statistics become more attractive.

One transformation that handles outliers and skewness more
generally is the log transformation. Imbens and Rubin [2015] define
this as the average difference on a log scale by treatment status, or

Table 21. lllustrating ranks using the example data.

Name D Y YO Y Rank R;
Andy 1 10 10 10 6.5 2
Ben 1 5 5 5 2.5 -2
Chad 1 16 16 16 8 3.5
Daniel 1 3 3 3 1 -3.5
Edith 0 5 5 5 2.5 -1
Frank 0 7 7 7 4 —-0.5
George 0 8 8 8 S 0.5
Hank 0 10 10 10 6.5 2




1T 1T o
Tiog = ‘N—T > DiIn(Y;) — N Y (1-D))In(Y)
i=1 i=1

This makes sense when the raw data is skewed, which happens for
positive values like earnings and in instances when treatment effects
are multiplicative rather than additive.

Another test statistic seen is the absolute value in the difference in
quantiles. This also protects against outliers and is represented as

Tmedian = |Median(Y7) — median(Y;)

We could look at the median, the 25th quantile, the 75th quantile, or
anything along the unit interval.

The issue of outliers also leads us to consider a test statistic that
uses ranks rather than differences. This again is useful when there
are large numbers of outliers, when outcomes are continuous or data
sets are small. Rank statistics transform outcomes to ranks and then
conduct analysis on the ranks themselves. The basic idea is to rank
the outcomes and then compare the average rank of the treated and
control groups. Let’s illustrate this with an example first (Table 21).

As before, we only observe one half of the potential outcomes
given the switching equation which assigns potential outcomes to
actual outcomes. But under Fisher’s sharp null, we can impute the
missing counterfactual so as to ensure no treatment effect. To
calculate ranks, we simply count the number of units with higher
values of Y, including the unit in question. And in instances of ties,
we simply take the average over all tied units.

For instance, consider Andy. Andy has a value of 10. Andy is as
large as himself (1); larger than Ben (2), Daniel (3), Edith (4), Frank
(5), and George (6); and tied with Hank (7). Since he is tied with
Hank, we average the two, which brings his rank to 6.5. Now
consider Ben. Ben has a value of 5. He is as large as himself (1),
larger than Daniel (2), and tied with Edith (3). Therefore, we average
Edith and himself to get 0.5, bringing us to a rank of 2.



It is common, though, to normalize the ranks to have mean O,
which is done according to the following formula:

N
=~ =~ N+
Ri=Ri(Y1,...,Yn) = ;nvj =V)———
This gives us the final column, which we will now use to calculate the
test statistic. Let’s use the absolute value of the simple difference in

mean outcomes on the normalized rank, which here is
Trank = |0 - 1/4| = 1/4

To calculate the exact p-value, we would simply conduct the same
randomization process as earlier, only instead of calculating the
simple difference in mean outcomes, we would calculate the
absolute value of the simpler difference in mean rank.

But all of these test statistics we've been discussing have been
differences in the outcomes by treatment status. We considered
simple differences in averages, simple differences in log averages,
differences in quantiles, and differences in ranks. Imbens and Rubin
[2015] note that there are shortcomings that come from focusing
solely on a few features of the data (e.g., skewness), as it can cause
us to miss differences in other aspects. This specifically can be
problematic if the variance in potential outcomes for the treatment
group differs from that of the control group. Focusing only on the
simple average differences we discussed may not generate p-values
that are “extreme” enough to reject the null even when the null in fact
does not hold. So we may be interested in a test statistic that can
detect differences in distributions between the treatment and control
units. One such test statistic is the Kolmogorov-Smirnov test statistic
(see figure 15).

Let's first define the empirical cumulative distribution function
(CDF) as:



i:Dj=0
~ 1
Fr()= - ) 1% <)
T D=1

If two distributions are the same, then their empirical CDF is the
same. But note, empirical CDFs are functions, and test statistics are
scalars. So how will we take differences between two functions and
turn that into a single scalar quantity? Easy—we will use the
maximum difference between the two empirical CDFs. Visually, it will
literally be the greatest vertical distance between the two empirical
CDFs. That vertical distance will be our test statistic. Formally it is:

Tks = max fT(YI) _?C(Yf)



Kolmogorov-Smirnov test
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Figure 15. Visualization of distributions by treatment status using a kernel

density.



STATA

(continued)



STATA (continued)

(continued)

R (continued)

And to calculate the p-value, you repeat what we did in earlier
examples. Specifically, drop the treatment variable, re-sort the data,



reassign new (fixed) treatment values, calculate T.s, save the

coefficient, and repeat a thousand or more times until you have a
distribution that you can use to calculate an empirical p-value.

Randomization inference with large n. What did we do when the
number of observations is very large? For instance, Thornton’s total
sample was 2,901 participants. Of those, 2,222 received any
incentive at all. Wolfram Alpha is an easy to use online calculator for
more complicated calculations and easy to use interface. If you go to
the website and type “2901 choose 2222” you get the following
truncated number of combinations:

615056610949825151369928033330771847162379504341926926
1826403
182663857589210958079956931425543526797837851741549337
43845244
5116605236515180505177864028242897940877670928487172011
8822321
888594251573599135614428312093501743827746469215584985
8790123
6881115630115402676462079964050722486456070651607800409
3411306
5544540016312151177000750339179099962167196885539725968
6031228 687680364730936480933074665307 . . .

Good luck calculating those combinations. So clearly, exact p-
values using all of the combinations won’t work. So instead, we are
going estimate approximate p-values. To do that, we will need to
randomly assign the treatment, estimate a test statistic satisfying the
sharp null for that sample, repeating that thousands of times, and
then calculate the p-value associated with this treatment assignment
based on its ranked position in the distribution.
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R (continued)

46 iterations <- 1000

47

48 permutation <- tibble(

49  iteration = c(seq(iterations)),

50 ate = as.numeric(

51 c(permuteHIV(hiv, random = FALSE), map(seq(iterations-1), ~permuteHIV(hiv,
< random = TRUE)))

52 )

53 )

54

55 #calculating the p-value

56

57 permutation <- permutation %>%

58 arrange(-ate) %>%

59  mutate(rank = seq(iterations))

60

61 p_value <- permutation %>%

62 filter(iteration == 1) %>%

63  pull(rank)/iterations

Quite impressive. Table 22 shows Thornton’s experiment under
Fisher’s sharp null with between 100 and 1,000 repeated draws
yields highly significant p-values. In fact, it is always the highest-
ranked ATE in a one-tailed test.

So what | have done here is obtain an approximation of the p-
value associated with our test statistic and the sharp null hypothesis.
In practice, if the number of draws is large, the p-value based on this
random sample will be fairly accurate [Imbens and Rubin, 2015]. |
wanted to illustrate this randomization method because in reality this
is exactly what you will be doing most of the time since the number
of combinations with any reasonably sized data set will be
computationally prohibitive.

Table 22. Estimated p-value using different number of trials.

ATE lteration Rank p No. trials
0.45 1 1 0.01 100
0.45 1 1 0.002 500

0.45 1 1 0.001 1000




Now, in some ways, this randomization exercise didn’t reveal a
whole lot, and that’s probably because Thornton’s original findings
were just so precise to begin with (0.4 with a standard error of 0.02).
We could throw atom bombs at this result and it won’t go anywhere.
But the purpose here is primarily to show its robustness under
different ways of generating those precious p-values, as well as
provide you with a map for programming this yourself and for having
an arguably separate intuitive way of thinking about significance
itself.

Leverage. Before we conclude, I'd like to go back to something | said
earlier regarding leverage. A recent provocative study by Young
[2019] has woken us up to challenges we may face when using
traditional inference for estimating the uncertainty of some point
estimate, such as robust standard errors. He finds practical problems
with our traditional forms of inference, which while previously known,
had not been made as salient as they were made by his study. The
problem that he highlights is one of concentrated leverage. Leverage
is a measure of the degree to which a single observation on the
right-hand-side variable takes on extreme values and is influential in
estimating the slope of the regression line. A concentration of
leverage in even a few observations can make coefficients and
standard errors extremely volatile and even bias robust standard
errors towards zero, leading to higher rejection rates.

To illustrate this problem, Young [2019] went through a simple
exercise. He collected over fifty experimental (lab and field) articles
from the American Economic Association’s flagship journals:
American Economic Review, American Economic Journal: Applied,
and American Economic Journal: Economic Policy. He then
reanalyzed these papers, using the authors’ models, by dropping
one observation or cluster and reestimating the entire model,
repeatedly. What he found was shocking:

With the removal of just one observation, 35% of 0.01-significant reported

results in the average paper can be rendered insignificant at that level.

Conversely, 16% of 0.01-insignificant reported results can be found to be
significant at that level. (567)



For evidence to be so dependent on just a few observations
creates some doubt about the clarity of our work, so what are our
alternatives? The randomization inference method based on Fisher’s
sharp null, which will be discussed in this section, can improve upon
these problems of leverage, in addition to the aforementioned
reasons to consider it. In the typical paper, randomization inference
found individual treatment effects that were 13 to 22 percent fewer
significant results than what the authors’ own analysis had
discovered. Randomization inference, it appears, is somewhat more
robust to the presence of leverage in a few observations.

Conclusion

In conclusion, we have done a few things in this chapter. We've
introduced the potential outcomes notation and used it to define
various types of causal effects. We showed that the simple
difference in mean outcomes was equal to the sum of the average
treatment effect, or the selection bias, and the weighted
heterogeneous treatment effect bias. Thus the simple difference-in-
mean outcomes estimator is biased unless those second and third
terms zero out. One situation in which they zero out is under
independence of the treatment, which is when the treatment has
been assigned independent of the potential outcomes. When does
independence occur? The most commonly confronted situation is
under physical randomization of the treatment to the units. Because
physical randomization assigns the treatment for reasons that are
independent of the potential outcomes, the selection bias zeroes out,
as does the heterogeneous treatment effect bias. We now move to
discuss a second situation where the two terms zero out: conditional
independence.

Notes

4 This brief history will focus on the development of the potential outcomes
model. See Morgan [1991] for a more comprehensive history of econometric
ideas.



2 Around age 20, | finally beat Tomb Raider 2 on the Sony PlayStation. So
yeah, | can totally relate to Gauss’s accomplishments at such a young age.

3 Formore on the transition from Splawa-Neyman [1923] to Fisher [1925],
see Rubin [2005].

4 In the placebo, children were injected with a saline solution.

5 More information about this fascinating experiment can be found in
Newhouse [1993].

6 If | were a betting man—and | am—then | would bet we see at least one
more experimental prize given out. The most likely candidate being John List,
for his work using field experiments.

7 Interestingly, philosophy as a field undertakes careful consideration of
counterfactuals at the same time as Rubin’s early work with the great
metaphysical philosopher David Lewis [Lewis, 1973]. This stuff was apparently
in the air, which makes tracing the causal effect of scientific ideas tough.

8 Counterfactual reasoning can be helpful, but it can also be harmful,
particularly when it is the source of regret. There is likely a counterfactual
version of the sunk-cost fallacy wherein, since we cannot know with certainty
what would’ve happened had we made a different decision, we must accept a
certain amount of basic uncertainty just to move on and get over it. Ultimately,
no one can say that an alternative decision would’ve had a better outcome.
You cannot know, and that can be difficult sometimes. It has been and will
continue to be, for me at least.

9 As best | can tell, the philosopher | mentioned earlier, David Lewis,
believed that potential outcomes were actually separate worlds—just as real
as our world. That means that, according to Lewis, there is a very real, yet
inaccessible, world in which Kanye released Yandhi instead of Jesus Is King, |
find extremely frustrating.

10 A couple of things. First, this analysis can be extended to more than two
potential outcomes, but as a lot of this book focuses on program evaluation, |
am sticking with just two. Second, the treatment here is any particular
intervention that can be manipulated, such as the taking of aspirin or not. In
the potential outcomes tradition, manipulation is central to the concept of
causality.

41 This can happen because of preferences, but it also can happen
because of constraints. Utility maximization, remember, is a constrained
optimization process, and therefore value and obstacles both play a role in
sorting.

12 Think of the “perfect doctor” as like a Harry Potter—style Sorting Hat. |
first learned of this “perfect doctor” illustration from Rubin himself.



43 The reason that the ATU is negative is because the treatment here is the
surgery, which did not perform as well as chemotherapy-untreated units. But
you could just as easily interpret this as 3.2 additional years of life if they had
received chemo instead of surgery.

15 Note that Angrist and Pischke [2009] have a slightly different
decomposition where the SDO = ATT +selection bias, but that is because their
parameter of interest is the ATT, and therefore the third term doesn’t appear.

16 Why do | say “gains”? Because the gain to surgery is Y1,- - YO,- . Thus, if

we say it's independent of gains, we are saying it's independent of Y' and Y0.

47 This is actually where economics is helpful in my opinion. Economics
emphasizes that observed values are equilibria based on agents engaging in
constrained optimization and that all but guarantees that independence is
violated in observational data. Rarely are human beings making important life
choices by flipping coins.

18 In Craig [2006], a poker-playing banker used the second hand on his
watch as a random number generator to randomly bluff when he had a weak
hand.

19 Because it's not seeded, when you run it, your answer will be close but
slightly different because of the randomness of the sample drawn.

20 Here’s a simple way to remember what equality we get with
independence. The term before the vertical bar is the same, but the term after
the vertical bar is different. So independence guarantees that in the population

Y1 is the same on average, for each group.

21 She also chose to cluster those standard errors by village for 119
villages. In doing so, she addresses the over-rejection problem that we saw
earlier when discussing clustering in the probability and regression chapter.

22 Apparently, Bristol correctly guessed all four cups of tea.

23 | simply mean that the inference does not depend on asymptotics or a
type of distribution in the data-generating process.

24 |t's kind of interesting what precisely the engine of this method is—it’s
actually not designed to pick up small treatment effects because often those
small values will be swamped by the randomization process. There’s no
philosophical reason to believe, though, that average treatment effects have to
be relatively “large.” It’s just that randomization inference does require that so
as to distinguish the true effect from that of the sharp null.

25 For more in-depth discussion of the following issues, | highly recommend
the excellent Imbens and Rubin [2015], chapter 5 in particular.



Matching and Subclassification

Subclassification

One of the main things | wanted to cover in the chapter on directed
acylical graphical models was the idea of the backdoor criterion.
Specifically, insofar as there exists a conditioning strategy that will
satisfy the backdoor criterion, then you can use that strategy to
identify some causal effect. We now discuss three different kinds of
conditioning strategies. They are subclassification, exact matching,

and approximate matching.!

Subclassification is a method of satisfying the backdoor criterion
by weighting differences in means by strata-specific weights. These
strata-specific weights will, in turn, adjust the differences in means
so that their distribution by strata is the same as that of the
counterfactual’s strata. This method implicitly achieves distributional
balance between the treatment and control in terms of that known,
observable confounder. This method was created by statisticians like
Cochran [1968], who tried to analyze the causal effect of smoking on
lung cancer, and while the methods today have moved beyond it, we
include it because some of the techniques implicit in
subclassification are present throughout the rest of the book.

One of the concepts threaded through this chapter is the
conditional independence assumption, or C/A. Sometimes we know
that randomization occurred only conditional on some observable
characteristics. For instance, in Krueger [1999], Tennessee randomly
assigned kindergarten students and their teachers to small
classrooms, large classrooms, and large classrooms with an aide.
But the state did this conditionally—specifically, schools were
chosen, and then students were randomized. Krueger therefore
estimated regression models that included a school fixed effect
because he knew that the treatment assignment was only
conditionally random.



This assumption is written as
(YLY) LD |X (5.1)

where again L is the notation for statistical independence and X is
the variable we are conditioning on. What this means is that the

expected values of Y' and Y? are equal for treatment and control
group for each value of X. Written out, this means:

E[Y'|D=1X]=E[Y" |D=0,X] (5.2)
E[Y°|D=1,X]=E[Y°|D=0,X] (5.3)

Let me link together some concepts. First, insofar as CIA is credible,
then CIA means you have found a conditioning strategy that satisfies
the backdoor criterion. Second, when treatment assignment had
been conditional on observable variables, it is a situation of selection
on observables. The variable X can be thought of as an n x k matrix
of covariates that satisfy the CIA as a whole.

Some background. A major public health problem of the mid- to late
twentieth century was the problem of rising lung cancer. For
instance, the mortality rate per 100,000 from cancer of the lungs in
males reached 80-100 per 100,000 by 1980 in Canada, England,
and Wales. From 1860 to 1950, the incidence of lung cancer found
in cadavers during autopsy grew from 0% to as high as 7%. The rate
of lung cancer incidence appeared to be increasing.

Studies began emerging that suggested smoking was the cause
since it was so highly correlated with incidence of lung cancer. For
instance, studies found that the relationship between daily smoking
and lung cancer in males was monotonically increasing in the
number of cigarettes a male smoked per day. But some statisticians
believed that scientists couldn’t draw a causal conclusion because it
was possible that smoking was not independent of potential health
outcomes. Specifically, perhaps the people who smoked cigarettes
differed from non-smokers in ways that were directly related to the



incidence of lung cancer. After all, no one is flipping coins when
deciding to smoke.

Thinking about the simple difference in means decomposition from
earlier, we know that contrasting the incidence of lung cancer
between smokers and non-smokers will be biased in observational
data if the independence assumption does not hold. And because
smoking is endogenous—that is, people choose to smoke—it's
entirely possible that smokers differed from the non-smokers in ways
that were directly related to the incidence of lung cancer.

Criticisms at the time came from such prominent statisticians as
Joseph Berkson, Jerzy Neyman, and Ronald Fisher. They made
several compelling arguments. First, they suggested that the
correlation was spurious due to a non-random selection of subjects.
Functional form complaints were also common. This had to do with
people’s use of risk ratios and odds ratios. The association, they
argued, was sensitive to those kinds of functional form choices,
which is a fair criticism. The arguments were really not so different
from the kinds of arguments you might see today when people are
skeptical of a statistical association found in some observational data
set.

Probably most damning, though, was the hypothesis that there
existed an unobservable genetic element that both caused people to
smoke and independently caused people to develop lung cancer.
This confounder meant that smokers and non-smokers differed from
one another in ways that were directly related to their potential
outcomes, and thus independence did not hold. And there was
plenty of evidence that the two groups were different. For instance,
smokers were more extroverted than non-smokers, and they also
differed in age, income, education, and so on.

The arguments against the smoking cause mounted. Other
criticisms included that the magnitudes relating smoking and lung
cancer were implausibly large. And again, the ever-present criticism
of observational studies: there did not exist any experimental

evidence that could incriminate smoking as a cause of lung cancer.2



The theory that smoking causes lung cancer is now accepted
science. | wouldn’t be surprised if more people believe in a flat Earth
than that smoking causes lung cancer. | can’t think of a more well-
known and widely accepted causal theory, in fact. So how did Fisher
and others fail to see it? Well, in Fisher’'s defense, his arguments
were based on sound causal logic. Smoking was endogenous. There
was no experimental evidence. The two groups differed considerably
on observables. And the decomposition of the simple difference in
means shows that contrasts will be biased if there is selection bias.
Nonetheless, Fisher was wrong, and his opponents were right. They
just were right for the wrong reasons.

To motivate what we're doing in subclassification, let's work with
Cochran [1968], which was a study trying to address strange
patterns in smoking data by adjusting for a confounder. Cochran lays
out mortality rates by country and smoking type (Iable 23).

As you can see, the highest death rate for Canadians is among the
cigar and pipe smokers, which is considerably higher than for
nonsmokers or for those who smoke cigarettes. Similar patterns
show up in both countries, though smaller in magnitude than what
we see in Canada.

Table 23. Death rates per 1,000 person-years [Cochran, 1968].

Smoking group Canada UK US
Non-smokers 20.2 11.3 13.5
Cigarettes 20.5 14.1 13.5
Cigars/pipes 35.5 20.7 17.4

This table suggests that pipes and cigars are more dangerous
than cigarette smoking, which, to a modern reader, sounds
ridiculous. The reason it sounds ridiculous is because cigar and pipe
smokers often do not inhale, and therefore there is less tar that
accumulates in the lungs than with cigarettes. And insofar as it's the
tar that causes lung cancer, it stands to reason that we should see
higher mortality rates among cigarette smokers.



But, recall the independence assumption. Do we really believe
that:

E[Y" | Cigarette] = E[Y" | Pipe] = E[Y" | Cigar]
E[Y° | Cigarette] = E[Y° | Pipe] = E[Y? | Cigar]

Is it the case that factors related to these three states of the world
are truly independent to the factors that determine death rates? Well,
let's assume for the sake of argument that these independence
assumptions held. What else would be true across these three
groups? Well, if the mean potential outcomes are the same for each
type of smoking category, then wouldn’t we expect the observable
characteristics of the smokers themselves to be as well? This
connection between the independence assumption and the
characteristics of the groups is called balance. If the means of the
covariates are the same for each group, then we say those
covariates are balanced and the two groups are exchangeable with
respect to those covariates.

One variable that appears to matter is the age of the person. Older
people were more likely at this time to smoke cigars and pipes, and
without stating the obvious, older people were more likely to die. In
Table 24 we can see the mean ages of the different groups.

Table 24. Mean ages, years [Cochran, 1968].

Smoking group Canada UK us

Non-smokers 54.9 491 57.0
Cigarettes 50.5 49.8 53.2
Cigars/pipes 65.9 55.7 59.7

The high means for cigar and pipe smokers are probably not
terribly surprising. Cigar and pipe smokers are typically older than
cigarette smokers, or at least they were in 1968 when Cochran was
writing. And since older people die at a higher rate (for reasons other
than just smoking cigars), maybe the higher death rate for cigar



smokers is because they’re older on average. Furthermore, maybe
by the same logic, cigarette smoking has such a low mortality rate
because cigarette smokers are younger on average. Note, using
DAG notation, this simply means that we have the following DAG:

D——Y

’\A/'

where D is smoking, Y is mortality, and A is age of the smoker.
Insofar as CIA is violated, then we have a backdoor path that is
open, which also means that we have omitted variable bias. But
however we want to describe it, the common thing is that the
distribution of age for each group will be different—which is what |
mean by covariate imbalance. My first strategy for addressing this
problem of covariate imbalance is to condition on age in such a way
that the distribution of age is comparable for the treatment and

control groups.3

So how does subclassification achieve covariate balance? Our first
step is to divide age into strata: say, 20—40, 41-70, and 71 and older.
Then we can calculate the mortality rate for some treatment group
(cigarette smokers) by strata (here, that is age). Next, weight the
mortality rate for the treatment group by a strata-specific (or age-
specific) weight that corresponds to the control group. This gives us
the age-adjusted mortality rate for the treatment group. Let’'s explain
with an example by looking at Table 25. Assume that age is the only

relevant confounder between cigarette smoking and mortality.



Table 25. Subclassification example.

Death rates Number of
Cigarette smokers Cigarette smokers Pipe or cigar smokers

Age 20-40 20 65 10
Age 41-70 40 25 25
Age > 71 60 10 65
Total 100 100

What is the average death rate for pipe smokers without
subclassification? It is the weighted average of the mortality rate

column where each weight is equal to % and N; and N are the

number of people in each group and the total number of people,
respectively. Here that would be

65 25 10
2 4 —_— —:29.
0750 T49* 750 9% < 755

That is, the mortality rate of smokers in the population is 29 per
100,000.

But notice that the age distribution of cigarette smokers is the
exact opposite (by construction) of pipe and cigar smokers. Thus the
age distribution is imbalanced. Subclassification simply adjusts the
mortality rate for cigarette smokers so that it has the same age
distribution as the comparison group. In other words, we would
multiply each age-specific mortality rate by the proportion of
individuals in that age strata for the comparison group. That would
be

20x£+40x§+60x i

100 100 T



Table 26. Adjusted mortality rates using three age groups [Cochran, 1968].

Smoking group Canada UK us
Non-smokers 20.2 11.3 13.5
Cigarettes 29.5 14.8 21.2
Cigars/pipes 19.8 11.0 13.7

That is, when we adjust for the age distribution, the age-adjusted
mortality rate for cigarette smokers (were they to have the same age
distribution as pipe and cigar smokers) would be 51 per 100,000—
almost twice as large as we got taking a simple naive calculation
unadjusted for the age confounder.

Cochran uses a version of this subclassification method in his
paper and recalculates the mortality rates for the three countries and
the three smoking groups (see Table 26). As can be seen, once we
adjust for the age distribution, cigarette smokers have the highest
death rates among any group.

This kind of adjustment raises a question—which variable(s)
should we use for adjustment? First, recall what we’'ve emphasized
repeatedly. Both the backdoor criterion and CIA tell us precisely what
we need to do. We need to choose a set of variables that satisfy the
backdoor criterion. If the backdoor criterion is met, then all backdoor
paths are closed, and if all backdoor paths are closed, then CIA is
achieved. We call such a variable the covariate. A covariate is
usually a random variable assigned to the individual units prior to
treatment. This is sometimes also called exogenous. Harkening back
to our DAG chapter, this variable must not be a collider as well. A
variable is exogenous with respect to D if the value of X does not
depend on the value of D. Oftentimes, though not always and not
necessarily, this variable will be time-invariant, such as race. Thus,
when trying to adjust for a confounder using subclassification, rely on
a credible DAG to help guide the selection of variables. Remember
—your goal is to meet the backdoor criterion.



Identifying assumptions. Let me now formalize what we've learned.
In order to estimate a causal effect when there is a confounder, we
need (1) CIA and (2) the probability of treatment to be between 0
and 1 for each strata. More formally,

1. (Y1,Y0) 1 D | X (conditional independence)
2.0 <Pr(D=1]X) <1 with probability one (common support)

These two assumptions yield the following identity
E[Y'—Y° | X]=E[Y'—Y°|X,D="1]
=E[Y'|X,D=1]—E[Y° | X,D=0]
—E[Y | X,D=1]—E[Y | X,D=0]

where each value of Y is determined by the switching equation.
Given common support, we get the following estimator:

51}}:f(E[Y|x,D=1]—E[Y|X,D=0])dPr(X)

Whereas we need treatment to be conditionally independent of both
potential outcomes to identify the ATE, we need only treatment to be

conditionally independent of Y? to identify the ATT and the fact that
there exist some units in the control group for each treatment strata.
Note, the reason for the common support assumption is because we
are weighting the data; without common support, we cannot
calculate the relevant weights.

Subclassification exercise: Titanic data set. For what we are going to
do next, | find it useful to move into actual data. We will use an
interesting data set to help us better understand subclassification. As
everyone knows, the Titanic ocean cruiser hit an iceberg and sank
on its maiden voyage. Slightly more than 700 passengers and crew
survived out of the 2,200 people on board. It was a horrible disaster.
One of the things about it that was notable, though, was the role that
wealth and norms played in passengers’ survival.



Imagine that we wanted to know whether or not being seated in
first class made someone more likely to survive. Given that the
cruiser contained a variety of levels for seating and that wealth was
highly concentrated in the upper decks, it's easy to see why wealth
might have a leg up for survival. But the problem was that women
and children were explicitly given priority for boarding the scarce
lifeboats. If women and children were more likely to be seated in first
class, then maybe differences in survival by first class is simply
picking up the effect of that social norm. Perhaps a DAG might help
us here, as a DAG can help us outline the sufficient conditions for
identifying the causal effect of first class on survival.

w

N

D Y

/

C

Now before we commence, let’s review what this DAG is telling us.
This says that being a female made you more likely to be in first
class but also made you more likely to survive because lifeboats
were more likely to be allocated to women. Furthermore, being a
child made you more likely to be in first class and made you more
likely to survive. Finally, there are no other confounders, observed or

unobserved.2

Here we have one direct path (the causal effect) between first
class (D) and survival (Y) and thats D — Y. But, we have two
backdoor paths. One travels through the variable Child (C): D «—C —
Y; the other travels through the variable Woman (W): D W — Y.
Fortunately for us, our data includes both age and gender, so it is
possible to close each backdoor path and therefore satisfy the
backdoor criterion. We will use subclassification to do that, but



before we do, let’'s calculate a naive simple difference in outcomes
(SDO), which is just

E[Y|D=1]—E[Y |D=0]

for the sample.

STATA

(continued)



R (continued)

15 eyl <-titanic %>%
16 filter(d == 1) %>%
17 pull(survived) %>%
18  mean()

20 ey0 <- titanic %>%
21 filter(d == 0) %>%
22 pull(survived) %>%
23 mean()

25 sdo<-eyl-ey0

Using the data set on the Titanic, we calculate a simple difference
in mean outcomes (SDO), which finds that being seated in first class
raised the probability of survival by 35.4%. But note, since this does
not adjust for observable confounders age and gender, it is a biased
estimate of the ATE. So next we use subclassification weighting to
control for these confounders. Here are the steps that will entail:

1. Stratify the data into four groups: young males, young females, old males,

old females.

2. Calculate the difference in survival probabilities for each group.

3. Calculate the number of people in the non-first-class groups and divide by
the total number of non-first-class population. These are our strata-specific
weights.

4. Calculate the weighted average survival rate using the strata weights.

Let’s review this with some code so that you can better understand
what these four steps actually entail.
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R (continued)




Table 27. Subclassification example of Titanic survival for large K.

Survival Prob. Number of
Age and Gender  1st Class Controls Diff. 1st Class Controls

Male 11-yo 1.0 0 T 1 2
Male 12-yo - 1 B 0 1
Male 13-yo 1.0 0 T 1 2
Male 14-yo - 0.25 - 0 4

Here we find that once we condition on the confounders gender
and age, first-class seating has a much lower probability of survival
associated with it (though frankly, still large). The weighted ATE is
16.1%, versus the SDO, which is 35.4%.

Curse of dimensionality. Here we’ve been assuming two covariates,
each of which has two possible set of values. But this was for
convenience. Our data set, for instance, only came to us with two
possible values for age—child and adult. But what if it had come to
us with multiple values for age, like specific age? Then once we
condition on individual age and gender, it's entirely likely that we will
not have the information necessary to calculate differences within
strata, and therefore be unable to calculate the strata-specific
weights that we need for subclassification.

For this next part, let's assume that we have precise data on
Titanic survivor ages. But because this will get incredibly laborious,
let’s just focus on a few of them.

Here we see an example of the common support assumption
being violated. The common support assumption requires that for
each strata, there exist observations in both the treatment and
control group, but as you can see, there are not any 12-year-old
male passengers in first class. Nor are there any 14-year-old male
passengers in first class. And if we were to do this for every
combination of age and gender, we would find that this problem was
quite common. Thus, we cannot estimate the ATE using



subclassification. The problem is that our stratifying variable has too
many dimensions, and as a result, we have sparseness in some
cells because the sample is too small.

But let’s say that the problem was always on the treatment group,
not the control group. That is, let's assume that there is always
someone in the control group for a given combination of gender and
age, but there isn’'t always for the treatment group. Then we can
calculate the ATT. Because as you see in this table, for those two
strata, 11-year-olds and 13-year-olds, there are both treatment and
control group values for the calculation. So long as there exist
controls for a given treatment strata, we can calculate the ATT. The
equation to do so can be compactly written as:

~ X\ /=ik =0k N’{r
OATT:Z(Y -Y )X(N_T)

k=1

We've seen a problem that arises with subclassification—in a finite
sample, subclassification becomes less feasible as the number of
covariates grows, because as K grows, the data becomes sparse.
This is most likely caused by our sample being too small relative to
the size of our covariate matrix. We will at some point be missing
values, in other words, for those K categories. Imagine if we tried to
add a third strata, say, race (black and white). Then we’d have two
age categories, two gender categories, and two race categories,
giving us eight possibilities. In this small sample, we probably will
end up with many cells having missing information. This is called the
curse of dimensionality. If sparseness occurs, it means many cells
may contain either only treatment units or only control units, but not
both. If that happens, we can’t use subclassification, because we do
not have common support. And therefore we are left searching for an
alternative method to satisfy the backdoor criterion.

Exact Matching

Subclassification uses the difference between treatment and control
group units and achieves covariate balance by using the K



probability weights to weight the averages. It's a simple method, but
it has the aforementioned problem of the curse of dimensionality.
And probably, that's going to be an issue in any research you
undertake because it may not be merely one variable you’re worried
about but several—in which case, you'll already be running into the
curse. But the thing to emphasize here is that the subclassification
method is using the raw data, but weighting it so as to achieve
balance. We are weighting the differences, and then summing over
those weighted differences.

But there are alternative approaches. For instance, what if we
estimated jarr by imputing the missing potential outcomes by

conditioning on the confounding, observed covariate? Specifically,
what if we filled in the missing potential outcome for each treatment
unit using a control group unit that was “closest” to the treatment
group unit for some X confounder? This would give us estimates of
all the counterfactuals from which we could simply take the average
over the differences. As we will show, this will also achieve covariate
balance. This method is called matching.

There are two broad types of matching that we will consider: exact
matching and approximate matching. We will first start by describing
exact matching. Much of what | am going to be discussing is based
on Abadie and Imbens [2006].

A simple matching estimator is the following:

~ 1
Sarr == > (Y= Vo)
ATT NT — JU)

where Y/() is the jth unit matched to the ith unit based on the jth

being “closest to” the ith unit for some X covariate. For instance, let’s
say that a unit in the treatment group has a covariate with a value of
2 and we find another unit in the control group (exactly one unit) with
a covariate value of 2. Then we will impute the treatment unit’s
missing counterfactual with the matched unit's, and take a
difference.



But, what if there’s more than one variable “closest to” the ith unit?
For instance, say that the same ith unit has a covariate value of 2
and we find two j units with a value of 2. What can we then do? Well,
one option is to simply take the average of those two units’ Y
outcome value. But what if we found 3 close units? What if we found
4?7 And so on. However many matches M that we find, we would

assign the average outcome (;) as the counterfactual for the

treatment group unit.
Notationally, we can describe this estimator as

- 1 1 —
OnrT = Ny Z= (Yf - [H n;y'mm])

This estimator really isn’t too different from the one just before it; the
main difference is that this one averages over several close matches
as opposed to just picking one. This approach works well when we
can find a number of good matches for each treatment group unit.
We usually define M to be small, like M = 2. If M is greater than 2,
then we may simply randomly select two units to average outcomes
over.

Those were both ATT estimators. You can tell that these are EATT
estimators because of the summing over the treatment group.2 But
we can also estimate the ATE. But note, when estimating the ATE,
we are filling in both missing control group units like before and
missing treatment group units. If observation i is treated, in other
words, then we need to fill in the missing }’f using the control
matches, and if the observation i/ is a control group unit, then we
need to fill in the missing "r? using the treatment group matches. The
estimator is below. It looks scarier than it really is. It's actually a very
compact, nicely-written-out estimator equation.

1 1
OATE = N ;(ZD; = 1)|:\/I = (M; Yfm(-‘)):|



The 2D; -1 is the nice little trick. When D, = 1, then that leading term

becomes a 1. And when D; = 0, then that leading term becomes a

negative 1, and the outcomes reverse order so that the treatment
observation can be imputed. Nice little mathematical form!

Let’s see this work in action by working with an example. Table 28
shows two samples: a list of participants in a job trainings program
and a list of non-participants, or non-trainees. The left-hand group is
the treatment group and the right-hand group is the control group.
The matching algorithm that we defined earlier will create a third
group called the matched sample, consisting of each treatment
group unit's matched counterfactual. Here we will match on the age
of the participant.



Table 28. Training example with exact matching.

Trainees Non-Trainees

Unit Age Earnings Unit Age Earnings
1 18 9500 1 20 8500
2 29 12250 2 27 10075
3 24 11000 3 21 8725
4 27 11750 4 39 12775
5 33 13250 5 38 12550
6 22 10500 6 29 10525
7 19 9750 7 39 12775
8 20 10000 8 33 11425
9 21 10250 9 24 9400
10 30 12500 10 30 10750
1 33 11425

12 36 12100

13 22 8950

14 18 8050

15 43 13675

16 39 12775

17 19 8275

18 30 9000

19 51 15475

20 48 14800

Mean 24.3 $11,075 31.95 $11,101.25

Before we do this, though, | want to show you how the ages of the
trainees differ on average from the ages of the non-trainees. We can
see that in JTable 28—the average age of the participants is 24.3
years, and the average age of the non-participants is 31.95 years.
Thus, the people in the control group are older, and since wages
typically rise with age, we may suspect that part of the reason their
average earnings are higher ($11,075 vs. $11,101) is because the
control group is older. We say that the two groups are not
exchangeable because the covariate is not balanced. Let's look at



the age distribution. To illustrate this, we need to download the data
first. We will create two histograms—the distribution of age for
treatment and non-trainee group—as well as summarize earnings for
each group. That information is also displayed in Eigure 16.
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STATA

training_example.do
use
< https://github.com/scunning1975/mixtape/raw/master/training_example.dta,
< clear
histogram age_treat, bin(10) frequency
histogram age_control, bin(10) frequency
su age_treat age_control
su earnings_treat earnings_control

histogram age_treat, hin(10) frequency
histogram age_matched, bin(10) frequency
su age_treat age_control

su earnings_matched earnings_matched

R

training_example.R
library(tidyverse)
library(haven)

read_data <- function(df)
{
full_path <- paste("https://raw.github.com/scunning1975/mixtape/master/",
df, Sep = ||||)
df <- read_dta(full_path)
return(df)

}

training_example <- read_data("training_example.dta") %>%
slice(1:20)

ggplot(training_example, aes(x=age_treat)) +
stat_bin(bins = 10, na.rm = TRUE)

ggplot(training_example, aes(x=age_control)) +
geom_histogram(bins = 10, na.rm = TRUE)
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Figure 16. Covariate distribution by job trainings and control.

As you can see from Figure 16, these two populations not only
have different means (Table 28); the entire distribution of age across
the samples is different. So let's use our matching algorithm and
create the missing counterfactuals for each treatment group unit.



This method, since it only imputes the missing units for each
treatment unit, will yield an estimate of the Emr-

Now let's move to creating the matched sample. As this is exact
matching, the distance traveled to the nearest neighbor will be zero
integers. This won’t always be the case, but note that as the control
group sample size grows, the likelihood that we find a unit with the
same covariate value as one in the treatment group grows. I've
created a data set like this. The first treatment unit has an age of 18.
Searching down through the non-trainees, we find exactly one
person with an age of 18, and that’s unit 14. So we move the age
and earnings information to the new matched sample columns.



Table 29. Training example with exact matching (including matched sample).

Trainees Non-Trainees Matched Sample
Unit Age Earnings Unit Age Earnings Unit Age Earnings

1 18 9500 1 20 8500 14 18 8050
2 29 12250 2 27 10075 6 29 10525
3 24 11000 3 21 8725 9 24 9400
4 27 11750 4 39 12775 8 27 10075
5 33 13250 5 38 12550 1 33 11425
6 22 10500 6 29 10525 13 22 8950
7 19 9750 7 39 12775 17 19 8275
8 20 10000 8 33 11425 1 20 8500
9 21 10250 9 24 9400 3 21 8725
10 30 12500 10 30 10750 10,18 30 9875

1 33 11425

12 36 12100

13 22 8950

14 18 8050

15 43 13675

16 39 12775

17 19 8275

18 30 9000

19 51 15475

20 48 14800
Mean 24.3 $11,075 31.95 $11,101.25 243  $9,380

We continue doing that for all units, always moving the control
group unit with the closest value on X to fill in the missing
counterfactual for each treatment unit. If we run into a situation
where there’s more than one control group unit “close,” then we
simply average over them. For instance, there are two units in the
non-trainees group with an age of 30, and that's 10 and 18. So we
averaged their earnings and matched that average earnings to unit
10. This is filled out in Table 29.
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Figure 17. Covariate distribution by job trainings and matched sample.

Now we see that the mean age is the same for both groups. We
can also check the overall age distribution (Eigure 17). As you can
see, the two groups are exactly balanced on age. We might say the
two groups are exchangeable. And the difference in earnings
between those in the treatment group and those in the control group
is $1,695. That is, we estimate that the causal effect of the program
was $1,695 in higher earnings.

Let's summarize what we’ve learned. We've been using a lot of
different terms, drawn from different authors and different statistical
traditions, so I'd like to map them onto one another. The two groups
were different in ways that were likely a direction function of potential
outcomes. This means that the independence assumption was
violated. Assuming that treatment assignment was conditionally
random, then matching on X created an exchangeable set of
observations—the matched sample—and what characterized this
matched sample was balance.



Approximate Matching

The previous example of matching was relatively simple—find a unit
or collection of units that have the same value of some covariate X
and substitute their outcomes as some unit j’s counterfactuals. Once
you've done that, average the differences for an estimate of the ATE.

But what if you couldn’t find another unit with that exact same
value? Then you’re in the world of approximate matching.

Nearest neighbor covariate matching. One of the instances where
exact matching can break down is when the number of covariates, K,
grows large. And when we have to match on more than one variable
but are not using the sub-classification approach, then one of the
first things we confront is the concept of distance. What does it mean
for one wunit's covariate to be “close” to someone else’s?
Furthermore, what does it mean when there are multiple covariates
with measurements in multiple dimensions?

Matching on a single covariate is straightforward because distance
is measured in terms of the covariate’s own values. For instance,
distance in age is simply how close in years or months or days one
person is to another person. But what if we have several covariates
needed for matching? Say, age and log income. A 1-point change in
age is very different from a 1-point change in log income, not to
mention that we are now measuring distance in two, not one,
dimensions. When the number of matching covariates is more than
one, we need a new definition of distance to measure closeness. We
begin with the simplest measure of distance, the Euclidean distance:

1 — Xi11 = /(6 = X)) (X; — X))

k
= Z(Xni — an)2
n=1

The problem with this measure of distance is that the distance
measure itself depends on the scale of the variables themselves. For
this reason, researchers typically will use some maodification of the



Euclidean distance, such as the normalized Euclidean distance, or
they’ll use a wholly different alternative distance. The normalized
Euclidean distance is a commonly used distance, and what makes it
different is that the distance of each variable is scaled by the
variable’s variance. The distance is measured as:

1X = X1 =/ (6 = XV — X;)

where
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Notice that the normalized Euclidean distance is equal to:

k
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Thus, if there are changes in the scale of X, these changes also
affect its variance, and so the normalized Euclidean distance does
not change.

Finally, there is the Mahalanobis distance, which like the
normalized Euclidean distance measure, is a scale-invariant
distance metric. It is:

11X = X1 =/ 0% = X)) S5 06 — X))

where Ex is the sample variance-covariance matrix of X.

Basically, more than one covariate creates a lot of headaches. Not
only does it create the curse-of-dimensionality problem; it also
makes measuring distance harder. All of this creates some
challenges for finding a good match in the data. As you can see in



each of these distance formulas, there are sometimes going to be
matching discrepancies. Sometimes X; = X;. What does this mean? It

means that some unit i has been matched with some unit j on the
basis of a similar covariate value of X = x. Maybe unit / has an age of
25, but unit j has an age of 26. Their difference is 1. Sometimes the
discrepancies are small, sometimes zero, sometimes large. But, as
they move away from zero, they become more problematic for our
estimation and introduce bias.

How severe is this bias? First, the good news. What we know is
that the matching discrepancies tend to converge to zero as the
sample size increases—which is one of the main reasons that
approximate matching is so data greedy. It demands a large sample
size for the matching discrepancies to be trivially small. But what if
there are many covariates? The more covariates, the longer it takes
for that convergence to zero to occur. Basically, if it's hard to find
good matches with an X that has a large dimension, then you will
need a lot of observations as a result. The larger the dimension, the
greater likelihood of matching discrepancies, and the more data you
need. So you can take that to the bank—most likely, your matching
problem requires a large data set in order to minimize the matching
discrepancies.

Bias correction. Speaking of matching discrepancies, what sorts of
options are available to us, putting aside seeking a large data set
with lots of controls? Well, enter stage left, Abadie and Imbens
[2011], who introduced bias-correction techniques with matching
estimators when there are matching discrepancies in finite samples.
So let’s look at that more closely, as you'll likely need this in your
work.

Everything we're getting at is suggesting that matching is biased
because of these poor matching discrepancies. So let's derive this
bias. First, we write out the sample ATT estimate, and then we
subtract out the true ATT. So:
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where each i and j(i) units are matched, X; = Xi(;) and D;(;) = 0. Next
we define the conditional expection outcomes

1 (X)=E[Y|X=xD=0]=E[Y°| X =]
W (X)=E[Y|X=x,D=1=E[Y"| X=X]

Notice, these are just the expected conditional outcome functions
based on the switching equation for both control and treatment
groups.

As always, we write out the observed value as a function of
expected conditional outcomes and some stochastic element:

Yi=uP (X)) +e&

Now rewrite the ATT estimator using the above u terms:
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Notice, the first line is just the ATT with the stochastic element
included from the previous line. And the second line rearranges it so
that we get two terms: the estimated ATT plus the average difference
in the stochastic terms for the matched sample.

Now we compare this estimator with the true value of ATT.

OATT — OATT = N Z(ﬂ1(xi) — 1’ X)) — Sarr + N Z (& — &)
D=1 D=1

which, with some simple algebraic manipulation is:
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Applylng the central Ilimit theorem and the difference,
VN7 (darr — dar7) CONverges to a normal distribution with zero mean.
But:

E| VN7 Garr — 8rr) | = E[VNr (1) = 1° X)) | D =1]

Now consider the implications if the number of covariates is large.
First, the difference between X; and Xj(;) converges to zero slowly.

This therefore makes the difference ,uO(X,)—u(Xj(,)) converge to zero

very slowly. Third, E[/Nr(u°(X;) — °(Xj;,)) | D=1 may not
converge to zero. And fourth, E[/N7(d.rr — darr)] May not converge
to zero.

As you can see, the bias of the matching estimator can be severe
depending on the magnitude of these matching discrepancies.
However, one piece of good news is that these discrepancies are
observed. We can see the degree to which each unit's matched
sample has severe mismatch on the covariates themselves. Second,
we can always make the matching discrepancy small by using a
large donor pool of untreated units to select our matches, because
recall, the likelihood of finding a good match grows as a function of
the sample size, and so if we are content to estimating the ATT, then
increasing the size of the donor pool can get us out of this mess. But
let's say we can’t do that and the matching discrepancies are large.
Then we can apply bias-correction methods to minimize the size of
the bias. So let's see what the bias-correction method looks like.
This is based on Abadie and Imbens [2011].



Table 30. Another matching example (this time to illustrate bias correction).

Unit 4 y0 D X
1 S) 1 11
2 2 1 7
3 10 1 5
4 6 1 3
) 4 0 10
6 0 0 8
7 ) 0 4
8 1 0 1

Note that the total bias is made up of the bias associated with
each individual unit /. Thus, each treated observation contributes
1% (Xi) — 1 (X;;)) to the overall bias. The bias-corrected matching is
the following estimator:

o _ = %
Br=r 2 [m —Yio) — (2°0X) - ,uf’(X;m))]
D;=1

where :ﬁ“ﬂ(}{} is an estimate of E[Y | X = x,D = 0] using, for example,
OLS. Again, | find it always helpful if we take a crack at these
estimators with concrete data. Table 30 contains more make-believe
data for eight units, four of whom are treated and the rest of whom
are functioning as controls. According to the switching equation, we
only observe the actual outcomes associated with the potential
outcomes under treatment or control, which means we’re missing the
control values for our treatment group.



Table 31. Nearest-neighbor matched sample.

Unit y! Y0 D X
1 5 4 1 11
2 2 0 1 7
3 10 5 1 5
4 6 1 1 3
S) 4 0 10
6 0 0 8
7 ) 0 4
8 1 0 1

Notice in this example that we cannot implement exact matching
because none of the treatment group units has an exact match in the
control group. It's worth emphasizing that this is a consequence of
finite samples; the likelihood of finding an exact match grows when
the sample size of the control group grows faster than that of the
treatment group. Instead, we use nearest-neighbor matching, which
is simply going to match each treatment unit to the control group unit
whose covariate value is nearest to that of the treatment group unit
itself. But, when we do this kind of matching, we necessarily create
matching discrepancies, which is simply another way of saying that
the covariates are not perfectly matched for every unit. Nonetheless,
the nearest-neighbor “algorithm” creates Table 31.

Recall that

~ 5-4 2-0 10-5 6-1

OATT — =3.25
ATT 4+4+4+4

With the bias correction, we need to estimate "E} 0(X). We'll use OLS.
It should be clearer what 77°(X) is. It is is the fitted values from a

regression of Y on X. Let’s illustrate this using the data set shown in
Table 31.



STATA
training_bias_reduction.do

1 use
< https://github.com/scunning1975/mixtape/raw/master/training_bias_reduction.dta,
< clear
2 regYX
3 gen muhat = _b[_cons] + _b[X]*X
4 list
R
training_bias_reduction.R
1 library(tidyverse)
2 library(haven)
3
4 read_data <- function(df)
5 {
6 full_path <- paste("https://raw.github.com/scunning1975/mixtape/master/",
7 df, sep="")
8  df <- read_dta(full_path)
9 return(df)
10 }
11
12 training_bias_reduction <- read_data("training_bias_reduction.dta") %>%
13 mutate(
14 Y1 = case_when(Unit %in% ¢(1,2,3,4) ~ Y),
15  Y0=c(4,0514,0,51))
16
17 train_reg <- Im(Y ~ X, training_bias_reduction)
18
19 training_bias_reduction <- training_bias_reduction %>%
20 mutate(u_hat0 = predict(train_reg))

When we regress Y onto X and D, we get the following estimated
coefficients:

2°(X) = Po+ BiX
=4.42 —0.049X



This gives us the outcomes, treatment status, and predicted values
in Table 32.

And then this would be done for the other three simple differences,
each of which is added to a bias-correction term based on the fitted
values from the covariate values.

Now, care must be given when using the fitted values for bias
correction, so let me walk you through it. You are still going to be
taking the simple differences (e.g., 5 — 4 for row 1), but now you will
also subtract out the fitted values associated with each observation’s
unique covariate. So for instance, in row 1, the outcome 5 has a
covariate of 11, which gives it a fitted value of 3.89, but the
counterfactual has a value of 10, which gives it a predicted value of
3.94. So therefore we would use the following bias correction:

Table 32. Nearest-neighbor matched sample with fitted values for bias

correction.
Unit Y y?° Y D X °(X)
1 5 4 5 1 11 3.89
2 2 0 2 1 7 4.08
3 10 5 10 1 5 418
4 6 1 6 1 3 4.28
5 4 4 0 10 3.94
6 0 0 0 8 4.03
7 5 5 0 4 4.23
8 1 1 0 1 4.37

- 5—-4-(3.89-3.94)
RS

Now that we see how a specific fitted value is calculated and how it
contributes to the calculation of the ATT, let's look at the entire
calculation now.
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=3.28

which is slightly higher than the unadjusted ATE of 3.25. Note that
this bias-correction adjustment becomes more significant as the
matching discrepancies themselves become more common. But, if
the matching discrepancies are not very common in the first place,
then by definition, bias adjustment doesn’t change the estimated
parameter very much.

Bias arises because of the effect of large matching discrepancies.
To minimize these discrepancies, we need a small nhumber of M
(e.g., M = 1). Larger values of M produce large matching
discrepancies. Second, we need matching with replacement.
Because matching with replacement can use untreated units as a
match more than once, matching with replacement produces smaller
discrepancies. And finally, try to match covariates with a large effect
on ().

The matching estimators have a normal distribution in large
samples provided that the bias is small. For matching without
replacement, the usual variance estimator is valid. That is:

1 1 M 2
Tarr = N > (Y,- Y > Yo — 5ATT)
m=1

D=1

For matching with replacement:
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where K; is the number of times that observation / is used as a
match. Then yar Y; | X,D; = 0) can be estimated by matching. For
example, take two observations with D; = D; = 0 and X; = X

(Yi—Y))?

var(Y; | X;,D;=0) = >

is an unbiased estimator of var(g; | X..D; = 0). The bootstrap, though,
doesn’t create valid standard errors [Abadie and Imbens, 2008].

Propensity score methods. There are several ways of achieving the
conditioning strategy implied by the backdoor criterion, and we've
discussed several. But one popular one was developed by Donald
Rubin in the mid-1970s to early 1980s called the propensity score
method [Rosenbaum and Rubin, 1983; Rubin, 1977]. The propensity
score is similar in many respects to both nearest-neighbor covariate
matching by Abadie and Imbens [2006] and subclassification. It's a
very popular method, particularly in the medical sciences, of
addressing selection on observables, and it has gained some use
among economists as well [Dehejia and Wahba, 2002].

Before we dig into it, though, a couple of words to help manage
expectations. Despite some early excitement caused by Dehejia and
Wahba [2002], subsequent enthusiasm was more tempered [King
and Nielsen, 2019; Smith and Todd, 2001, 2005]. As such,
propensity score matching has not seen as wide adoption among
economists as in other nonexperimental methods like regression
discontinuity or difference-in-differences. The most common reason
given for this is that economists are oftentimes skeptical that CIA can
be achieved in any data set—almost as an article of faith. This is



because for many applications, economists as a group are usually
more concerned about selection on unobservables than they are
selection on observables, and as such, they reach for matching
methods less often. But | am agnostic as to whether CIA holds or
doesn’t hold in your particular application. There's no theoretical
reason to dismiss a procedure designed to estimate causal effects
on some ad hoc principle one holds because of a hunch. Only prior
knowledge and deep familiarity with the institutional details of your
application can tell you what the appropriate identification strategy is,
and insofar as the backdoor criterion can be met, then matching
methods may be perfectly appropriate. And if it cannot, then
matching is inappropriate. But then, so is a naive multivariate
regression in such cases.

We’ve mentioned that propensity score matching is an application
used when a conditioning strategy can satisfy the backdoor criterion.
But how exactly is it implemented? Propensity score matching takes
those necessary covariates, estimates a maximum likelihood model
of the conditional probability of treatment (usually a logit or probit so
as to ensure that the fitted values are bounded between 0 and 1),
and uses the predicted values from that estimation to collapse those
covariates into a single scalar called the propensity score. All
comparisons between the treatment and control group are then
based on that value.

There is some subtlety to the propensity score in practice, though.
Consider this scenario: two units, A and B, are assigned to treatment
and control, respectively. But their propensity score is 0.6. Thus, they
had the same 60% conditional probability of being assigned to
treatment, but by random chance, A was assigned to treatment and
B was assigned to control. The idea with propensity score methods
is to compare units who, based on observables, had very similar
probabilities of being placed into the treatment group even though
those units differed with regard to actual treatment assignment. If
conditional on X, two units have the same probability of being
treated, then we say they have similar propensity scores, and all
remaining variation in treatment assignment is due to chance. And
insofar as the two units A and B have the same propensity score of



0.6, but one is the treatment group and one is not, and the
conditional independence assumption credibly holds in the data,
then differences between their observed outcomes are attributable to
the treatment.

Implicit in that example, though, we see another assumption
needed for this procedure, and that's the common support
assumption. Common support simply requires that there be units in
the treatment and control group across the estimated propensity
score. We had common support for 0.6 because there was a unit in
the treatment group (A) and one in the control group (B) for 0.6. In
ways that are connected to this, the propensity score can be used to
check for covariate balance between the treatment group and control
group such that the two groups become observationally equivalent.
But before walking through an example using real data, let’'s review

some papers that use it.8

Example: The NSW job training program. The National Supported
Work Demonstration (NSW) job-training program was operated by
the Manpower Demonstration Research Corp (MRDC) in the mid-
1970s. The NSW was a temporary employment program designed to
help disadvantaged workers lacking basic job skills move into the
labor market by giving them work experience and counseling in a
sheltered environment. It was also unique in that it randomly
assigned qualified applicants to training positions. The treatment
group received all the benefits of the NSW program. The controls
were basically left to fend for themselves. The program admitted
women receiving Aid to Families with Dependent Children,
recovering addicts, released offenders, and men and women of both
sexes who had not completed high school.

Treatment group members were guaranteed a job for nine to
eighteen months depending on the target group and site. They were
then divided into crews of three to five participants who worked
together and met frequently with an NSW counselor to discuss
grievances with the program and performance. Finally, they were
paid for their work. NSW offered the trainees lower wages than they
would’ve received on a regular job, but allowed for earnings to



increase for satisfactory performance and attendance. After
participants’ terms expired, they were forced to find regular
employment. The kinds of jobs varied within sites—some were gas-
station attendants, some worked at a printer shop—and men and
women frequently performed different kinds of work.

The MDRC collected earnings and demographic information from
both the treatment and the control group at baseline as well as every
nine months thereafter. MDRC also conducted up to four post-
baseline interviews. There were different sample sizes from study to
study, which can be confusing.

NSW was a randomized job-training program; therefore, the
independence assumption was satisfied. So calculating average
treatment effects was straightforward—it's the simple difference in
means estimator that we discussed in the potential outcomes

chapter.2
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The good news for MDRC, and the treatment group, was that the

treatment benefited the workers.12 Treatment group participants’ real
earnings post-treatment in 1978 were more than earnings of the
control group by approximately $900 [Lalonde, 1986] to $1,800
[Dehejia and Wahba, 2002], depending on the sample the
researcher used.

Lalonde [1986] is an interesting study both because he is
evaluating the NSW program and because he is evaluating
commonly used econometric methods from that time. He evaluated
the econometric estimators’ performance by trading out the
experimental control group data with data on the non-experimental
control group drawn from the population of US citizens. He used
three samples of the Current Population Survey (CPS) and three
samples of the Panel Survey of Income Dynamics (PSID) for this
non-experimental control group data, but | will use just one for each.
Non-experimental data is, after all, the typical situation an economist



finds herself in. But the difference with the NSW is that it was a
randomized experiment, and therefore we know the average
treatment effect. Since we know the average treatment effect, we
can see how well a variety of econometric models perform. If the
NSW program increased earnings by approximately $900, then we
should find that if the other econometrics estimators does a good
job, right?

Lalonde [1986] reviewed a number of popular econometric
methods used by his contemporaries with both the PSID and the
CPS samples as nonexperimental comparison groups, and his
results were consistently horrible. Not only were his estimates
usually very different in magnitude, but his results were almost
always the wrong sign! This paper, and its pessimistic conclusion,
was influential in policy circles and led to a greater push for more

experimental evaluations.11 We can see these results in the following
tables from Lalonde [1986]. Table 33 shows the effect of the
treatment when comparing the treatment group to the experimental
control group. The baseline difference in real earnings between the
two groups was negligible. The treatment group made $39 more
than the control group in the pre-treatment period without controls
and $21 less in the multivariate regression model, but neither is
statistically significant. But the post-treatment difference in average

earnings was between $798 and $886.12

Table 33 also shows the results he got when he used the
nonexperimental data as the comparison group. Here | report his
results when using one sample from the PSID and one from the
CPS, although in his original paper he used three of each. In nearly
every point estimate, the effect is negative. The one exception is the
difference-indifferences model which is positive, small, and
insignificant.



Table 33. Earnings comparisons and estimated training effects for the NSW
male participants using comparison groups from the PSID and the CPS-SSA.

Name of NSW Treatment minus Control Earnings
comparison Pre-treatment Post-treatment Difference-in-
group Unad,j. Ad;. Unad,. Adj. differences
Experimental
controls $ 39 $-21 $ 886 §$798 $ 856

(383) (378) (476) (472) (558)
PSID-1 —$815,997 -$§7,624 -$15,578 —-$8,067 —S$749

(795) (851) (913) (990) (692)
CPS-SSA-1 —$10,585 —84,654 —-$8,870 —$4,416 §195

(539) (509) (562) (557) (447)

Note: Each column represents an estimated treatment effect per econometric
measure and for different comparison groups. The dependent variable is
earnings in 1978. Based on experimental treatment and controls, the
estimated impact of trainings is $886. Standard errors are in parentheses.
Exogenous covariates used in the regression adjusted equations are age, age
squared, years of schooling, high school completion status, and race.

So why is there such a stark difference when we move from the
NSW control group to either the PSID or CPS? The reason is
because of selection bias:

E[Y®|D="1]#E[Y®|D=0]

In other words, it's highly likely that the real earnings of NSW
participants would have been much lower than the non-experimental
control group’s earnings. As you recall from our decomposition of the
simple difference in means estimator, the second form of bias is
selection bias, and if E[Y? | D = 1] < E[Y? | D = 0], this will bias the
estimate of the ATE downward (e.g., estimates that show a negative
effect).

But as | will show shortly, a violation of independence also implies
that covariates will be unbalanced across the propensity score—
something we call the balancing property. Table 34 illustrates this



showing the mean values for each covariate for the treatment and
control groups, where the control is the 15,992 observations from the
CPS. As you can see, the treatment group appears to be very
different on average from the control group CPS sample along nearly
every covariate listed. The NSW participants are more black, more
Hispanic, younger, less likely to be married, more likely to have no
degree and less schooling, more likely to be unemployed in 1975,
and more likely to have considerably lower earnings in 1975. In
short, the two groups are not exchangeable on observables (and
likely not exchangeable on unobservables either).

Table 34. Completed matching example with single covariate.

CPS NSW
All Controls Trainees
N, =15992 N; =297
Covariate Mean  S.D. Mean Mean  T-static  Diff.
Black 0.09 0.28 0.07 0.80 47.04  -0.73
Hispanic 0.07 026 0.07 0.94 1.47 —0.02
Age 33.07 11.04 33.2 24.63 13.37 8.6
Married 0.70 0.46 0.71 0.17 20.54 0.54
No degree 0.30 0.46 0.30 0.73 16.27 —0.43
Education 12.0 2.86 12.03 10.38 9.85 1.65
1975 Earnings  13.51 9.31 13.65 3.1 19.63 10.6
1975 Unemp. 0.1 032 01 0.37 14.29 —0.26

The first paper to reevaluate Lalonde [1986] using propensity
score methods was Dehejia and Wahba [1999]. Their interest was
twofold. First, they wanted to examine whether propensity score
matching could be an improvement in estimating treatment effects
using nonexperimental data. And second, they wanted to show the
diagnostic value of propensity score matching. The authors used the
same non-experimental control group data sets from the CPS and
PSID as Lalonde [1986] did.

Let’'s walk through this, and what they learned from each of these
steps. First, the authors estimated the propensity score using



maximum likelihood modeling. Once they had the estimated
propensity score, they compared treatment units to control units
within intervals of the propensity score itself. This process of
checking whether there are units in both treatment and control for
intervals of the propensity score is called checking for common
support.

One easy way to check for common support is to plot the number
of treatment and control group observations separately across the
propensity score with a histogram. Dehejia and Wahba [1999] did
this using both the PSID and CPS samples and found that the
overlap was nearly nonexistent, but here I'll focus on their CPS
sample. The overlap was so bad that they opted to drop 12,611
observations in the control group because their propensity scores
were outside the treatment group range. Also, a large number of
observations have low propensity scores, evidenced by the fact that
the first bin contains 2,969 comparison units. Once this “trimming”
was done, the overlap improved, though still wasn’t great.

We learn some things from this kind of diagnostic, though. We
learn, for one, that the selection bias on observables is probably
extreme if for no other reason than the fact that there are so few
units in both treatment and control for given values of the propensity
score. When there is considerable bunching at either end of the
propensity score distribution, it suggests you have units who differ
remarkably on observables with respect to the treatment variable
itself. Trimming around those extreme values has been a way of
addressing this when employing traditional propensity score
adjustment techniques.

With estimated propensity score in hand, Dehejia and Wahba
[1999] estimated the treatment effect on real earnings 1978 using
the experimental treatment group compared with the non-
experimental control group. The treatment effect here differs from
what we found in Lalonde because Dehejia and Wahba [1999] used
a slightly different sample. Still, using their sample, they find that the
NSW program caused earnings to increase between $1,672 and
$1,794 depending on whether exogenous covariates were included
in a regression. Both of these estimates are highly significant.



The first two columns labeled “unadjusted” and “adjusted”
represent OLS regressions with and without controls. Without
controls, both PSID and CPS estimates are extremely negative and
precise. This, again, is because the selection bias is so severe with
respect to the NSW program. When controls are included, effects
become positive and imprecise for the PSID sample though almost
significant at 5% for CPS. But each effect size is only about half the
size of the true effect.

Table 35. Estimated training effects using propensity scores.

NSW T-C Earnings Propensity score adjusted
Stratification Matching
Comparison Unadj. Adj. Quadratic Unadj. Adj. Unadj. Ad,.
group score

Experimental 1,794 1,672

controls (633) (638)

PSID-1 -15,205 731 294 1,608 1,494 1,691 1473
(1154)  (886) (1389)  (1571) (1581) (2209) (809)

CPS-1 —8498 972 1,117 1,713 1,774 1,582 1,616

(712)  (550) (747) (1115) (1152) (1069) (757)

Note: Adjusted column 2 is OLS regressed onto treatment indicator, age and
age squared, education, no degree, black hispanic, real earnings 1974 and
1975. Quadratic score in column 3 is OLS regressed onto a quadratic on the
propensity score and a treatment indicator. Last column labeled “adjusted” is
weighted least squares.

Table 35 shows the results using propensity score weighting or

matching1® As can be seen, the results are a considerable
improvement over Lalonde [1986]. | won’t review every treatment
effect the authors calculated, but | will note that they are all positive
and similar in magnitude to what they found in columns 1 and 2
using only the experimental data.

Finally, the authors examined the balance between the covariates
in the treatment group (NSW) and the various non-experimental
(matched) samples in Table 36. In the next section, | explain why we



expect covariate values to balance along the propensity score for the
treatment and control group after trimming the outlier propensity
score units from the data. Table 36 shows the sample means of
characteristics in the matched control sample versus the
experimental NSW sample (first row). Trimming on the propensity
score, in effect, helped balance the sample. Covariates are much
closer in mean value to the NSW sample after trimming on the
propensity score.

Table 36. Sample means of characteristics for matched control samples.

Matched No
Sample N Age Education Black Hispanic degree Married RE74 RE75

NSW 1852581 10.335 0.84 006 071 019 2,096 1,532
PSID 56 2639 1062 0.86 0.02 055 015 1794 1126
(2.56) (0.63) (0.13) (0.06) (0.13) (0.13) (0.12) (1,406)
CPS 119 2691 1052 0.86 0.04 064 019 27110 1,396
(1.25) (0.32) (0.06) (0.04) (0.07) (0.06) (841) (563)

Note: Standard error on the difference in means with NSW sample is given in
parentheses. RE74 stands for real earnings in 1974.

Propensity score is best explained using actual data. We will use
data from Dehejia and Wahba [2002] for the following exercises. But
before using the propensity score methods for estimating treatment
effects, let’'s calculate the average treatment effect from the actual
experiment. Using the following code, we calculate that the NSW
job-training program caused real earnings in 1978 to increase by
$1,794.343.



STATA




Next we want to go through several examples in which we
estimate the average treatment effect or some if its variants such as
the average treatment effect on the treatment group or the average
treatment effect on the untreated group. But here, rather than using
the experimental control group from the original randomized
experiment, we will use the non-experimental control group from the
Current Population Survey. It is very important to stress that while
the treatment group is an experimental group, the control group now
consists of a random sample of Americans from that time period.
Thus, the control group suffers from extreme selection bias since
most Americans would not function as counterfactuals for the
distressed group of workers who selected into the NSW program. In
the following, we will append the CPS data to the experimental data
and estimate the propensity score using logit so as to be consistent
with Dehejia and Wahba [2002].

STATA

nsw_pscore.do
* Reload experimental group data
use https:/github.com/scunning1975/mixtape/raw/master/nsw_mixtape.dta,
< clear
3 drop if treat==0

N =

5 * Now merge in the CPS controls from footnote 2 of Table 2 (Dehejia and Wahba
< 2002)
6 append using
< https://github.com/scunning1975/mixtape/raw/master/cps_mixtape.dta
7 genagesg=age*age
8 gen agecube=age*age*age
9 gen edusg=educ*edu
10 genu74=0ifre74!=.
11 replace u74 = 1 if re74==0
12 genu75=0if re75!=.
13 replace u75 =1 if re75==0
14 geninteraction1 = educ*re74
15 genre74sq=re74*2
16 genre75sq=re75*2
17 gen interaction2 = u74*hisp

19 * Now estimate the propensity score

(continued)
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R (continued)

28 data = nsw_dw_cpscontrol)

29

30 nsw_dw_cpscontrol <- nsw_dw_cpscontrol %>%
31  mutate(pscore = logit_nswSfitted.values)
32

33 # mean pscore

34 pscore_control <- nsw_dw_cpscontrol %>%
35 filter(treat == 0) %>%

36 pull(pscore) %>%

37 mean()

38

39 pscore_treated <- nsw_dw_cpscontrol %>%
40 filter(treat == 1) %>%

41 pull(pscore) %>%

42  mean()

43

44  # histogram

45 nsw_dw_cpscontrol %>%

46 filter(treat == 0) %>%

47  ggplot() +

48  geom_histogram(aes(x = pscore))

49

50 nsw_dw_cpscontrol %>%

51 filter(treat == 1) %>%

52 ggplot() +

53  geom_histogram(aes(x = pscore))

54

The propensity score is the fitted values of the logit model. Put
differently, we used the estimated coefficients from that logit
regression to estimate the conditional probability of treatment,
assuming that probabilities are based on the cumulative logistic
distribution:

Pr(D=1|X) =F(Bo +y Treat+aX)

where and X is the exogenous covariates we are including
Fi()y= in the model.

e
(1+e)

As | said earlier, the propensity score used the fitted values from
the maximum likelihood regression to calculate each unit's
conditional probability of treatment regardless of actual treatment
status. The propensity score is just the predicted conditional
probability of treatment or fitted value for each unit. It is advisable to
use maximum likelihood when estimating the propensity score so
that the fitted values are in the range [0, 1]. We could use a linear
probability model, but linear probability models routinely create fitted



values below 0 and above 1, which are not true probabilities since 0
<ps<1.

The definition of the propensity score is the selection probability
conditional on the confounding variables; p(X) = Pr(D = 1 | X). Recall
that we said there are two identifying assumptions for propensity

score methods. The first assumption is CIA. That is, (Y°,Y') L D | X.
It is not testable, because the assumption is based on unobservable
potential outcomes. The second assumption is called the common
support assumption. That is, 0 < Pr(D = 1 | X) < 1. This simply
means that for any probability, there must be units in both the
treatment group and the control group. The conditional
independence assumption simply means that the backdoor criterion
is met in the data by conditioning on a vector X. Or, put another way,
conditional on X, the assignment of units to the treatment is as good

as random.14

Common support is required to calculate any particular kind of
defined average treatment effect, and without it, you will just get
some kind of weird weighted average treatment effect for only those
regions that do have common support. The reason it is “weird” is that
average treatment effect doesn’t correspond to any of the interesting
treatment effects the policymaker needed. Common support requires
that for each value of X, there is a positive probability of being both
treated and untreated, or 0 <Pr(D; =1 | X)) < 1. This implies that the

probability of receiving treatment for every value of the vector X is
strictly within the unit interval. Common support ensures there is
sufficient overlap in the characteristics of treated and untreated units
to find adequate matches. Unlike CIA, the common support
requirement is testable by simply plotting histograms or summarizing
the data. Here we do that two ways: by looking at the summary
statistics and by looking at a histogram. Let’s start with looking at a
distribution in table form before looking at the histogram.



Table 37. Distribution of propensity score for treatment group.

Treatment Group

Percentiles Values Smallest
1% 0.0011757 0.0010614
5% 0.0072641 0.0011757
10% 0.0260147 0.0018463
25% 0.1322174 0.0020981
50% 0.4001992

Percentiles Values Largest
75% 0.6706164 0.935645
90% 0.8866026 0.93718
95% 0.9021386 0.9374608
99% 0.9374608 0.9384554

Table 38. Distribution of propensity score for CPS control group.

CPS Control Group

Percentiles Values Smallest
1% 5.90e-07 1.18e-09
5% 1.72e-06 4.07e-09
10% 3.58e-06 4.24e-09
25% 0.0000193 1.55e-08
50% 0.0001187
50% .0003544

Percentiles Values Largest
75% 0.0009635 0.8786677
90% 0.0066319 0.8893389
95% 0.0163109 0.9099022
99% 0.1551548 0.9239787
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Figure 18. Histogram of propensity score by treatment status.

The mean value of the propensity score for the treatment group is
0.43, and the mean for the CPS control group is 0.007. The 50th
percentile for the treatment group is 0.4, but the control group
doesn’t reach that high a number until the 99th percentile. Let’s look
at the distribution of the propensity score for the two groups using a
histogram now.

These two simple diagnostic tests show what is going to be a
problem later when we use inverse probability weighting. The
probability of treatment is spread out across the units in the
treatment group, but there is a very large mass of nearly zero
propensity scores in the CPS. How do we interpret this? What this
means is that the characteristics of individuals in the treatment group
are rare in the CPS sample. This is not surprising given the strong
negative selection into treatment. These individuals are younger,
less likely to be married, and more likely to be uneducated and a
minority. The lesson is, if the two groups are significantly different on



background characteristics, then the propensity scores will have
grossly different distributions by treatment status. We will discuss
this in greater detail later.

For now, let's look at the treatment parameter under both
assumptions.

E[5,(X)] =E[Y] =Y | Xi=x]
=E[Y] | Xi = x] — E[Y? | X; = X]

The conditional independence assumption allows us to make the
following substitution,

E[Y! | Di="1,X =x]=E[Y; | D; =1,X; = X]

and same for the other term. Common support means we can
estimate both terms. Therefore, under both assumptions:

o = E[o(Xi)]

From these assumptions we get the propensity score theorem, which
states that under CIA

YLY LD|X
This then yields
(YL, Y% LD | p(X)

where p(X)=Pr(D=1 | X), the propensity score. In English, this means
that in order to achieve independence, assuming CIA, all we have to
do is condition on the propensity score. Conditioning on the
propensity score is enough to have independence between the
treatment and the potential outcomes.

This is an extremely valuable theorem because stratifying on X
tends to run into the sparseness-related problems (i.e., empty cells)
in finite samples for even a moderate number of covariates. But the



propensity scores are just a scalar. So stratifying across a probability
is going to reduce that dimensionality problem.

The proof of the propensity score theorem is fairly straightforward,
as it's just an application of the law of iterated expectations with

nested conditioning.’® If we can show that the probability an
individual receives treatment conditional on potential outcomes and
the propensity score is not a function of potential outcomes, then we
will have proved that there is independence between the potential
outcomes and the treatment conditional on X. Before diving into the
proof, first recognize that

Pr(D=11Y%Y",p(X)) =E[D|Y°Y",pX)]
because
ED|Y%, Y ,p(X)]=1xPr(D=1]Y°Y",p(X))
+0xPr(D=0]Y°%Y",p(X))

and the second term cancels out because it's multiplied by zero. The
formal proof is as follows:



Pr(D=1[Y",Y%p(X))=E[D|Y",Y°,p(X)]

See previous equation

—E :E[D YL YO, p(x),X]| Y, Yo,p(X)}

-

byT_IE

_ E:E[D LYY XY, Yo,p(X)]

Given X, we know p(X)

= E[EID 1X)1 Y, Y°,p0)]

J

I

by conditional independence
=E[p001 Y,¥2,p(X) |

propensity score definition
=p(X)

Using a similar argument, we obtain:

Pr(D=1|pX)) =E[D | p(X)]
Previous argument

—E[EID 1 X] 1 p0)]

—

LIE

=Ep(X) [p00 [1

definition

=pX)

and Pr(D=1|Y",Y%p(X)) =Pr(D=1|p(X) by CIA.

Like the omitted variable bias formula for regression, the
propensity score theorem says that you need only control for
covariates that determine the likelihood a unit receives the treatment.
But it also says something more than that. It technically says that the
only covariate you need to condition on is the propensity score. All of




the information from the X matrix has been collapsed into a single
number: the propensity score.

A corollary of the propensity score theorem, therefore, states that
given CIA, we can estimate average treatment effects by weighting
appropriately the simple difference in means.16

Because the propensity score is a function of X, we know

Pr(D=1|X,p(X)) =Pr(D=1]|X)
=p(X)

Therefore, conditional on the propensity score, the probability that D
= 1 does not depend on X any longer. That is, D and X are
independent of one another conditional on the propensity score, or

D L p(X)

So from this we also obtain the balancing property of the propensity
score:

Pr(X||D=1,p(X)) =Pr(X|D=0,p(X))

which states that conditional on the propensity score, the distribution
of the covariates is the same for treatment as it is for control group
units. See this in the following DAG:



p(X)

X

Notice that there exist two paths between X and D. There’s the
direct path of X—p(X)—D, and there’s the backdoor path X—Y<«D.
The backdoor path is blocked by a collider, so there is no systematic
correlation between X and D through it. But there is systematic
correlation between X and D through the first directed path. But,
when we condition on p(X), the propensity score, notice that D and X
are statistically independent. This implies that D L X | p(X), which
implies

Pr(X | D=1,p(X) =Pr(X|D=0,p(X))

This is something we can directly test, but note the implication:
conditional on the propensity score, treatment and control should on
average be the same with respect to X. In other words, the

propensity score theorem implies balanced observable covariates.1Z

Weighting on the propensity score. There are several ways
researchers can estimate average treatment effects using an
estimated propensity score. Busso et al. [2014] examined the
properties of various approaches and found that inverse probability
weighting was competitive in several simulations. As there are
different ways in which the weights are incorporated into a weighting



design, | discuss a few canonical versions of the method of inverse
probability weighting and associated methods for inference. This is
an expansive area in causal inference econometrics, so consider this
merely an overview of and introduction to the main concepts.

Assuming that CIA holds in our data, then one way we can
estimate treatment effects is to use a weighting procedure in which
each individual’'s propensity score is a weight of that individual’s
outcome [Imbens, 2000]. When aggregated, this has the potential to
identify some average treatment effect. This estimator is based on
earlier work in survey methodology first proposed by Horvitz and
Thompson [1952]. The weight enters the expression differently
depending on each unit’s treatment status and takes on two different
forms depending on whether the target parameter is the ATE or the
ATT (or the ATU, which is not shown here):

Sare = E[Y' = Y°]
D —p(X) }
=E|Y. 54
[ pX)-(1—p(X)) (5.4
Sarr =E[Y'=Y° | D=1]

o D —p(X)
‘Pmo=n'EP“1—me (5:9)

A proof for ATE is provided:

D —p(X)
E\Y X|=E X,D=1 X
[ P00 —p(X) } [(Xﬂ ]p()

+E[ X.D= 0}m—mxn

T—p(X)
—E[Y|X,D=T]—E[Y|X,D=0]  (5.6)

and the results follow from integrating over P(X) and P(X | D =1).
The sample versions of both ATE and ATT are obtained by a two-

step estimation procedure. In the first step, the researcher estimates

the propensity score using logit or probit. In the second step, the



researcher uses the estimated score to produce sample versions of
one of the average treatment effect estimators shown above. Those
sample versions can be written as follows:

~ 1¢ D; — B(X)
OATE = — i Yi- = — 5.7
NS BOG) - —pX)) .

s 1 S, Di—pX)
AT Ny &= 1=

=1

(5.8)

We have a few options for estimating the variance of this
estimator, but one is simply to use bootstrapping. First created by
Efron [1979], bootstrapping is a procedure used to estimate the
variance of an estimator. In the context of inverse probability
weighting, we would repeatedly draw (“with replacement”) a random
sample of our original data and then use that smaller sample to
calculate the sample analogs of the ATE or ATT. More specifically,
using the smaller “bootstrapped” data, we would first estimate the
propensity score and then use the estimated propensity score to
calculate sample analogs of the ATE or ATT over and over to obtain
a distribution of treatment effects corresponding to different cuts of

the data itself.18 If we do this 1,000 or 10,000 times, we get a
distribution of parameter estimates from which we can calculate the
standard deviation. This standard deviation becomes like a standard
error and gives us a measure of the dispersion of the parameter

estimate under uncertainty regarding the sample itself.12 Adudumilli
[2018] and Bodory et al. [2020] discuss the performance of various
bootstrapping procedures, such as the standard bootstrap or the wild
bootstrap. | encourage you to read these papers more closely when
choosing which bootstrap is suitable for your question.

The sensitivity of inverse probability weighting to extreme values of
the propensity score has led some researchers to propose an
alternative that can handle extremes a bit better. Hirano and Imbens
[2001] propose an inverse probability weighting estimator of the
average treatment effect that assigns weights normalized by the sum



of propensity scores for treated and control groups as opposed to
equal weights of 1/N to each observation. This procedure is
sometimes associated with Hajek [1971]. Millimet and Tchernis
[2009] refer to this estimator as the normalized estimator. Its weights
sum to one within each group, which tends to make it more stable.
The expression of this normalized estimator is shown here:

" YD [x~Dil [x=Yi(=D)7 [~ (1-D)

o [2 P HZJ:‘] [Z a-p) H,Z;a—pﬂ} S

Most software packages have programs that will estimate the
sample analog of these inverse probability weighted parameters that
use the second method with normalized weights. For instance,
Stata’s -teffects- and R’s -ipw- can both be used. These packages
will also generate standard errors. But I'd like to manually calculate
these point estimates so that you can see more clearly exactly how
to use the propensity score to construct either non-normalized or
normalized weights and then estimate ATT.

STATA

ipw.do
* Manual with non-normalized weights using all the data
gen d1=treat/pscore
gen d0=(1-treat)/(1-pscore)
egen s1=sum(d1)
egen s0=sum(d0)

S RWN =

(continued)



STATA (continued)
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R (continued)

41

42 # Manual with non-normalized weights using trimmed data
43 nsw_dw_cpscontrol <- nsw_dw_cpscontrol %>%
44  mutate(d1 = treat/pscore,

45 do = (1-treat)/(1-pscore))

46

47 s1 < sum(nsw_dw_cpscontrol$d1)

48 s0 <- sum(nsw_dw_cpscontrol$d0)

49

50 nsw_dw_cpscontrol <- nsw_dw_cpscontrol %>%
51 mutate(y1 = treat * re78/pscore,

52 y0 = (1-treat) * re78/(1-pscore),
53 ht = y1 - y0)
54

55 # Manual with normalized weights with trimmed data
56 nsw_dw_cpscontrol <- nsw_dw_cpscontrol %>%
57 mutate(yl = (treat*re78/pscore)/(s1/N),

58 y0 = ((1-treat)*re78/(1-pscore))/(sO0/N),
59 norm = y1 - y0)
60

61 nsw_dw_cpscontrol %>%
62 puli(ht) %>%

63 mean()

64

65 nsw_dw_cpscontrol %>%
66 pull(norm) %>%

67 mean()

When we estimate the treatment effect using inverse probability
weighting using the non-normalized weighting procedure described
earlier, we find an estimated ATT of -$11,876. Using the
normalization of the weights, we get —$7,238. Why is this so much
different than what we get using the experimental data?

Recall what inverse probability weighting is doing. It is weighting
treatment and control units according to p(X), which is causing units
with very small values of the propensity score to blow up and
become unusually influential in the calculation of ATT. Thus, we will
need to trim the data. Here we will do a very small trim to eliminate
the mass of values at the far-left tail. Crump et al. [2009] develop a
principled method for addressing a lack of overlap. A good rule of
thumb, they note, is to keep only observations on the interval
[0.1,0.9], which was performed at the end of the program.



Now let’s repeat the analysis having trimmed the propensity score,
keeping only values whose scores are between 0.1 and 0.9. Now we
find $2,006 using the non-normalized weights and $1,806 using the
normalized weights. This is very similar to what we know is the true
causal effect using the experimental data, which was $1,794. And
we can see that the normalized weights are even closer. We still
need to calculate standard errors, such as based on a bootstrapping
method, but | leave it to you investigate that more carefully by
reading Adudumilli [2018] and Bodory et al. [2020], who, as |
mentioned, discuss the performance of various bootstrapping
procedures such as the standard bootstrap and the wild bootstrap.

Nearest-neighbor matching. An alternative, very popular approach to
inverse probability weighting is matching on the propensity score.
This is often done by finding a couple of units with comparable
propensity scores from the control unit donor pool within some ad
hoc chosen radius distance of the treated unit's own propensity
score. The researcher then averages the outcomes and then assigns
that average as an imputation to the original treated unit as a proxy
for the potential outcome under counterfactual control. Then effort is
made to enforce common support through trimming.

But this method has been criticized by King and Nielsen [2019].
The King and Nielsen [2019] critique is not of the propensity score
itself. For instance, the critique does not apply to stratification based
on the propensity score [Rosenbaum and Rubin, 1983], regression
adjustment or inverse probability weighting. The problem is only
focused on nearest-neighbor matching and is related to the forced
balance through trimming as well as myriad other common research
choices made in the course of the project that together ultimately
amplify bias. King and Nielsen write: “The more balanced the data,
or the more balance it becomes by [trimming] some of the
observations through matching, the more likely propensity score
matching will degrade inferences” [2019, 1].

Nevertheless, nearest-neighbor matching, along with inverse
probability weighting, is perhaps the most common method for
estimating a propensity score model. Nearest-neighbor matching



using the propensity score pairs each treatment unit / with one or
more comparable control group units j, where comparability is
measured in terms of distance to the nearest propensity score. This
control group unit’s outcome is then plugged into a matched sample.
Once we have the matched sample, we can calculate the ATT as

— 1
ATT = E(Yf —Yig)

where Y/()) is the matched control group unit to /. We will focus on the
ATT because of the problems with overlap that we discussed earlier.



STATA

teffects_nn.do
1 teffects psmatch (re78) (treat age agesq agecube educ edusq marr nodegree
— black hisp re74 re75 u74 u75 interaction1, logit), atet gen(pstub_cps) nn(5)

R

teffects_nn.R
library(Matchit)
library(Zelig)

m_out <- matchit(treat ~ age + agesq + agecube + educ +
educsq + marr + nodegree +
black + hisp + re74 + re75 + u74 + u75 + interaction1,
data = nsw_dw_cpscontrol, method = "nearest",
distance = "logit", ratio =5)

QO N OGN =

-
o O

m_data <- match.data(m_out)

— -
M -

z_out <- zelig(re78 ~ treat + age + agesq + agecube + educ +
educsq + marr + nodegree +
black + hisp + re74 + re75 + u74 + u75 + interaction1,
model = "Is", data = m_data)

-t ek ek el =d
-~ o G W

x_out <- setx(z_out, treat = 0)
x1_out <- setx(z_out, treat = 1)

N = -
o O o

s_out <- sim(z_out, x = x_out, x1 = x1_out)

NN
[~ Y

summary(s_out)

| chose to match using five nearest neighbors. Nearest neighbors,
in other words, will find the five nearest units in the control group,
where “nearest” is measured as closest on the propensity score
itself. Unlike covariate matching, distance here is straightforward
because of the dimension reduction afforded by the propensity
score. We then average actual outcome, and match that average
outcome to each treatment unit. Once we have that, we subtract
each unit’'s matched control from its treatment value, and then divide
by N1, the number of treatment units. When we do that in Stata, we



get an ATT of $1,725 with p < 0.05. Thus, it is both relatively precise
and similar to what we find with the experiment itself.

Coarsened exact matching. There are two kinds of matching we'’ve
reviewed so far. Exact matching matches a treated unit to all of the
control units with the same covariate value. But sometimes this is
impossible, and therefore there are matching discrepancies. For
instance, say that we are matching continuous age and continuous
income. The probability we find another person with the exact same
value of both is very small, if not zero. This leads therefore to
mismatching on the covariates, which introduces bias.

The second kind of matching we’ve discussed are approximate
matching methods, which specify a metric to find control units that
are “close” to the treated unit. This requires a distance metric, such
as Euclidean, Mahalanobis, or the propensity score. All of these can
be implemented in Stata or R.

lacus et al. [2012] introduced a kind of exact matching called
coarsened exact matching (CEM). The idea is very simple. It's based
on the notion that sometimes it's possible to do exact matching once
we coarsen the data enough. If we coarsen the data, meaning we
create categorical variables (e.g., 0- to 10-year-olds, 11- to 20-year
olds), then oftentimes we can find exact matches. Once we find
those matches, we calculate weights on the basis of where a person
fits in some strata, and those weights are used in a simple weighted
regression.

First, we begin with covariates X and make a copy called X*. Next
we coarsen Xx according to user-defined cutpoints or CEM’s
automatic binning algorithm. For instance, schooling becomes less
than high school, high school only, some college, college graduate,
post college. Then we create one stratum per unique observation of
X+ and place each observation in a stratum. Assign these strata to
the original and uncoarsened data, X, and drop any observation
whose stratum doesn’t contain at least one treated and control unit.
Then add weights for stratum size and analyze without matching.

But there are trade-offs. Larger bins mean more coarsening of the
data, which results in fewer strata. Fewer strata result in more



diverse observations within the same strata and thus higher
covariate imbalance. CEM prunes both treatment and control group
units, which changes the parameter of interest, but so long as you're
transparent about this and up front, readers may be willing to give

you the benefit of the doubt.22 Just know, though, that you are not
estimating the ATE or the ATT when you start trimming (just as you
aren’t doing so when you trim propensity scores).

The key benefit of CEM is that it is part of a class of matching
methods called monotonic imbalance bounding (MIB). MIB methods
bound the maximum imbalance in some feature of the empirical
distributions by an ex ante decision by the user. In CEM, this ex ante
choice is the coarsening decision. By choosing the coarsening
beforehand, users can control the amount of imbalance in the
matching solution. It’s also very fast.

There are several ways of measuring imbalance, but here we
focus on the L1(f,g) measure, which is

L1(f.g) = % > [Fros = G

f1..,fk

where f and g record the relative frequencies for the treatment and
control group units. Perfect global balance is indicated by L1 = 0.
Larger values indicate larger imbalance between the groups, with a
maximum of L1 = 1. Hence the “imbalance bounding” between 0 and
1.

Now let’s get to the fun part: estimation. We will use the same job-
training data we’ve been working with for this estimation.



STATA
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The estimated ATE is $2,152, which is larger than our estimated
experimental effect. But this ensured a high degree of balance on
the covariates, as can be seen from the output from the cem
command itself.

As can be seen from Table 39, the values of L1 are close to zero in
most cases. The largest L1 gets is 0.12 for age squared.

Table 39. Balance in covariates after coarsened exact matching.

Covariate L1 Mean Min. 25% 50% 75% Max.
age .08918 .55337 1 1 0 1 0
agesq 1155 21.351 33 35 0 49 0
agecube .05263 626.9 817 919 0 1801 0
school 6.0e-16 —23e—-14 0 0 0 0 0
schoolsq 54e-16 —-28e—-13 0 0 0 0 0
married 11e-16  —1.1e—16 0 0 0 0 0
nodegree 47e-16 —3.3e—16 0 0 0 0 0
black 47e16 —-89%e-16 0 0 0 0 0
hispanic 7.1e177 -3.1e-17 0 0 0 0 0
re74 .06096 42.399 0 0 0 0 -94.801
re75 .03756  —73.999 0 0 0 —22285 -545.65
u74 19e16 —-22e—-16 O 0 0 0 0
u75 2.5e-16 —1.1e—-16 0 0 0 0 0
interaction1 .06535 425.68 0 0 0 0 —853.21

Conclusion. Matching methods are an important member of the
causal inference arsenal. Propensity scores are an excellent tool to
check the balance and overlap of covariates. It's an under-
appreciated diagnostic, and one that you might miss if you only ran
regressions. There are extensions for more than two treatments, like
multinomial models, but | don’t cover those here. The propensity
score can make groups comparable, but only on the variables used
to estimate the propensity score in the first place. It is an area that
continues to advance to include covariate balancing [Imai and
Ratkovic, 2013; Zhao, 2019; Zubizarreta, 2015] and doubly robust
estimators [Band and Robins, 2005]. Consider this chapter more



about the mechanics of matching when you have exact and
approximate matching situations.

Learning about the propensity score is particularly valuable given
that it appears to have a very long half-life. For instance, propensity
scores make their way into other contemporary designs too, such as
difference-in-differences [Sant’Anna and Zhao, 2018]. So investing in
a basic understanding of these ideas and methods is likely
worthwhile. You never know when the right project comes along for
which these methods are the perfect solution, so there’s no
intelligent reason to write them off.

But remember, every matching solution to a causality problem
requires a credible belief that the backdoor criterion can be achieved
by conditioning on some matrix X, or what we’ve called CIA. This
explicitly requires that there are no unobservable variables opening
backdoor paths as confounders, which to many researchers requires
a leap of faith so great they are unwilling to make it. In some
respects, CIA is somewhat advanced because it requires deep
institutional knowledge to say with confidence that no such
unobserved confounder exists. The method is easy compared to
such domain-specific knowledge. So if you have good reason to
believe that there are important, unobservable variables, you will
need another tool. But if you are willing to make such an assumption,
then these methods and others could be useful for you in your
projects.

Notes

1 Everything | know about matching | learned from the Northwestern causal
inference workshops in lectures taught by the econometrician Alberto Abadie. |
would like to acknowledge him as this chapter is heavily indebted to him and
those lectures.

2 But think about the hurdle that the last criticism actually creates. Just
imagine the hypothetical experiment: a large sample of people, with diverse
potential outcomes, are assigned to a treatment group (smoker) and control
(non-smoker). These people must be dosed with their corresponding
treatments long enough for us to observe lung cancer develop—so
presumably years of heavy smoking. How could anyone ever run an
experiment like that? Who in their right mind would participate!? Just to



describe the idealized experiment is to admit it's impossible. But how do we
answer the causal question without independence (i.e., randomization)?

3 Interestingly, this issue of covariate balance weaves throughout nearly
every identification strategy that we will discuss.

4 A truly hilarious assumption, but this is just illustrative.

5 I'm sure you can think of others, though, in which case this DAG is
misleading.

6 Notice the D; = 1 in the subscript of the summation operator.

7 2x1-1=1.

8 | cannot emphasize this enough—this method, like regression more
generally, only has value for your project if you can satisfy the backdoor
criterion by conditioning on X. If you cannot satisfy the backdoor criterion in
your data, then the propensity score does not assist you in identifying a causal
effect. At best, it helps you better understand issues related to balance on
observables (but not unobservables). It is absolutely critical that your DAG be,
in other words, credible, defensible, and accurate, as you depend on those
theoretical relationships to design the appropriate identification strategy.

9 Remember, randomization means that the treatment was independent of
the potential outcomes, so simple difference in means identifies the average
treatment effect.

10 Lalonde [1986] lists several studies that discuss the findings from the
program.

11 It’s since been cited a little more than 1,700 times.

12 Lalonde reports a couple different diff-in-diff models, but for simplicity, |
will only report one.

13 Let’s hold off digging into exactly how they used the propensity score to
generate these estimates.

14 CIA is expressed in different ways according to the econometric or
statistical tradition. Rosenbaum and Rubin [1983] called it the ignorable
treatment assignment, or unconfoundedness. Barnow et al. [1981] and Dale
and Krueger [2002] called it selection on observables. In the traditional
econometric pedagogy, as we discussed earlier, it's called the zero conditional
mean assumption.

15 See Angrist and Pischke [2009], 80-81.

46 This all works if we match on the propensity score and then calculate
differences in means. Direct propensity score matching works in the same way
as the covariate matching we discussed earlier (e.g., nearest-neighbor
matching), except that we match on the score instead of the covariates
directly.



47 Just because something is exchangeable on observables does not make
it exchangeable on unobservables. The propensity score theorem does not
imply balanced unobserved covariates. See Brooks and Ohsfeldt [2013].

48 Bootstrapping and randomization inference are mechanically similar.
Each randomizes something over and over, and under each randomization,
reestimates treatment effects to obtain a distribution of treatment effects. But
that is where the similarity ends. Bootstrapping is a method for computing the
variance in an estimator where we take the treatment assignment as given.
The uncertainty in bootstrapping stems from the sample, not the treatment
assignment. And thus with each bootstrapped sample, we use fewer
observations than exist in our real sample. That is not the source of
uncertainty in randomization inference, though. In randomization inference, as
you recall from the earlier chapter, the uncertainty in question regards the
treatment assignment, not the sample. And thus in randomization inference,
we randomly assign the treatment in order to reject or fail to reject Fisher’s
sharp null of no individual treatment effects.

19 Abadie and Imbens [2008] show that the bootstrap fails for matching, but
inverse probability weighting is not matching. This may seem like a subtle
point, but in my experience many people conflate propensity score based
matching with other methods that use the propensity score, calling all of them
“matching.” But inverse probability weighting is not a matching procedure.
Rather, it is a weighting procedure whose properties differ from that of using
imputation and generally the bootstrap is fine.

20 They also may not. The methods are easy. It's convincing readers that’s
hard.



Regression Discontinuity

Jump around!

Jump around!

Jump up, jump up, and get down!
Jump!

House of Pain

Huge Popularity of Regression Discontinuity

Waiting for life. Over the past twenty years, interest in the
regression-discontinuity design (RDD) has increased (Eigure 19). It
was not always so popular, though. The method dates back about
sixty years to Donald Campbell, an educational psychologist, who
wrote several studies using it, beginning with Thistlehwaite and

Campbell [1960].1 In a wonderful article on the history of thought
around RDD, Cook [2008] documents its social evolution. Despite
Campbell’'s many efforts to advocate for its usefulness and
understand its properties, RDD did not catch on beyond a few
doctoral students and a handful of papers here and there.
Eventually, Campbell too moved on from it.



Exploding Popularity of RDD
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Figure 19. Regression discontinuity over time.

To see its growing popularity, let's look at counts of papers from
Google Scholar by year that mentioned the phrase “regression

discontinuity design” (see Figure 19).2 Thistlehwaite and Campbell
[1960] had no influence on the broader community of scholars using
his design, confirming what Cook [2008] wrote. The first time RDD
appears in the economics community is with an unpublished
econometrics paper [Goldberger, 1972]. Starting in 1976, RDD finally
gets annual double-digit usage for the first time, after which it begins
to slowly tick upward. But for the most part, adoption was
imperceptibly slow.

But then things change starting in 1999. That's the year when a
couple of notable papers in the prestigious Quarterly Journal of
Economics resurrected the method. These papers were Angrist and
Lavy [1999] and Black [1999], followed by Hahn et al. [2001] two
years later. Angrist and Lavy [1999], which we discuss in detail later,
studied the effect of class size on pupil achievement using an




unusual feature in Israeli public schools that created smaller classes
when the number of students passed a particular threshold. Black
[1999] used a kind of RDD approach when she creatively exploited
discontinuities at the geographical level created by school district
zoning to estimate people’s willingness to pay for better schools. The
year 1999 marks a watershed in the design’s widespread adoption.
A 2010 Journal of Economic Literature article by Lee and Lemieux,
which has nearly 4,000 cites shows up in a year with nearly 1,500
new papers mentioning the method. By 2019, RDD output would be
over 5,600. The design is today incredibly popular and shows no
sign of slowing down.

But 1972 to 1999 is a long time without so much as a peep for
what is now considered one of the most credible research designs
with observational data, so what gives? Cook [2008] says that RDD
was “waiting for life” during this time. The conditions for life in
empirical microeconomics were likely the growing acceptance of the
potential outcomes framework among microeconomists (i.e., the so-
called credibility revolution led by Josh Angrist, David Card, Alan
Krueger, Steven Levitt, and many others) as well as, and perhaps
even more importantly, the increased availability of large digitized the
administrative data sets, many of which often captured unusual
administrative rules for treatment assignments. These unusual rules,
combined with the administrative data sets’ massive size, provided
the much-needed necessary conditions for Campbell’'s original
design to bloom into thousands of flowers.

Graphical representation of RDD. So what's the big deal? Why is
RDD so special? The reason RDD is so appealing to many is
because of its ability to convincingly eliminate selection bias. This
appeal is partly due to the fact that its underlying identifying
assumptions are viewed by many as easier to accept and evaluate.
Rendering selection bias impotent, the procedure is capable of
recovering average treatment effects for a given subpopulation of
units. The method is based on a simple, intuitive idea. Consider the
following DAG developed by Steiner et al. [2017] that illustrates this
method very well.



In the first graph, X is a continuous variable assigning units to
treatment D (X—D). This assignment of units to treatment is based
on a “cutoff’ score ¢, such that any unit with a score above the cutoff

gets placed into the treatment group, and units below do not. An
example might be a charge of driving while intoxicated (or impaired;
DWI). Individuals with a blood-alcohol content of 0.08 or higher are
arrested and charged with DWI, whereas those with a blood-alcohol
level below 0.08 are not [Hansen, 2015]. The assignment variable
may itself independently affect the outcome via the X—Y path and
may even be related to a set of variables U that independently
determine Y. Notice for the moment that a unit’s treatment status is
exclusively determined by the assignment rule. Treatment is not
determined by U.

(A) Data generating graph (B) Limiting graph

X — ¢y

AN

This DAG clearly shows that the assignment variable X—or what
is often called the “running variable’—is an observable confounder
since it causes both D and Y. Furthermore, because the assignment
variable assigns treatment on the basis of a cutoff, we are never able
to observe units in both treatment and control for the same value of
X. Calling back to our matching chapter, this means a situation such
as this one does not satisfy the overlap condition needed to use
matching methods, and therefore the backdoor criterion cannot be

met.3
However, we can identify causal effects using RDD, which is
illustrated in the limiting graph DAG. We can identify causal effects




for those subjects whose score is in a close neighborhood around
some cutoff ¢y. Specifically, as we will show, the average causal

effect for this subpopulation is identified as X — ¢, in the limit. This is

possible because the cutoff is the sole point where treatment and
control subjects overlap in the limit.

There are a variety of explicit assumptions buried in this graph that
must hold in order for the methods we will review later to recover any
average causal effect. But the main one | discuss here is that the
cutoff itself cannot be endogenous to some competing intervention
occurring at precisely the same moment that the cutoff is triggering
units into the D treatment category. This assumption is called
continuity, and what it formally means is that the expected potential
outcomes are continuous at the cutoff. If expected potential
outcomes are continuous at the cutoff, then it necessarily rules out
competing interventions occurring at the same time.

The continuity assumption is reflected graphically by the absence
of an arrow from X—Y in the second graph because the cutoff ¢, has

cut it off. At ¢y, the assignment variable X no longer has a direct

effect on Y. Understanding continuity should be one of your main
goals in this chapter. It is my personal opinion that the null
hypothesis should always be continuity and that any discontinuity
necessarily implies some cause, because the tendency for things to
change gradually is what we have come to expect in nature. Jumps
are so unnatural that when we see them happen, they beg for
explanation. Charles Darwin, in his On the Origin of Species,
summarized this by saying Natura non facit saltum, or “nature does
not make jumps.” Or to use a favorite phrase of mine from growing
up in Mississippi, if you see a turtle on a fencepost, you know he
didn’t get there by himself.

That’s the heart and soul of RDD. We use our knowledge about
selection into treatment in order to estimate average treatment
effects. Since we know the probability of treatment assignment
changes discontinuously at ¢y, then our job is simply to compare

people above and below ¢, to estimate a particular kind of average



treatment effect called the local average treatment effect, or LATE
[Imbens and Angrist, 1994]. Because we do not have overlap, or
‘common support,” we must rely on extrapolation, which means we
are comparing units with different values of the running variable.
They only overlap in the limit as X approaches the cutoff from either
direction. All methods used for RDD areways of handling the bias
from extrapolation as cleanly as possible. A picture is worth a
thousand words. As I've said before, and will say again and again—
pictures of your main results, including your identification strategy,
are absolutely essential to any study attempting to convince readers
of a causal effect. And RDD is no different. In fact, pictures are the
comparative advantage of RDD. RDD is, like many modern designs,
a very visually intensive design. It and synthetic control are probably
two of the most visually intensive designs you'll ever encounter, in
fact. So to help make RDD concrete, let’s first look at a couple of

pictures. The following discussion derives from Hoekstra [2009].2

Labor economists had for decades been interested in estimating
the causal effect of college on earnings. But Hoekstra wanted to
crack open the black box of college’s returns a little by checking
whether there were heterogeneous returns to college. He does this
by estimating the causal effect of attending the state flagship
university on earnings. State flagship universities are often more
selective than other public universities in the same state. In Texas,
the top 7% of graduating high school students can select their
university in state, and the modal first choice is University of Texas at
Austin. These universities are often environments of higher research,
with more resources and strongly positive peer effects. So it is
natural to wonder whether there are heterogeneous returns across
public universities.

The challenge in this type of question should be easy to see. Let’s
say that we were to compare individuals who attended the University
of Florida to those who attended the University of South Florida.
Insofar as there is positive selection into the state flagship school,
we might expect individuals with higher observed and unobserved
ability to sort into the state flagship school. And insofar as that ability



increases one’s marginal product, then we expect those individuals
to earn more in the workforce regardless of whether they had in fact
attended the state flagship. Such basic forms of selection bias
confound our ability to estimate the causal effect of attending the
state flagship on earnings. But Hoekstra [2009] had an ingenious
strategy to disentangle the causal effect from the selection bias
using an RDD. To illustrate, let’s look at two pictures associated with
this interesting study.

Before talking about the picture, | want to say something about the
data. Hoekstra has data on all applications to the state flagship
university. To get these data, he would’ve had to build a relationship
with the admissions office. This would have involved making
introductions, holding meetings to explain his project, convincing
administrators the project had value for them as well as him, and
ultimately winning their approval to cooperatively share the data.
This likely would’ve involved the school’'s general counsel, careful
plans to de-identify the data, agreements on data storage, and many
other assurances that students’ names and identities were never
released and could not be identified. There is a lot of trust and social
capital that must be created to do projects like this, and this is the
secret sauce inmost RDDs—your acquisition of the data requires far
more soft skills, such as friendship, respect, and the building of
alliances, than you may be accustomed to. This isn't as
straightforward as simply downloading the CPS from IPUMS; it's
going to take genuine smiles, hustle, and luck. Given that these
agencies have considerable discretion in whom they release data to,
it is likely that certain groups will have more trouble than others in
acquiring the data. So it is of utmost importance that you approach
these individuals with humility, genuine curiosity, and most of all,
scientific integrity. They ultimately are the ones who can give you the

data if it is not public use, so don’t be a jerk.2

But on to the picture. Figure 20 has a lot going on, and it's worth
carefully unpacking each element for the reader. There are four
distinct elements to this picture that | want to focus on. First, notice
the horizontal axis. It ranges from a negative number to a positive



number with a zero around the center of the picture. The caption
reads “SAT Points Above or Below the Admission Cutoff.” Hoekstra
has “recentered” the university’s admissions criteria by subtracting
the admission cutoff from the students’ actual score, which is
something | discuss in more detail later in this chapter. The vertical
line at zero marks the “cutoff,” which was this university’s minimum
SAT score for admissions. It appears it was binding, but not
deterministically, for there are some students who enrolled but did
not have the minimum SAT requirements. These individuals likely
had other qualifications that compensated for their lower SAT scores.
This recentered SAT score is in today’s parlance called the “running
variable.”



Estimated Discontinuity = 0.388 (t=10.57)
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Figure 20. Attending the state flagship university as a function of recentered
standardized test scores. Reprinted from Mark Hoekstra, “The Effect of
Attending the Flagship State University on Earnings: A Discontinuity-Based
Approach,” The Review of Economics and Statistics, 91:4 (November, 2009),
pp. 717-724. © 2009 by the President and Fellows of Harvard College and the
Massachusetts Institute of Technology.

Second, notice the dots. Hoekstra used hollow dots at regular
intervals along the recentered SAT variable. These dots represent
conditional mean enrollments per recentered SAT score. While his
administrative data set contains thousands and thousands of
observations, he only shows the conditional means along evenly
spaced out bins of the recentered SAT score.

Third are the curvy lines fitting the data. Notice that the picture has
two such lines—there is a curvy line fitted to the left of zero, and
there is a separate line fit to the right. These lines are the least
squares fitted values of the running variable, where the running
variable was allowed to take on higher-order terms. By including



higher-order terms in the regression itself, the fitted values are
allowed to more flexibly track the central tendencies of the data itself.
But the thing | really want to focus your attention on is that there are
two lines, not one. He fit the lines separately to the left and right of
the cutoff.

Finally, and probably the most vivid piece of information in this
picture—the gigantic jump in the dots at zero on the recentered
running variable. What is going on here? Well, | think you probably
know, but let me spell it out. The probability of enrolling at the
flagship state university jumps discontinuously when the student just
barely hits the minimum SAT score required by the school. Let’s say
that the score was 1250. That means a student with 1240 had a
lower chance of getting in than a student with 1250. Ten measly
points and they have to go a different path.

Imagine two students—the first student got a 1240, and the
second got a 1250. Are these two students really so different from
one another? Well, sure: those two individual students are likely very
different. But what if we had hundreds of students who made 1240
and hundreds more who made 1250. Don’t you think those two
groups are probably pretty similar to one another on observable and
unobservable characteristics? After all, why would there be suddenly
at 1250 a major difference in the characteristics of the students in a
large sample? That's the question you should reflect on. If the
university is arbitrarily picking a reasonable cutoff, are there reasons
to believe they are also picking a cutoff where the natural ability of
students jumps at that exact spot?

But | said Hoekstra is evaluating the effect of attending the state
flagship university on future earnings. Here's where the study gets
even more intriguing. States collect data on workers in a variety of
ways. One is through unemployment insurance tax reports.
Hoekstra’'s partner, the state flagship university, sent the university
admissions data directly to a state office in which employers submit
unemployment insurance tax reports. The university had social
security numbers, so the matching of student to future worker
worked quite well since a social security number uniquely identifies a
worker. The social security numbers were used to match quarterly



earnings records from 1998 through the second quarter of 2005 to
the university records. He then estimated:

In(Ea ings) = yyear + (WExperience T+ Ocohort + €

where y is a vector of year dummies, w is a dummy for years after
high school that earnings were observed, and 6 is a vector of
dummies controlling for the cohort in which the student applied to the
university (e.g., 1988). The residuals from this regression were then
averaged for each applicant, with the resulting average residual
earnings measure being used to implement a partialled out future
earnings variable according to the Frisch-Waugh-Lovell theorem.
Hoekstra then takes each students’ residuals from the natural log of
earnings regression and collapses them into conditional averages for
bins along the recentered running variable. Let’'s look at that in
Eigure 21.

In this picture, we see many of the same elements we saw in
EFigure 20. For instance, we see the recentered running variable
along the horizontal axis, the little hollow dots representing
conditional means, the curvy lines which were fit left and right of the
cutoff at zero, and a helpful vertical line at zero. But now we also
have an interesting title: “Estimated Discontinuity = 0.095 (z = 3.01).”
What is this exactly?



Estimated Discontinuity = 0.095 (z = 3.01)
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Figure 21. Future earnings as a function of recentered standardized test
scores. Reprinted from Mark Hoekstra, “The Effect of Attending the Flagship
State University on Earnings: A Discontinuity-Based Approach,” The Review of
Economics and Statistics, 91:4 (November, 2009), pp. 717-724. © 2009 by the
President and Fellows of Harvard College and the Massachusetts Institute of
Technology.

The visualization of a discontinuous jump at zero in earnings isn'’t
as compelling as the prior figure, so Hoekstra conducts hypothesis
tests to determine if the mean between the groups just below and
just above are the same. He finds that they are not: those just above
the cutoff earn 9.5% higher wages in the long term than do those just
below. In his paper, he experiments with a variety of binning of the
data (what he calls the “bandwidth”), and his estimates when he
does so range from 7.4% to 11.1%.

Now let’'s think for a second about what Hoekstra is finding.
Hoekstra is finding that at exactly the point where workers
experienced a jump in the probability of enrolling at the state flagship



university, there is, ten to fifteen years later, a separate jump in
logged earnings of around 10%. Those individuals who just barely
made it in to the state flagship university made around 10% more in
long-term earnings than those individuals who just barely missed the
cutoff.

This, again, is the heart and soul of the RDD. By exploiting
institutional knowledge about how students were accepted (and
subsequently enrolled) into the state flagship university, Hoekstra
was able to craft an ingenious natural experiment. And insofar as the
two groups of applicants right around the cutoff have comparable
future earnings in a world where neither attended the state flagship
university, then there is no selection bias confounding his
comparison. And we see this result in powerful, yet simple graphs.
This study was an early one to show that not only does college
matter for long-term earnings, but the sort of college you attend—
even among public universities—matters as well.

Data requirements for RDD. RDD is all about finding “jumps” in the
probability of treatment as we move along some running variable X.
So where do we find these jumps? Where do we find these
discontinuities? The answer is that humans often embed jumps into
rules. And sometimes, if we are lucky, someone gives us the data
that allows us to use these rules for our study.

| am convinced that firms and government agencies are
unknowingly sitting atop a mountain of potential RDD-based
projects. Students looking for thesis and dissertation ideas might try
to find them. | encourage you to find a topic you are interested in and
begin building relationships with local employers and government
administrators for whom that topic is a priority. Take them out for
coffee, get to know them, learn about their job, and ask them how
treatment assignment works. Pay close attention to precisely how
individual units get assigned to the program. Is it random? Is it via a
rule? Oftentimes they will describe a process whereby a running
variable is used for treatment assignment, but they won'’t call it that.
While | can’t promise this will yield pay dirt, my hunch, based in part
on experience, is that they will end up describing to you some



running variable that when it exceeds a threshold, people switch into
some intervention. Building alliances with local firms and agencies
can pay when trying to find good research ideas.

The validity of an RDD doesn’t require that the assignment rule be
arbitrary. It only requires that it be known, precise and free of
manipulation. The most effective RDD studies involve programs
where X has a “hair trigger” that is not tightly related to the outcome
being studied. Examples include the probability of being arrested for
DWI jumping at greater than 0.08 blood-alcohol content [Hansen,
2015]; the probability of receiving health-care insurance jumping at
age 65, [Card et al.,, 2008]; the probability of receiving medical
attention jumping when birthweight falls below 1,500 grams [Almond
et al., 2010; Barreca et al., 2011]; the probability of attending
summer school when grades fall below some minimum level [Jacob
and Lefgen, 2004], and as we just saw, the probability of attending
the state flagship university jumping when the applicant’s test scores
exceed some minimum requirement [Hoekstra, 2009].

In all these kinds of studies, we need data. But specifically, we
need a lot of data around the discontinuities, which itself implies that
the data sets useful for RDD are likely very large. In fact, large
sample sizes are characteristic features of the RDD. This is also
because in the face of strong trends in the running variable, sample-
size requirements get even larger. Researchers are typically using
administrative data or settings such as birth records where there are
many observations.

Estimation Using an RDD

The Sharp RD Design. There are generally accepted two kinds of
RDD studies. There are designs where the probability of treatment
goes from0 to 1 at the cutoff, or what is called a “sharp” design. And
there are designs where the probability of treatment discontinuously
increases at the cutoff. These are often called “fuzzy” designs. In all
of these, though, there is some running variable X that, upon
reaching a cutoff ¢y, the likelihood of receiving some treatment flips.



Let's look at the diagram in FEigure 22, which illustrates the
similarities and differences between the two designs.

—

E Fuzzy RD Design

Sharp RD Design

Conditional probability of treatment

o

Running variable X
Figure 22. Sharp vs. Fuzzy RDD.

Sharp RDD is where treatment is a deterministic function of the

running variable X.8 An example might be Medicare enroliment,
which happens sharply at age 65, excluding disability situations. A
fuzzy RDD represents a discontinuous “jump” in the probability of
treatment when X > ¢j. In these fuzzy designs, the cutoff is used as

an instrumental variable for treatment, like Angrist and Lavy [1999],
who instrument for class size with a class-size function they created
from the rules used by Israeli schools to construct class sizes.

More formally, in a sharp RDD, treatment status is a deterministic
and discontinuous function of a running variable X;, where



1if X > ¢
0if X;<CD

where ¢ is a known threshold or cutoff. If you know the value of X;

for unit j, then you know treatment assignment for unit / with
certainty. But, if for every value of X you can perfectly predict the
treatment assignment, then it necessarily means that there are no
overlap along the running variable.

If we assume constant treatment effects, then in potential
outcomes terms, we get

Y} = a4+ pX;
Y =Y+
Using the switching equation, we get
Y, =Y+ (Y =YD,
Y=a +£X, +0D; + &

where the treatment effect parameter, o, is the discontinuity in the
conditional expectation function:

5= lim E[Y! | X, = Xo] — lim E[Y® | X, = X] (6.1)
Xi—Xp Xo<X;
= X!mnE[Yf | Xi = Xo] — xLITx.- E[Yi | Xi = Xo] (6.2)

The sharp RDD estimation is interpreted as an average causal effect
of the treatment as the running variable approaches the cutoff in the
limit, for it is only in the limit that we have overlap. This average
causal effect is the local average treatment effect (LATE). We
discuss LATE in greater detail in the instrumental variables, but | will
say one thing about it here. Since identification in an RDD is a
limiting case, we are technically only identifying an average causal
effect for those units at the cutoff. Insofar as those units have



treatment effects that differ from units along the rest of the running
variable, then we have only estimated an average treatment effect
that is local to the range around the cutoff. We define this local
average treatment effect as follows:
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Figure 23. Simulated data representing observed data points along a
running variable below and above some binding cutoff. Note: Dashed lines are
extrapolations.

dsro = E[Y] — Y | Xi = co] (6.3)

Notice the role that extrapolation plays in estimating treatment
effects with sharp RDD. If unit i is just below ¢, then D; = 0. But if

unit / is just above ¢y, then the D; =1. But for any value of X;, there

are either units in the treatment group or the control group, but not
both. Therefore, the RDD does not have common support, which is
one of the reasons we rely on extrapolation for our estimation. See
Eigure 23.



Continuity assumption. The key identifying assumption in an RDD is
called the continuity assumption. It states that E[Y? | X = c,] and E[Y/

| X = ¢p] are continuous (smooth) functions of X even across the ¢,

threshold. Absent the treatment, in other words, the expected
potential outcomes wouldn’t have jumped; they would’'ve remained
smooth functions of X. But think about what that means for a
moment. If the expected potential outcomes are not jumping at c,,

then there necessarily are no competing interventions occurring at
Co- Continuity, in other words, explicitly rules out omitted variable

bias at the cutoff itself. All other unobserved determinants of Y are
continuously related to the running variable X. Does there exist some
omitted variable wherein the outcome, would jump at ¢, even if we

disregarded the treatment altogether? If so, then the continuity
assumption is violated and our methods do not require the LATE.



Age Profiles for Death Rates by External Cause
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Figure 24. Mortality rates along age running variable [Carpenter and Dobkin,

2009].

| apologize if I'm beating a dead horse, but continuity is a subtle
assumption and merits a little more discussion. The continuity

assumption means that E[Y" | X] wouldn’t have jumped at c,. If it had

jumped, then it means something other than the treatment caused it

to jump because Y! is already under treatment. So an example
might be a study finding a large increase in motor vehicle accidents
at age 21. I've reproduced a figure from and interesting study on
mortality rates for different types of causes [Carpenter and Dobkin,
2009]. | have reproduced one of the key figures in Eigure 24. Notice
the large discontinuous jump in motor vehicle death rates at age 21.
The most likely explanation is that age 21 causes people to drink

more, and sometimes even while they are driving.

But this is only a causal effect if motor vehicle accidents don’t jump
at age 21 for other reasons. Formally, this is exactly what is implied



by continuity—the absence of simultaneous treatments at the cutoff.
For instance, perhaps there is something biological that happens to
21-year-olds that causes them to suddenly become bad drivers. Or
maybe 21-year-olds are all graduating from college at age 21, and
during celebrations, they get into wrecks. To test this, we might
replicate Carpenter and Dobkin [2009] using data from Uruguay,
where the drinking age is 18. If we saw a jump in motor vehicle
accidents at age 21 in Uruguay, then we might have reason to
believe the continuity assumption does not hold in the United States.
Reasonably defined placebos can help make the case that the
continuity assumption holds, even if it is not a direct test per se.

Sometimes these abstract ideas become much easier to
understand with data, so here is an example of what we mean using
a simulation.



STATA




R
rdd_simulate1.R

1 library(tidyverse)
2
3 # simulate the data
4 dat <-tibble(
5 x=rnorm(1000, 50, 25)
6 )%>%
7  mutate(
8 x=if_else(x<0,0,x)
9 )%%
10 filter(x < 100)
11
12 # cutoff atx = 50
13 dat <-dat %>%
14  mutate(
15 D =if_else(x > 50,1,0),
16  y1=25+0*D+1.5*x+rnorm(n(), 0, 20)
17 )
18
19 ggplot(aes(x, y1, colour = factor(D)), data = dat) +
20 geom_point(alpha = 0.5) +
21 geom_vline(xintercept = 50, colour = "grey", linetype = 2)+
22  stat_smooth(method = "Im", se = F) +
23  labs(x = "Test score (X)", y = "Potential Qutcome (Y1)")

Eigure 25 shows the results from this simulation. Notice that the
value of E[Y' | X] is changing continuously over X and through c.

This is an example of the continuity assumption. It means absent the
treatment itself, the expected potential outcomes would’ve remained
a smooth function of X even as passing c,. Therefore, if continuity

held, then only the treatment, triggered at ¢y, could be responsible

for discrete jumps in E[Y | X].

The nice thing about simulations is that we actually observe the
potential outcomes since we made them ourselves. But in the real
world, we don’t have data on potential outcomes. If we did, we could
test the continuity assumption directly. But remember—by the



switching equation, we only observe actual outcomes, never
potential outcomes. Thus, since units switch from Y9 to Y! at ¢,, we

actually can’t directly evaluate the continuity assumption. This is
where institutional knowledge goes a long way, because it can help
build the case that nothing else is changing at the cutoff that would
otherwise shift potential outcomes.

Smoothness of Potential Outcomes (Y1)
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Figure 25. Smoothness of Y' across the cutoff illustrated using simulated
data.

Let’s illustrate this using simulated data. Notice that while Y' by
construction had not jumped at 50 on the X running variable, Y will.
Let's look at the output in Figure 26. Notice the jump at the
discontinuity in the outcome, which I've labeled the LATE, or local
average treatment effect.
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Estimation using local and global least squares regressions. I'd like
to now dig into the actual regression model you would use to
estimate the LATE parameter in an RDD. We will first discuss some
basic modeling choices that researchers often make—some ftrivial,
some important. This section will focus primarily on regression-

STATA

rdd_simulate2.do
* Actual outcome jumping
geny = 25+ 40*D + 1.5*x + rnormal(0, 20)
scatter y x if D==0, msize(vsmall) || scatter y x if D==1, msize(vsmall) legend(off)
— xline(50, Istyle(foreground)) || Ifit y x if D ==0, color(red) || Ifity x if D ==1,
< color(red) ytitle("Outcome (Y)") xtitle("Test Score (X)")

R
rdd_simulate2.R

# simulate the discontinuity
dat <- dat %>%
mutate(
y2=25+40*D +1.5*x + rnorm(n(), 0, 20)
)

# figure 36

ggplot(aes(x, y2, colour = factor(D)), data = dat) +
geom_point(alpha = 0.5) +
geom_vline(xintercept = 50, colour = "grey", linetype = 2) +
stat_smooth(method = "Im", se = F) +
labs(x = "Test score (X)", y = "Potential Outcome (Y)")

based estimation.
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Figure 26. Estimated LATE using simulated data.

While not necessary, it is nonetheless quite common for authors to
transform the running variable X by recentering at c:

Yi=a+ B (Xi—Co) +Di+e

This doesn’t change the interpretation of the treatment effect—only
the interpretation of the intercept. Let’'s use Card et al. [2008] as an
example. Medicare is triggered when a person turns 65. So recenter
the running variable (age) by subtracting 65:

Y = Bo+ p1(Age — 65) + prEdu + ¢
= Bo + p1Age — 165+ BrEdu + ¢
= (fo — p165) + p1Age + prEdu + ¢
=a + pr1Age + frEdu+¢



where a = By + §,65. All other coefficients, notice, have the same

interpretation except for the intercept.

Another practical question relates to nonlinear data-generating
processes. A nonlinear data-generating process could easily yield
false positives if we do not handle the specification carefully.
Because sometimes we are fitting local linear regressions around the
cutoff, we could spuriously pick up an effect simply for no other
reason than that we imposed linearity on the model. But if the
underlying data-generating process is nonlinear, then it may be a
spurious result due to misspecification of the model. Consider an
example of this nonlinearity in Figure 27.

STATA

rdd_simulate3.do
* Nonlinear data generating process
dropy y1 x*D
set obs 1000
gen x = rnormal(100, 50)
replace x=0ifx <0
drop if x > 280
sum x, det

* Set the cutoff at X=140. Treated if X > 140
genD=0
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(continued)



STATA (continued)

(continued)

R (continued)




| show this both visually and with a regression. As you can see in
Figure 27, the data-generating process was nonlinear, but when with
straight lines to the left and right of the cutoff, the trends in the
running variable generate a spurious discontinuity at the cutoff. This
shows up in a regression as well. When we fit the model using a
least squares regression controlling for the running variable, we
estimate a causal effect though there isn’t one. In Table 40, the
estimated effect of D on Y is large and highly significant, even
though the true effect is zero. In this situation, we would need some
way to model the nonlinearity below and above the cutoff to check
whether, even given the nonlinearity, there had been a jump in the
outcome at the discontinuity.

Suppose that the nonlinear relationships is

E[Y? | Xi]=f(X))

for some reasonably smooth function 7(X)). In that case, we’d fit the
regression model:

Yi=1f(X;) +Dj+ n;

Since f(X;) is counterfactual for values of X; > ¢,, how will we model
the nonlinearity? There are two ways of approximating f(X;). The
traditional approaches let f(Xgei) equal a pth-order polynomial:

Vi= o+ piXi+ X} + -+ BpX] +0Di+
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Figure 27. Simulated nonlinear data from Stata.

Table 40. Estimated effect of D on Y using OLS controlling for linear running

variable.
Dependent variable Y
Treatment (D) 6580.16***

(305.88)

Higher-order polynomials can lead to overfitting and have been
found to introduce bias [Gelman and Imbens, 2019]. Those authors
recommend using local linear regressions with linear and quadratic
forms only. Another way of approximating f(X) is to use a

nonparametric kernel, which | discuss later.

Though Gelman and Imbens [2019] warn us about higher-order
polynomials, I'd like to use an example with pth-order polynomials,
mainly because it's not uncommon to see this done today. I'd also



like you to know some of the history of this method and understand
better what old papers were doing. We can generate this function,
f(X;), by allowing the X; terms to differ on both sides of the cutoff by

including them both individually and interacting them with D;. In that

case, we
have:

E[Y? | Xl = o + forXi + - -+ + Bop X!
E[Y; | Xi] =« +5+ﬁ11§;+---+51p§f

where X; is the recentered running variable (i.e., X; — ¢;). Centering
at ¢y ensures that the treatment effect at X; = X; is the coefficient on
D; in a regression model with interaction terms. As Lee and Lemieux

[2010] note, allowing different functions on both sides of the
discontinuity should be the main results in an RDD paper.

To derive a regression model, first note that the observed values
must be used in place of the potential outcomes:

E[Y | X]1=E[Y° | X]+ (E[Y1 | X]1— E[Y° |X])D

Your regression model then is
Vi=a+ BnXi+- + fopX! + 0D+ BiDXi+ -+ BiDiXC + ¢

where fi; = fin — finn, @and B = fiy, — fiop. The equation we looked at
earlier was just a special case of the above equation with /i = fi; =0.
The treatment effect at ¢; is 6. And the treatment effect at X; — c; > 0

is 0+ fijc+---+ fi;¢". Let's see this in action with another simulation.



STATA
rdd_simulate4.do

1 *Polynomial modeling

2 capturedropy

3 geny=10000 + 0*D - 100*x +x2 + rnormal(0, 1000)
4 regy D##c.(x x2 x3)

5 predict yhat

6

7 scattery x if D==0, msize(vsmall) || scattery x ///

8 if D==1, msize(vsmall) legend(off) xline(140, ///

9 Istyle(foreground)) ylabel(none) || line yhat x ///

10  if D ==0, color(red) sort || line yhat x if D==1, ///
11 sort color(red) xtitle("Test Score (X)") ///
12 ytitle("Outcome (Y)")

Table 41. Estimated effect of D on Y using OLS controlling for linear and
quadratic running variable.

Dependent variable Y

Treatment (D) -43.24
(147.29)




R
rdd_simulate4.R

library(stargazer)

1
2
3 dat <-tibble(
4 x=rnorm(1000, 100, 50)
5 )%%
6 mutate(
7 x = case_when(x < 0 ~ 0, TRUE ~ x),
8  D=case_when(x>140 ~ 1, TRUE ~ 0),
9 X2 = x*X,
10 X3 = x*x*x,
11 y3=10000+0*D-100 * x + x2 + rnorm(1000, 0, 1000)

12 ) %%

13 filter(x < 280)

14

15 regression <- Im(y3 ~ D*,, data = dat)
16

17 stargazer(regression, type = "text")
18

19 ggplot(aes(x, y3, colour = factor(D)), data = dat) +

20 geom_point(alpha = 0.2) +

21 geom_vline(xintercept = 140, colour = "grey", linetype = 2) +
22  stat_smooth(method = "loess", se = F) +

23 labs(x = "Test score (X)", y = "Potential Outcome (Y)")

Let’s look at the output from this exercise in Eigure 28 and Table
41. As you can see, once we model the data using a quadratic (the
cubic ultimately was unnecessary), there is no estimated treatment
effect at the cutoff. There is also no effect in our least squares
regression. Nonparametric kernels. But, as we mentioned earlier,
Gelman and Imbens [2019] have discouraged the use of higher-
order polynomials when estimating local linear regressions. An
alternative is to use kernel regression. The nonparametric kernel
method has problems because you are trying to estimate
regressions at the cutoff point, which can result in a boundary
problem (see Figure 29). In this picture, the bias is caused by strong



trends in expected potential outcomes throughout the running
variable.

Outcome (Y)

| I ! 1
0 50 100 150 200 250
Test Score (X)

Figure 28. Simulated nonlinear data from Stata.

While the true effect in this diagram is AB, with a certain bandwidth
a rectangular kernel would estimate the effect as A'B’, which is as
you can see a biased estimator. There is systematic bias with the
kernel method if the underlying nonlinear function, f(X), is upwards-
or downwards-xsloping.

The standard solution to this problem is to run local linear
nonparametric regression [Hahn et al., 2001]. In the case described
above, this would substantially reduce the bias. So what is that?
Think of kernel regression as a weighted regression restricted to a
window (hence “local”’). The kernel provides the weights to that

regression.Z A rectangular kernel would give the same result as



taking E[Y] at a given bin on X. The triangular kernel gives more
importance to the observations closest to the center.
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Figure 29. Boundary problem.

The model is some version of:

Xi —Co

- M 2
@,b) =ap ; (.V.-' —a—b(x;— Co)) K( p )1(Xf > Cop) (6.4)

While estimating this in a given window of width h around the
cutoff is straightforward, what's not straightforward is knowing how
large or small to make the bandwidth. This method is sensitive to the
choice of bandwidth, but more recent work allows the researcher to
estimate optimal bandwidths [Calonico et al., 2014; Imbens and
Kalyanaraman, 2011]. These may even allow for bandwidths to vary
left and right of the cutoff.



Medicare and universal health care. Card et al. [2008] is an example
of a sharp RDD, because it focuses on the provision of universal
healthcare insurance for the elderly—Medicare at age 65. What
makes this a policy-relevant question? Universal insurance has
become highly relevant because of the debates surrounding the
Affordable Care Act, as well as several Democratic senators
supporting Medicare for All. But it is also important for its sheer size.
In 2014, Medicare was 14% of the federal budget at $505 billion.

Approximately 20% of non-elderly adults in the United States
lacked insurance in 2005. Most were from lower-income families,
and nearly half were African American or Hispanic. Many analysts
have argued that unequal insurance coverage contributes to
disparities in health-care utilization and health outcomes across
socioeconomic status. But, even among the policies, there is
heterogeneity in the form of different copays, deductibles, and other
features that affect use. Evidence that better insurance causes better
health outcomes is limited because health insurance suffers from
deep selection bias. Both supply and demand for insurance depend
on health status, confounding observational comparisons between
people with different insurance characteristics.

The situation for elderly looks very different, though. Less than 1%
of the elderly population is uninsured. Most have fee-for-service
Medicare coverage. And that transition to Medicare occurs sharply at
age 65—the threshold for Medicare eligibility.

The authors estimate a reduced form model measuring the causal
effect of health insurance status on health-care usage:

Yia =Xja0 +fi(c; B) + ) Cl,0* + Uja
k

where / indexes individuals, j indexes a socioeconomic group, a
indexes age, uj, indexes the unobserved error, y;, health care
usage, X, a set of covariates (e.g., gender and region), fi(a;8) a

smooth function representing the age profile of outcome y for group

J, and Cf;a (k =1, 2, ... ,K) are characteristics of the insurance



coverage held by the individual such as copayment rates. The
problem with estimating this model, though, is that insurance
coverage is endogenous: cov(u,C) = 0. So the authors use as
identification of the age threshold for Medicare eligibility at 65, which
they argue is credibly exogenous variation in insurance status.
Suppose health insurance coverage can be summarized by two
dummy variables: Cj, (any coverage) and Cj, (generous insurance).
Card et al. [2008] estimate the following linear probability models:

Ci, =XjaB! +9; @) +Daz} + v},
Cﬁa = ijaﬁj? + gjz(a) + Da:"rjz + Vﬁa

where ! and j} are group-specific coefficients, g/(a) and g/(a) are
smooth age profiles for group j, and D, is a dummy if the respondent
is equal to or over age 65. Recall the reduced form model:

Yia = Xijat + fila; )+ ) Ch,0* + Uy,
k

Combining the Cj, equations, and rewriting the reduced form model,
we get:

Yia = X.rja(aj +;5}15;1 _;.,szq?)hj(a) +Da;r.rj?’ + vg’.a

where h(a)=fi(a)+d'gl(a)+d*g*(a) the reduced form age profile for
group j, 7] = x'8' + x76? and v}, = ujs +v},0" + v, 07 is the error term.
Assuming that the profiles f(a), g(a), and gf{a} are continuous at age
65 (i.e., the continuity assumption necessary for identification), then
any discontinuity in y is due to insurance. The magnitudes will

depend on the size of the insurance changes at age 65 i:;'rf1 and ;rrf]

and on the associated causal effects (6! and &2).

For some basic health-care services, such as routine doctor visits,
it may be that the only thing that matters is insurance. But, in those
situations, the implied discontinuity in Y at age 65 for group j will be



proportional to the change in insurance status experienced by that
group. For more expensive or elective services, the generosity of the
coverage may matter—for instance, if patients are unwilling to cover
the required copay or if the managed care program won’t cover the
service. This creates a potential identification problem in interpreting

the discontinuity in y for any one group. Since :rf is a linear

combination of the discontinuities in coverage and generosity, 5! and
&2 can be estimated by a regression across groups:

Y _ 0, s11, 2.2, 4
; =0 +0 T +c5j7rj + €

where g; is an error term reflecting a combination of the sampling
errors in ;rf", 7 and, z /.

Card et al. [2008] use a couple of different data sets—one a
standard survey and the other administrative records from hospitals
in three states. First, they use the 1992-2003 National Health
Interview Survey (NHIS). The NHIS reports respondents’ birth year,
birth month, and calendar quarter of the interview. Authors used this
to construct an estimate of age in quarters at date of interview. A
person who reaches 65 in the interview quarter is coded as age 65
and 0 quarters. Assuming a uniform distribution of interview dates,
one-half of these people will be 0—6 weeks younger than 65 and
one-half will be 0-6 weeks older. Analysis is limited to people
between 55 and 75. The final sample has 160,821 observations.

The second data set is hospital discharge records for California,
Florida, and New York. These records represent a complete census
of discharges from all hospitals in the three states except for
federally regulated institutions. The data files include information on
age in months at the time of admission. Their sample selection
criteria is to drop records for people admitted as transfers from other
institutions and limit people between 60 and 70 years of age at
admission. Sample sizes are 4,017,325 (California), 2,793,547
(Florida), and 3,121,721 (New York).

Some institutional details about the Medicare program may be
helpful. Medicare is available to people who are at least 65 and have



worked forty quarters or more in covered employment or have a
spouse who did. Coverage is available to younger people with
severe kidney disease and recipients of Social Security Disability
Insurance. Eligible individuals can obtain Medicare hospital
insurance (Part A) free of charge and medical insurance (Part B) for
a modest monthly premium. Individuals receive notice of their
impending eligibility for Medicare shortly before they turn 65 and are
informed they have to enroll in it and choose whether to accept Part
B coverage. Coverage begins on the first day of the month in which
they turn 65.

There are five insurance-related variables: probability of Medicare
coverage, any health insurance coverage, private coverage, two or
more forms of coverage, and individual’s primary health insurance is
managed care. Data are drawn from the 1999-2003 NHIS, and for
each characteristic, authors show the incidence rate at age 63—64
and the change at age 65 based on a version of the Cyx equations

that include a quadratic in age, fully interacted with a post-65 dummy
as well as controls for gender, education, race/ethnicity, region, and
sample year. Alternative specifications were also used, such as a
parametric model fit to a narrower age window (age 63—67) and a
local linear regression specification using a chosen bandwidth. Both
show similar estimates of the change at age 65.

The authors present their findings in Table 42. The way that you
read this table is each cell shows the average treatment effect for the
65-year-old population that complies with the treatment. We can see,
not surprisingly, that the effect of receiving Medicare is to cause a
very large increase of being on Medicare, as well as reducing
coverage on private and managed care.

Formal identification in an RDD relating to some outcome
(insurance coverage) to a treatment (Medicare age-eligibility) that
itself depends on some running variable, age, relies on the continuity
assumptions that we discussed earlier. That is, we must assume that
the conditional expectation functions for both potential outcomes is

continuous at age=65. This means that both E[Y? | a] and E[Y" | g]



are continuous through age of 65. If that assumption is plausible,
then the average treatment effect at age 65 is identified as:

: 1 : 0

Jm " 2] - Jim Ely” ]
The continuity assumption requires that all other factors, observed
and unobserved, that affect insurance coverage are trending
smoothly at the cutoff, in other words. But what else changes at age
65 other than Medicare eligibility? Employment changes. Typically,
65 is the traditional age when people retire from the labor force. Any
abrupt change in employment could lead to differences in health-
care utilization if nonworkers have more time to visit doctors.

The authors need to, therefore, investigate this possible
confounder. They do this by testing for any potential discontinuities
at age 65 for confounding variables using a third data set—the
March CPS 1996-2004. And they ultimately find no evidence for
discontinuities in employment at age 65 (Eigure 30).



Table 42. Insurance characteristics just before age 65 and estimated
discontinuities at age 65.

On Medicare Any insurance Private coverage 2+ forms coverage Managed care

Overall sample 59.7 9.5 —-2.9 441 —28.4
(4.71) (0.6) (1.1) (2.8) (2.1)
White non-Hispanic
Less than high school 58.5 13.0 —6.2 44.5 -25.0
(4.6) (2.7) (3.3) (4.0) (4.5)
High school graduate 64.7 7.6 -1.9 51.8 -30.3
(5.0) (0.7) (1.6) (3.8) (2.6)
Some college 68.4 4.4 -2.3 55.1 —40.1
(4.7) (0.5) (1.8) (4.0) (2.6)
Minority
High school dropout 44.5 21.5 -1.2 19.4 -8.3
(3.1) (2.1) (2.5) (1.9) (3.1)
High school graduate 44.6 8.9 -5.8 234 -15.4
(4.7) (2.8) (5.1) (4.8) (3.5)
Some college 52.1 58 -5.4 38.4 —-223
(4.9) (2.0) (4.3) (3.8) (7.2)
Classified by ethnicity only
White non-Hispanic 65.2 7.3 —-2.8 51.9 —-33.6
(4.6) (0.5) (1.4) (3.5) (2.3)
Black non-Hispanic 48.5 11.9 —4.2 27.8 -13.5
(3.6) (2.0) (2.8) (3.7) (3.7)
Hispanic 44.4 17.3 -2.0 21.7 -12.1
(3.7) (3.0) (1.7) (2.7 (3.7)

Note: Entries in each cell are estimated regression discontinuities at age 65
from quadratics in age interacted with a dummy for 65 and older. Other
controls such as gender, race, education, region, and sample year are also
included. Data is from the pooled 1999-2003 NHIS.
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Figure 30. Investigating the CPS for discontinuities at age 65 [Card et al.,
2008].

Next the authors investigate the impact that Medicare had on
access to care and utilization using the NHIS data. Since 1997,
NHIS has asked four questions. They are:

“During the past 12 months has medical care been delayed for this person

because of worry about the cost?”

“During the past 12 months was there any time when this person needed

medical care but did not get it because [this person] could not afford it?”

“Did the individual have at least one doctor visit in the past year?”

“Did the individual have one or more overnight hospital stays in the past

year?”

Estimates from this analysis are presented in Table 43. Each cell
measures the average treatment effect for the complier population at
the discontinuity. Standard errors are in parentheses. There are a
few encouraging findings from this table. First, the share of the
relevant population who delayed care the previous year fell 1.8
points, and similar for the share who did not get care at all in the



previous year. The share who saw a doctor went up slightly, as did
the share who stayed at a hospital. These are not very large effects
in magnitude, it is important to note, but they are relatively precisely
estimated. Note that these effects differed considerably by race and
ethnicity as well as education.
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Figure 31. Changes in hospitalizations [Card et al., 2008].

Having shown modest effects on care and utilization, the authors
turn to examining the kinds of care they received by examining
specific changes in hospitalizations. EFigure 31 shows the effect of
Medicare on hip and knee replacements by race. The effects are
largest for whites.

In conclusion, the authors find that universal health-care coverage
for the elderly increases care and utilization as well as coverage. In a
subsequent study [Card et al., 2009], the authors examined the
impact of Medicare on mortality and found slight decreases in
mortality rates (see Table 44). Inference. As we've mentioned, it's
standard practice in the RDD to estimate causal effects using local
polynomial regressions. In its simplest form, this amounts to nothing



more complicated than fitting a linear specification separately on
each side of the cutoff using a least squares regression. But when
this is done, you are using only the observations within some pre-
specified window (hence “local”). As the true conditional expectation
function is probably not linear at this window, the resulting estimator
likely suffers from specification bias. But if you can get the window
narrow enough, then the bias of the estimator is probably small
relative to its standard deviation.

Table 43. Measures of access to care just before 65 and estimated
discontinuities at age 65.

Delayed last year  Did not get care last year ~ Saw doctor lastyear  Hospital stay last year

Overall sample -1.8 -1.3 1.3 1.2
(0.4) (0.3) (0.7) (0.4)
White non-Hispanic
Less than high school -1.5 -0.2 3.1 1.6
(1.1 (1.0) (1.3) (1.3)
High school graduate 0.3 -1.3 -0.4 0.3
(2.8) (2.8) (1.5) (0.7)
Some college -1.5 -1.4 0.0 21
(0.4) (0.3) (1.3) (0.7)
Minority
High school dropout -53 —4.2 5.0 0.0
(1.0) (0.9) (2.2) (1.4)
High school graduate -3.8 1.5 19 1.8
(3.2) (3.7) (2.7) (1.4)
Some college -0.6 -0.2 3.7 0.7
(1.1) (0.8) (3.9 (2.0)
Classified by ethnicity only
White non-Hispanic -1.6 -1.2 0.6 1.3
(0.4) (0.3) (0.8) (0.5)
Black non-Hispanic -19 -0.3 3.6 0.5
(1.1) (1.1) (1.9) (1.1)
Hispanic —-49 -3.8 8.2 11.8
(0.8) (0.7) (0.8) (1.6)

Note: Entries in each cell are estimated regression discontinuities at age 65
from quadratics in age interacted with a dummy for 65 and older.Other controls
such as gender, race, education, region and sample year are also included.
First two columns are from 1997-2003 NHIS and last two columns are from
1992-2003 NHIS.



Table 44. Regression discontinuity estimates of changes in mortality rates.

Death rate in
7 days 14 days 28 days 90 days 180 days 365 days

Quadratic -1.1 -1.0 —1.1 -1.2 -1.0

no controls (0.2) (0.2 (0.3) (0.3) (0.4) (0.4)
Quadratic -1.0 -0.8 -0.9 —-0.9 -0.8 —-0.7
plus controls 0.2) (0.2) (0.3) (0.3) (0.3) (0.4)
Cubic plus -0.7 -0.7 -0.6 -0.9 -0.9 -0.4
controls (0.3) (0.2 (0.4) (0.4) (0.5) (0.5)
Local OLS withad —0.8 -0.8 -0.8 -0.9 -1.1 -0.8

hoc bandwidths (0.2) (0.2 (0.2) (0.2) (0.3) (0.3)

Note: Dependent variable for death within interval shown in the column
heading. Regression estimates at the discontinuity of age 65 for flexible
regression models. Standard errors in parentheses.

But what if the window cannot be narrowed enough? This can
happen if the running variable only takes on a few values, or if the
gap between values closest to the cutoff are large. The result could
be you simply do not have enough observations close to the cutoff
for the local polynomial regression. This also can lead to the
heteroskedasticity-robust confidence intervals to undercover the
average causal effect because it is not centered. And here’s the
really bad news—this probably is happening a lot in practice.

In a widely cited and very influential study, Lee and Card [2008]
suggested that researchers should cluster their standard errors by
the running variable. This advice has since become common
practice in the empirical literature. Lee and Lemieux [2010], in a
survey article on proper RDD methodology, recommend this
practice, just to name one example. But in a recent study, Kolesar
and Rothe [2018] provide extensive theoretical and simulation-based
evidence that clustering on the running variable is perhaps one of
the worst approaches you could take. In fact, clustering on the
running variable can actually be substantially worse than
heteroskedastic-robust standard errors.



As an alternative to clustering and robust standard errors, the
authors propose two alternative confidence intervals that have
guaranteed coverage properties under various restrictions on the
conditional expectation function. Both confidence intervals are
“honest,” which means they achieve correct coverage uniformly over
all conditional expectation functions in large samples. These
confidence intervals are currently unavailable in Stata as of the time
of this writing, but they can be implemented in R with the RDHonest

package®2 R users are encouraged to use these confidence
intervals. Stata users are encouraged to switch (grudgingly) to R so
as to use these confidence intervals. Barring that, Stata users should
use the heteroskedastic robust standard errors. But whatever you
do, don’t cluster on the running variable, as that is nearly an
unambiguously bad idea.

A separate approach may be to use randomization inference. As
we noted, Hahn et al. [2001] emphasized that the conditional
expected potential outcomes must be continuous across the cutoff
for a regression discontinuity design to identify the local average
treatment effect. But Cattaneo et al. [2015] suggest an alternative
assumption which has implications for inference. They ask us to
consider that perhaps around the cutoff, in a short enough window,
the treatment was assigned to units randomly. It was effectively a
coin flip which side of the cutoff someone would be for a small
enough window around the cutoff. Assuming there exists a
neighborhood around the cutoff where this randomization-type
condition holds, then this assumption may be viewed as an
approximation of a randomized experiment around the cutoff.
Assuming this is plausible, we can proceed as if only those
observations closest to the discontinuity were randomly assigned,
which leads naturally to randomization inference as a methodology
for conducting exact or approximate p-values.
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Figure 32. Vertical axis is the probability of treatment for each value of the
running variable.

The Fuzzy RD Design. In the sharp RDD, treatment was determined
when X; 2 ¢y. But that kind of deterministic assignment does not

always happen. Sometimes there is a discontinuity, but it's not
entirely deterministic, though it nonetheless is associated with a
discontinuity in treatment assignment. When there is an increase in
the probability of treatment assignment, we have a fuzzy RDD. The
earlier paper by Hoekstra [2009] had this feature, as did Angrist and
Lavy [1999]. The formal definition of a probabilistic treatment
assignment is

X[mn Pr(Di=1|X;=¢o) # Cll)lg}(_ Pr(D;=1|X;=cy) (6.5)
In other words, the conditional probability is discontinuous as X
approaches cg in the limit. A visualization of this is presented from

Imbens and Lemieux [2008] in Figure 32.

The identifying assumptions are the same under fuzzy designs as
they are under sharp designs: they are the continuity assumptions.
For identification, we must assume that the conditional expectation
of the potential outcomes (e.g., E[Y?|X < ¢;]) is changing smoothly

through c¢y. What changes at ¢, is the treatment assignment



probability. An illustration of this identifying assumption is in Figure
33.

Estimating some average treatment effect under a fuzzy RDD is
very similar to how we estimate a local average treatment effect with
instrumental variables. | will cover instrumental variables in more
detail later in the book, but for now let me tell you about estimation
under fuzzy designs using IV. One can estimate several ways. One
simple way is a type of Wald estimator, where you estimate some
causal effect as the ratio of a reduced form difference in mean
outcomes around the cutoff and a reduced form difference in mean
treatment assignment around the cutoff.
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Figure 33. Potential and observed outcomes under a fuzzy design.
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(SFuzzy RDD =

The assumptions for identification here are the same as with any
instrumental variables design: all the caveats about exclusion
restrictions, monotonicity, SUTVA, and the strength of the first
stage.2

But one can also estimate the effect using a two-stage least
squares model or similar appropriate model such as limited-
information maximum likelihood. Recall that there are now two



events: the first event is when the running variable exceeds the
cutoff, and the second event is when a unit is placed in the
treatment. Let Z; be an indicator for when X exceeds c¢y. One can

use both Z; and the interaction terms as instruments for the
treatment D,. If one uses only Z; as an instrumental variable, then it is

a “just identified” model, which usually has good finite sample
properties.

Let’'s look at a few of the regressions that are involved in this
instrumental variables approach. There are three possible
regressions: the first stage, the reduced form, and the second stage.
Let’s look at them in order. In the case just identified (meaning only
one instrument for one endogenous variable), the first stage would
be:

Di=y0+ 1 Xi+ 72 XP +- + X +aZi+ ¢

where 1T is the causal effect of Z; on the conditional probability of

treatment. The fitted values from this regression would then be used
in a second stage. We can also use both Z; and the interaction terms

as instruments for D, If we used Z; and all its interactions, the
estimated first stage would be:

Di= yoo+ 7o Xi+v0a X+ 4 y0p XL+ Zi+ py XiZi+ 73 XiZi+ -+ 95 Zi+ i

We would also construct analogous first stages for R,ﬂf.,,,,_if’gr_

If we wanted to forgo estimating the full IV model, we might
estimate the reduced form only. You'd be surprised how many
applied people prefer to simply report the reduced form and not the
fully specified instrumental variables model. If you read Hoekstra
[2009], for instance, he favored presenting the reduced form—that
second figure, in fact, was a picture of the reduced form. The
reduced form would regress the outcome Y onto the instrument and
the running variable. The form of this fuzzy RDD reduced form is:

Yi = p 41X 4+ 1o X? + - - + 1 X] + 0 Zi+ (o



As in the sharp RDD case, one can allow the smooth function to
be different on both sides of the discontinuity by interacting Z; with

the running variable. The reduced form for this regression is:

Vi = pt + ko1 XiX; + k02 XiX? + - + kop XiXP
+ 5?1'2,‘ —+ meX}k)m(,'Z,' + }ngx:‘)_(;Z; 4+ 4 KQPX;#Z; + &

But let's say you wanted to present the estimated effect of the
treatment on some outcome. That requires estimating a first stage,
using fitted values from that regression, and then estimating a
second stage on those fitted values. This, and only this, will identify
the causal effect of the treatment on the outcome of interest. The
reduced form only estimates the causal effect of the instrument on
the outcome. The second-stage model with interaction terms would
be the same as before:

Yi=a+ pnX +ﬁ022;2 5 Gk +160pr
+0D;+ BiDX;+ B3DRE + -+ BDX +

Where X are now not only normalized with respect to ¢, but are also

fitted values obtained from the first-stage regressions.

As Hahn et al. [2001] point out, one needs the same assumptions
for identification as one needs with IV. As with other binary
instrumental variables, the fuzzy RDD is estimating the local average
treatment effect (LATE) [Imbens and Angrist, 1994], which is the
average treatment effect for the compliers. In RDD, the compliers
are those whose treatment status changed as we moved the value of
x; from just to the left of ¢, to just to the right of c.

Challenges to Identification

The requirement for RDD to estimate a causal effect are the
continuity assumptions. That is, the expected potential outcomes
change smoothly as a function of the running variable through the
cutoff. In words, this means that the only thing that causes the



outcome to change abruptly at ¢ is the treatment. But, this can be

violated in practice if any of the following is true:

1. The assignment rule is known in advance.
2. Agents are interested in adjusting.
3. Agents have time to adjust.

4. The cutoff is endogenous to factors that independently cause potential
outcomes to shift.

5. There is nonrandom heaping along the running variable.

Examples include retaking an exam, self-reporting income, and so
on. But some other unobservable characteristic change could
happen at the threshold, and this has a direct effect on the outcome.
In other words, the cutoff is endogenous. An example would be age
thresholds used for policy, such as when a person turns 18 years old
and faces more severe penalties for crime. This age threshold
triggers the treatment (i.e., higher penalties for crime), but is also
correlated with variables that affect the outcomes, such as
graduating from high school and voting rights. Let's tackle these
problems separately.

McCrary’s density test. Because of these challenges to identification,
a lot of work by econometricians and applied microeconomists has
gone toward trying to figure out solutions to these problems. The
most influential is a density test by Justin McCrary, now called the
McCrary density test [2008]. The McCrary density test is used to
check whether units are sorting on the running variable. Imagine that
there are two rooms with patients in line for some life-saving
treatment. Patients in room A will receive the life-saving treatment,
and patients in room B will knowingly receive nothing. What would
you do if you were in room B? Like me, you'd probably stand up,
open the door, and walk across the hall to room A. There are natural
incentives for the people in room B to get into room A, and the only
thing that would keep people in room B from sorting into room A is if
doing so were impossible.

But, let's imagine that the people in room B had successfully
sorted themselves into room A. What would that look like to an



outsider? If they were successful, then room A would have more
patients than room B. In fact, in the extreme, room A is crowded and
room B is empty. This is the heart of the McCrary density test, and
when we see such things at the cutoff, we have some suggestive
evidence that people are sorting on the running variable. This is
sometimes called manipulation.

Remember earlier when | said we should think of continuity as the
null because nature doesn’t make jumps? If you see a turtle on a
fencepost, it probably didn’t get there itself. Well, the same goes for
the density. If the null is a continuous density through the cutoff, then
bunching in the density at the cutoff is a sign that someone is moving
over to the cutoff—probably to take advantage of the rewards that
await there. Sorting on the sorting variable is a testable prediction
under the null of a continuous density. Assuming a continuous
distribution of units, sorting on the running variable means that units
are moving just on the other side of the cutoff. Formally, if we
assume a desirable treatment D and an assignment rule X = ¢, then

we expect individuals will sort into D by choosing X such that X 2 ¢,

—so0 long as they’re able. If they do, then it could imply selection
bias insofar as their sorting is a function of potential outcomes.

The kind of test needed to investigate whether manipulation is
occurring is a test that checks whether there is bunching of units at
the cutoff. In other words, we need a density test. McCrary [2008]
suggests a formal test where under the null, the density should be
continuous at the cutoff point. Under the alternative hypothesis, the

density should increase at the kink.12 I've always liked this test
because it's a really simple statistical test based on a theory that
human beings are optimizing under constraints. And if they are
optimizing, that makes for testable predictions—Iike a discontinuous
jump in the density at the cutoff. Statistics built on behavioral theory
can take us further.

To implement the McCrary density test, partition the assignment
variable into bins and calculate frequencies (i.e., the number of
observations) in each bin. Treat the frequency counts as the
dependent variable in a local linear regression. If you can estimate



the conditional expectations, then you have the data on the running
variable, so in principle you can always do a density test. |

recommend the package rddensity,X which you can install for R as

well.12 These packages are based on Cattaneo et al. [2019], which is
based on local polynomial regressions that have less bias in the
border regions.

This is a high-powered test. You need a lot of observations at ¢, to

distinguish a discontinuity in the density from noise. Let me illustrate
in Figure 34 with a picture from McCrary [2008] that shows a
situation with and without manipulation.

Covariate balance and other placebos. It has become common in
this literature to provide evidence for the credibility of the underlying
identifying assumptions, at least to some degree. While the
assumptions cannot be directly tested, indirect evidence may be
persuasive. I've already mentioned one such test—the McCrary
density test. A second test is a covariate balance test. For RDD to be
valid in your study, there must not be an observable discontinuous
change in the average values of reasonably chosen covariates
around the cutoff. As these are pretreatment characteristics, they
should be invariant to change in treatment assignment. An example
of this is from Lee et al. [2004], who evaluated the impact of
Democratic vote share just at 50%, on various demographic factors
(Eigure 35).
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Figure 34. A picture with and without a discontinuity in the density. Reprinted
from Journal of Econometrics, 142, J. McCrary, “Manipulation of the Running
Variable in the Regression Discontinuity Design: A Design Test,” 698-714. ©
2008, with permission from Elsevier.

This test is basically what is sometimes called a placebo test. That
is, you are looking for there to be no effects where there shouldn’t be
any. So a third kind of test is an extension of that—just as there
shouldn’t be effects at the cutoff on pretreatment values, there
shouldn’t be effects on the outcome of interest at arbitrarily chosen
cutoffs. Imbens and Lemieux [2008] suggest looking at one side of
the discontinuity, taking the median value of the running variable in
that section, and pretending it was a discontinuity, L'::j. Then test

whether there is a discontinuity in the outcome at C:J. You do not
want to find anything.

Nonrandom heaping on the running variable. Aimond et al. [2010] is
a fascinating study. The authors are interested in estimating the
causal effect of medical expenditures on health outcomes, in part
because many medical technologies, while effective, may not justify
the costs associated with their use. Determining their effectiveness is
challenging given that medical resources are, we hope, optimally
assigned to patients based on patient potential outcomes. To put it a
different way, if the physician perceives that an intervention will have
the best outcome, then that is likely a treatment that will be assigned
to the patient. This violates independence, and more than likely, if
the endogeneity of the treatment is deep enough, controlling for
selection directly will be tough, if not impossible. As we saw with our



earlier example of the perfect doctor, such nonrandom assignment of
interventions can lead to confusing correlations. Counterintuitive
correlations may be nothing more than selection bias.
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Figure 35. Panels refer to (top left to bottom right) district characteristics:
real income, percentage high school degree, percentage black, and
percentage eligible to vote. Circles represent the average characteristic within
intervals of 0.01 in Democratic vote share. The continuous line represents the
predicted values from a fourth-order polynomial in vote share fitted separately
for points above and below the 50% threshold. The dotted line represents the
95% confidence interval. Reprinted from Lee, D.S., Moretti, E., and Butler, M.
J. (2004). “Do Voters Affect or Elect Policies: Evidence from the U.S. House.”
Quarterly Journal of Economics, 119(3):807—-859. Permission from Oxford
University Press.

But Almond et al. [2010] had an ingenious insight—in the United
States, it is typically the case that babies with a very low birth weight
receive heightened medical attention. This categorization is called
the “very low birth weight” range, and such low birth weight is quite



dangerous for the child. Using administrative hospital records linked
to mortality data, the authors find that the 1-year infant mortality
decreases by around 1 percentage point when the child’s birth
weight is just below the 1,500-gram threshold compared to those
born just above. Given the mean 1-year mortality of 5.5%, this
estimate is sizable, suggesting that the medical interventions
triggered by the very-low-birth-weight classification have benefits
that far exceed their costs.

Barreca et al. [2011] and Barreca et al. [2016] highlight some of
econometric issues related to what they call “heaping” on the running
variable. Heaping is when there is an excess number of units at
certain points along the running variable. In this case, it appeared to
be at regular 100-gram intervals and was likely caused by a
tendency for hospitals to round to the nearest integer. A visualization
of this problem can be seen in the original Almond et al. [2010],
which | reproduce here in Figure 36. The long black lines appearing
regularly across the birth-weight distribution are excess mass of
children born at those numbers. This sort of event is unlikely to occur
naturally in nature, and it is almost certainly caused by either sorting
or rounding. It could be due to less sophisticated scales or, more
troubling, to staff rounding a child’s birth weight to 1,500 grams in
order to make the child eligible for increased medical attention.

Almond et al. [2010] attempt to study this more carefully using the
conventional McCrary density test and find no clear, statistically
significant evidence for sorting on the running variable at the 1,500-
gram cutoff. Satisfied, they conduct their main analysis, in which they
find a causal effect of around a 1-percentage-point reduction in 1-
year mortality.

The focus of Barreca et al. [2011] and Barreca et al. [2016] is very
much on the heaping phenomenon shown in Eigure 36. Part of the
strength of their work, though, is their illustration of some of the
shortcomings of a conventional McCrary density test. In this case,
the data heap at 1,500 grams appears to be babies whose mortality
rates are unusually high. These children are outliers compared to
units to both the immediate left and the immediate right. It is
important to note that such events would not occur naturally; there is




no reason to believe that nature would produce heaps of children
born with outlier health defects every 100 grams. The authors
comment on what might be going on:
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Figure 36. Distribution of births by gram. Reprinted from Almond, D., Doyle,
J. J., Kowalski, A., and Williams, H. (2010). “Estimating Returns to Medical
Care: Evidence from at-risk Newborns.” The Quarterly Journal of Economics,
125(2):591-634. Permission from Oxford University Press.

This [heaping at 1,500 grams] may be a signal that poor-quality hospitals
have relatively high propensities to round birth weights but is also consistent
with manipulation of recorded birth weights by doctors, nurses, or parents to
obtain favorable treatment for their children. Barreca et al. [2011] show that
this nonrandom heaping leads one to conclude that it is “good” to be strictly
less than any 100-g cutoff between 1,000 and 3,000 grams.

Since estimation in an RDD compares means as we approach the
threshold from either side, the estimates should not be sensitive to
the observations at the thresholds itself. Their solution is a so-called
“‘donut hole” RDD, wherein they remove units in the vicinity of 1,500
grams and reestimate the model. Insofar as units are dropped, the
parameter we are estimating at the cutoff has become an even more
unusual type of local average treatment effect that may be even less
informative about the average treatment effects that policymakers
are desperate to know. But the strength of this rule is that it allows
for the possibility that units at the heap differ markedly due to
selection bias from those in the surrounding area. Dropping these



units reduces the sample size by around 2% but has very large
effects on 1-year mortality, which is approximately 50% lower than
what was found by Almond et al. [2010].

These companion papers help us better understand some of the
ways in which selection bias can creep into the RDD. Heaping is not
the end of the world, which is good news for researchers facing such
a problem. The donut hole RDD can be used to circumvent some of
the problems. But ultimately this solution involves dropping
observations, and insofar as your sample size is small relative to the
number of heaping units, the donut hole approach could be
infeasible. It also changes the parameter of interest to be estimated
in ways that may be difficult to understand or explain. Caution with
nonrandom heaping along the running variable is probably a good
thing.

Replicating a Popular Design: The Close Election

Within RDD, there is a particular kind of design that has become
quite popular, the close-election design. Essentially, this design
exploits a feature of American democracies wherein winners in
political races are declared when a candidate gets the minimum
needed share of votes. Insofar as very close races represent
exogenous assignments of a party’s victory, which I'll discuss below,
then we can use these close elections to identify the causal effect of
the winner on a variety of outcomes. We may also be able to test
political economy theories that are otherwise nearly impossible to
evaluate.

The following section has two goals. First, to discuss in detail the
close election design using the classic Lee et al. [2004]. Second, to
show how to implement the close-election design by replicating
several parts of Lee et al. [2004].

Do Politicians or Voters Pick Policies? The big question motivating
Lee et al. (2004) has to do with whether and in which way voters
affect policy. There are two fundamentally different views of the role



of elections in a representative democracy: convergence theory and
divergence theory.

The convergence theory states that heterogeneous voter ideology
forces each candidate to moderate his or her position (e.g., similar to
the median voter theorem):

Competition for votes can force even the most partisan Republicans and

Democrats to moderate their policy choices. In the extreme case,

competition may be so strong that it leads to “full policy convergence”:
opposing parties are forced to adopt identical policies. [Lee et al. 2004, 807]

Divergence theory is a slightly more commonsense view of
political actors. When partisan politicians cannot credibly commit to
certain policies, then convergence is undermined and the result can
be full policy “divergence.” Divergence is when the winning
candidate, after taking office, simply pursues her most-preferred
policy. In this extreme case, voters are unable to compel candidates
to reach any kind of policy compromise, and this is expressed as two
opposing candidates choosing very different policies under different
counterfactual victory scenarios.

Lee et al. [2004] present a model, which I've simplified. Let R and
D be candidates in a congressional race. The policy space is a
single dimension where D’s and R’s policy preferences in a period
are quadratic loss functions, u(/) and v(l), and I is the policy variable.
Each player has some bliss point, which is his or her most preferred

location along the unidimensional policy range. For Democrats, it's [*
= ¢(> 0), and for Republicans it’s /+=0. Here’s what this means.
Ex ante, voters expect the candidate to choose some policy and

they expect the candidate to win with probability P(x®,y®), where x°
and y® are the policies chosen by Democrats and Republicans,

: dP
respectively. When x>y, then e 0,— <0.

P* represents the underlying popularity of the Democratic Party, or
put differently, the probability that D would win if the policy chosen x
equaled the Democrat’s bliss point c.

The solution to this game has multiple Nash equilibria, which |
discuss now.



1. Partial/complete convergence: Voters affect policies.
= gl
— = 0.
6

* Interpretation: If we dropped more Democrats into the district from a
helicopter, it would exogenously increase P* and this would result in

* The key result under this equilibrium is

candidates changing their policy positions, i.e., i:;‘ . .

2. Complete divergence: Voters elect politicians with fixed policies who do
whatever they want to do.13

 Key result is that more popularity has no effect on policies. That is,

ax*

=0,

aP*

« An exogenous shock to P* (i.e., dropping Democrats into the district)

does nothing to equilibrium policies. Voters elect politicians who then do

whatever they want because of their fixed policy preferences.

The potential roll-call voting record outcomes of the candidate
following some election is

RCt = Dixt + (1 — Dy)y:

where D; indicates whether a Democrat won the election. That is,

only the winning candidate’s policy is observed. This expression can
be transformed into regression equations:

RC: = a¢ 4+ moPf + m1D¢ + &
RCi1 = fo+ moP{ 1+ m1Deq + 441

where ay and B, are constants.

This equation can’t be directly estimated because we never
observe P*. But suppose we could randomize D;. Then D; would be

independent of P; and &, Then taking conditional expectations with
respect to D;, we get:



E[RCyt.1| Dt = 1] — E[RCty1 | Dy = 0] = mo[P}2, — P{R,]

t+1 +

=

Observable
+ 71 [P?Jr‘l "Pﬁ-‘ll (6.7)
Observable
= 7
—_—
Total effect of initial win on future roll call votes
E[RC; | D; = 1] — E[RC; | D; = 0] = 71 (6.8)
Observable
F[Dt+1 | DI:1]_E[Dt+1 | DtZOIZP?+1 _Pf_m (69)
Obseﬁable

The “elect” component is =[P{,, —P;.;] and is estimated as the
difference in mean voting records between the parties at time t. The
fraction of districts won by Democrats in t + 1 is an estimate of
[PY., — P{.,]. Because we can estimate the total effect, y, of a

Democrat victory in t on RCy, ¢, we can net out the elect component

to implicitly get the “effect” component.
But random assignment of D; is crucial. For without it, this equation

would reflect m, and selection (i.e., Democratic districts have more
liberal bliss points). So the authors aim to randomize D; using a
RDD, which I'll now discuss in detail.

Replication exercise. There are two main data sets in this project.
The first is a measure of how liberal an official voted. This is
collected from the Americans for Democratic Action (ADA) linked
with House of Representatives election results for 1946-1995.
Authors use the ADA score for all US House representatives from
1946 to 1995 as their voting record index. For each Congress, the
ADA chose about twenty-five high-profile roll-call votes and created
an index varying from 0 to 100 for each representative. Higher
scores correspond to a more “liberal” voting record. The running
variable in this study is the vote share. That is the share of all votes



that went to a Democrat. ADA scores are then linked to election
returns data during that period.
Recall that we need randomization of D;. The authors have a

clever solution. They will use arguably exogenous variation in
Democratic wins to check whether convergence or divergence is
correct. If convergence is true, then Republicans and Democrats
who just barely won should vote almost identically, whereas if
divergence is true, they should vote differently at the margins of a
close race. This “at the margins of a close race” is crucial because
the idea is that it is at the margins of a close race that the distribution
of voter preferences is the same. And if voter preferences are the
same, but policies diverge at the cutoff, then it suggests politicians
and not voters are driving policy making.

Table 45. Original results based on ADA scores—close elections sample.

Dependent variable ADA 1 ADA; DEM; ;4
Estimated gap 21.2 47.6 0.48
(1.9) (1.3) (0.02)

Note: Standard errors in parentheses. The unit of observation is a district-
congressional session. The sample includes only observations where the
Democrat vote share at time t is strictly between 48% and 52%. The estimated
gap is the difference in the average of the relevant variable for observations for
which the Democrat vote share at time t is strictly between 50% and 52% and
observations for which the Democrat vote share at time ¢ is strictly between
48% and 50%. Time t and t+1 refer to congressional sessions. ADA; s the

adjusted ADA voting score. Higher ADA scores correspond to more liberal roll-
call voting records. Sample size is 915.

The exogenous shock comes from the discontinuity in the running
variable. At a vote share of just above 0.5, the Democratic candidate
wins. They argue that just around that cutoff, random chance
determined the Democratic win—hence the random assignment of
D; [Cattaneo et al., 2015]. Table 45 is a reproduction of Cattaneo et

al.’s main results. The effect of a Democratic victory increases liberal



voting by 21 points in the next period, 48 points in the current period,
and the probability of reelection by 48%. The authors find evidence
for both divergence and incumbency advantage using this design.
Let’s dig into the data ourselves now and see if we can find where
the authors are getting these results. We will examine the results
around Table 45 by playing around with the data and different
specifications.

STATA
Imb_1.do

use https://github.com/scunning1975/mixtape/raw/master/Imb-data.dta, clear

AW NN -

* Replicating Table 1 of Lee, Moretti and Butler (2004)
reg score lagdemacrat  if lagdemvoteshare>.48 & lagdemvoteshare<.52,
< cluster(id)
5 regscore democrat  if lagdemvoteshare>.48 & lagdemvoteshare<.52,

< cluster(id)
6 reg democrat lagdemocrat if lagdemvoteshare>.48 & lagdemvoteshare<.52,
< cluster(id)

Imb_1.R
library(tidyverse)
library(haven)
library(estimatr)

read_data <- function(df)
{
full_path <- paste("https://raw.github.com/scunning1975/mixtape/master/",
df, sep="")
df <- read_dta(full_path)
return(df)
}

0N O R W -
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Imb_data <- read_data("Imb-data.dta")

i p—y
a B

Imb_subset <- Imb_data %>%
filter(lagdemvoteshare>.48 & lagdemvoteshare<.52)

[ G —y
0 ~N o

Im_1 <- Im_robust(score ~ lagdemocrat, data = Imb_subset, clusters = id)
Im_2 <- Im_robust(score ~ democrat, data = Imb_subset, clusters = id)
Im_3 <- Im_robust(democrat ~ lagdemocrat, data = Imb_subset, clusters = id)

NN =
N =0 v

summary(Im_1)
summary(lm_2)
summary(Im_3)

NN
- w



Table 46. Replicated results based on ADA scores—close elections sample.

Dependent variable ADA; 1 ADA; DEM, ;4

Estimated gap 21.28*** 47 T71x** 0.48***
(1.95) (1.36) (0.03)

N 915 915 915

Note: Cluster robust standard errors in parentheses. * p<0.10, ** p<0.05, ***
p<0.01

We reproduce regression results from Lee, Moretti, and Butler in
Table 46. While the results are close to Lee, Moretti, and Butler’s
original table, they are slightly different. But ignore that for now. The
main thing to see is that we used regressions limited to the window
right around the cutoff to estimate the effect. These are local
regressions in the sense that they use data close to the cutoff.
Notice the window we chose—we are only using observations
between 0.48 and 0.52 vote share. So this regression is estimating
the coefficient on D; right around the cutoff. What happens if we use

all the data”?



STATA

Imb_2.do
1 *Use all the data
2 reg score lagdemocrat, cluster(id)
3 reg score democrat, cluster(id)
4 reg democrat lagdemocrat, cluster(id)
R
Imb_2.R
1 #using all data (note data used is Imb_data, not Imb_subset)
2
3 Im_1 <- Im_robust(score ~ lagdemocrat, data = Imb_data, clusters = id)
4 Im_2 <- Im_robust(score ~ democrat, data = Imb_data, clusters = id)
5 Im_3 <-Im_robust(democrat ~ lagdemocrat, data = Imb_data, clusters = id)
6
7 summary(Im_1)
8 summary(Im_2)
9 summary(Im_3)

Table 47. Results based on ADA scores—full sample.

Dependent variable ADA¢ 1 ADA; DEM4

Estimated gap 31.50*** 40.76%** 0.82%**
(0.48) (0.42) (0.01)

N 13,588 13,588 13,588

Note: Cluster robust standard errors in parentheses. * p<0.10, ** p<0.05, ***

p<0.01

Notice that when we use all of the data, we get somewhat different
effects (Table 47). The effect on future ADA scores gets larger by 10
points, but the contemporaneous effect gets smaller. The effect on
incumbency, though, increases considerably. So here we see that



simply running the regression yields different estimates when we
include data far from the cutoff itself.

Neither of these regressions included controls for the running
variable though. It also doesn’t use the recentering of the running
variable. So let's do both. We will simply subtract 0.5 from the
running variable so that values of 0 are where the vote share equals
0.5, negative values are Democratic vote shares less than 0.5, and
positive values are Democratic vote shares above 0.5. To do this,
type in the following lines:

STATA
Imb_3.do

* Re-center the running variable (voteshare)

gen demvoteshare_c = demvoteshare - 0.5

reg score lagdemocrat demvoteshare_c, cluster(id)

reg score democrat demvoteshare_c, cluster(id)

reg democrat lagdemocrat demvoteshare_c, cluster(id)

oW N -

R

Imb_3.R
Imb_data <- Imb_data %>%
mutate(demvoteshare_c = demvoteshare - 0.5)

E T )

Im_1 <- Im_robust(score ~ lagdemocrat + demvoteshare_c, data = Imb_data,

< clusters = id)

5 Im_2 <- Im_robust(score ~ democrat + demvoteshare_c, data = Imb_data, clusters
6 Im_3 <- Im_robust(democrat ~ lagdemocrat + demvoteshare_c, data = Imb_data,
< clusters = id)

summary(Im_1)
summary(Im_2)
summary(Im_3)

[
- O W 0 ~J

We report our analysis from the programming in Table 48. While
the incumbency effect falls closer to what Lee et al. [2004] find, the



effects are still quite different.

It is common, though, to allow the running variable to vary on
either side of the discontinuity, but how exactly do we implement
that? Think of it—we need for a regression line to be on either side,
which means necessarily that we have two lines left and right of the
discontinuity. To do this, we need an interaction—specifically an
interaction of the running variable with the treatment variable. To
implement this in Stata, we can use the code shown in Imb_4.do.

Table 48. Results based on ADA scores—full sample.

Dependent variable ADA; 4 ADA; DEM; 1

Estimated gap 33.45%** 58.50*** 0.55%**
(0.85) (0.66) (0.01)

N 13,577 13,577 13,577

Note: Cluster robust standard errors in parentheses. *p < 0.10.

<0.01.

**p < 0.05. ***p
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In Table 49, we report the global regression analysis with the
running variable interacted with the treatment variable. This pulled
down the coefficients somewhat, but they remain larger than what
was found when we used only those observations within 0.02 points

STATA
Imb_4.do

* Use all the data but interact the treatment variable with the running variable
Xi: reg score i.lagdemocrat*demvoteshare_c, cluster(id)

xi: reg score i.democrat*demvoteshare_c, cluster(id)

xi: reg democrat i.lagdemocrat*demvoteshare_c, cluster(id)

R
Imb_4.R

Im_1 <- Im_robust(score ~ lagdemocrat*demvoteshare_c,
data = Imb_data, clusters = id)

Im_2 <- Im_robust(score ~ democrat*demvoteshare_c,
data = Imb_data, clusters = id)

Im_3 <- Im_robust(democrat ~ lagdemocrat*demvoteshare_c,
data = Imb_data, clusters = id)

summary(Im_1)
summary(Im_2)
summary(Im_3)

of the 0.5. Finally, let's estimate the model with a quadratic.

g W

STATA
Imb_5.do

* Use all the data but interact the treatment variable with the running variable and

< aquadratic

gen demvoteshare_sq = demvoteshare_c*2

xi: reg score lagdemocrat##c.(demvoteshare_c demvoteshare_sq), cluster(id)
Xi: reg score democrat##c.(demvoteshare_c demvoteshare_sq), cluster(id)

xi: reg democrat lagdemocrat##c.(demvoteshare_c demvoteshare_sq),

« cluster(id)



R

Imb_5.R
Imb_data %>%
mutate(demvoteshare_sq = demvoteshare_c*2)

W N -

Im_1 <- Im_robust(score ~ lagdemocrat*demvoteshare_c +
— lagdemocrat*demvoteshare_sq,
data = Imb_data, clusters = id)
6 Im_2 <- Im_robust(score ~ democrat*demvoteshare_c +
- democrat*demvoteshare_sq,
7 data = Imb_data, clusters = id)
8 Im_3 <- Im_robust(democrat ~ lagdemocrat*demvoteshare_c +
< lagdemocrat*demvoteshare_sq,
9 data = Imb_data, clusters = id)
10
11 summary(Im_1)
12 summary(Im_2)
13 summary(Im_3)
14

(4]

Including the quadratic causes the estimated effect of a
democratic victory on future voting to fall considerably (see Table
50). The effect on contemporaneous voting is smaller than what Lee
et al. [2004] find, as is the incumbency effect. But the purpose here
is simply to illustrate the standard steps using global regressions.

But notice, we are still estimating global regressions. And it is for
that reason that the coefficient is larger. This suggests that there
exist strong outliers in the data that are causing the distance at ¢, to

spread more widely. So a natural solution is to again limit our
analysis to a smaller window. What this does is drop the
observations far away from ¢, and omit the influence of outliers from

our estimation at the cutoff. Since we used +/--0.02 last time, we’ll
use +/--0.05 this time just to mix things up.



Table 49. Results based on ADA scores—full sample with linear interactions.

Dependent variable ADA: 4 ADA; DEM; 41

Estimated gap 30.57*** 55.43 *** 0.53***
(0.82) (0.64) (0.01)

N 13,577 13,577 13,577

Note: Cluster robust standard errors in parentheses. *p < 0.10, **p < 0.05, ***p
<0.01

Table 50. Results based on ADA scores—full sample with linear and
quadratic interactions.

Dependent variable ADA: 4 ADA; DEM;

Estimated gap 13.03*** 44 40 *** 0.32%**
(1.27) (0.97) (1.74)

N 13,577 13,577 13,577

Note: Cluster robust standard errors in parentheses. *p < 0.10, **p < 0.05, ***p
<0.01



(2 I~ T

~ o

10
11
12
13
14
15

STATA
Imb_6.do

* Use 5 points from the cutoff

xi: reg score lagdemocrat##c.(demvoteshare_c demvoteshare_sq) if

« lagdemvoteshare>.45 & lagdemvoteshare<.55, cluster(id)

xi: reg score democrat##c.(demvoteshare_c demvoteshare_sq) if

— lagdemvoteshare>.45 & lagdemvoteshare<.55, cluster(id)

xi: reg democrat lagdemocrat##c.(demvoteshare_c demvoteshare_sq) if
< lagdemvoteshare>.45 & lagdemvoteshare<.55, cluster(id)

R

Imb_6.R
Imb_data %>%
filter(demvoteshare > .45 & demvoteshare < .55) %>%
mutate(demvoteshare_sq = demvoteshare_c*2)

Im_1 <- Im_robust(score ~ lagdemocrat*demvoteshare_c +
— lagdemocrat*demvoteshare_sq,
data = Imb_data, clusters = id)
Im_2 <- Im_robust(score ~ democrat*demvoteshare_c +
— democrat*demvoteshare_sq,
data = Imb_data, clusters = id)
Im_3 <- Im_robust(democrat ~ lagdemocrat*demvoteshare_c +
— lagdemocrat*demvoteshare_sq,
data = Imb_data, clusters = id)

summary(Im_1)
summary(Im_2)
summary(Im_3)



Table 51. Results based on ADA scores—close election sample with linear
and quadratic interactions.

Dependent variable ADA 1 ADA; DEM;

Estimated gap 3.97%** 46.88%** 0.72%**
(1.49) (1.54) (0.02)

N 2,441 2,441 2,441

Note: Cluster robust standard errors in parentheses. *p < 0.10, **p < 0.05, ***p
<0.01

As can be seen in Table 51, when we limit our analysis to +/- 0.05
around the cutoff, we are using more observations away from the
cutoff than we used in our initial analysis. That's why we only have
2,441 observations for analysis as opposed to the 915 we had in our
original analysis. But we also see that including the quadratic
interaction pulled the estimated size on future voting down
considerably, even when using the smaller sample.

But putting that aside, let’s talk about all that we just did. First we
fit a model without controlling for the running variable. But then we
included the running variable, introduced in a variety of ways. For
instance, we interacted the variable of Democratic vote share with
the democratic dummy, as well as including a quadratic. In all this
analysis, we extrapolated trends lines from the running variable
beyond the support of the data to estimate local average treatment
effects right at the cutoff.

But we also saw that the inclusion of the running variable in any
form tended to reduce the effect of a victory for Democrats on future
Democratic voting patterns, which was interesting. Lee et al. [2004]
original estimate of around 21 is attenuated considerably when we
include controls for the running variable, even when we go back to
estimating very local flexible regressions. While the effect remains
significant, it is considerably smaller, whereas the immediate effect
remains quite large.

But there are still other ways to explore the impact of the treatment
at the cutoff. For instance, while Hahn et al. [2001] clarified



assumptions about RDD—specifically, continuity of the conditional
expected potential outcomes—they also framed estimation as a
nonparametric problem and emphasized using local polynomial
regressions. What exactly does this mean though in practice?

Nonparametric methods mean a lot of different things to different
people in statistics, but in RDD contexts, the idea is to estimate a
model that doesn’t assume a functional form for the relationship
between the outcome variable (Y) and the running variable (X). The
model would be something like this:

Y=f(X)+¢

A very basic method would be to calculate E[Y] for each bin on X,
like a histogram. And Stata has an option to do this called cmogram,
created by Christopher Robert. The program has a lot of useful
options, and we can re-create important figures from Lee et al.
[2004]. Eigure 37 shows the relationship between the Democratic
win (as a function of the running variable, Democratic vote share)
and the candidates, second-period ADA score.
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Figure 37. Showing total effect of initial win on future ADA scores. Reprinted
from Lee, D. S., Moretti, E., and Butler, M. J. (2004). “Do Voters Affect or Elect
Policies: Evidence from the U.S. House.” Quarterly Journal of Economics,
119(3):807-859. Permission from Oxford University Press.

To reproduce this, there are a few options. You could manually
create this figure yourself using either the “twoway” command in
Stata or “ggplot” in R. But I'm going to show you using the canned
cmogram routine that was created, as it's a quick-and-dirty way to
get some information about the data.



STATA

(continued)



R (continued)

21 ggplot(Imb_data, aes(lagdemvoteshare, score)) +

22  geom_point(aes(x = lagdemvoteshare, y = score), data = agg_Imb_data) +

23  stat_smooth(aes(lagdemvoteshare, score, group = gg_group), method = "loess")
o +

24 xlim(0,1) + ylim(0,100) +

25 geom_vline(xintercept = 0.5)

26

27 ggplot(Imb_data, aes(lagdemvoteshare, score)) +

28  geom_point(aes(x = lagdemvoteshare, y = score), data = agg_Imb_data) +

29  stat_smooth(aes(lagdemvoteshare, score, group = gg_group), method = "Im") +

30 xlim(0,1) +ylim(0,100) +

31 geom_vline(xintercept = 0.5)

Figure 38 shows the output from this program. Notice the
similarities between what we produced here and what Lee et al.
[2004] produced in their figure. The only differences are subtle
changes in the binning used for the two figures.
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Figure 38. Using cmogram with quadratic fit and confidence intervals.
Reprinted from Lee, D. S., Moretti, E., and Butler, M. J. (2004). “Do Voters
Affect or Elect Policies: Evidence from the U.S. House.” Quarterly Journal of
Economics, 119(3):807-859.
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Figure 39. Using cmogram with linear fit. Reprinted from Lee, D. S., Moretti,
E., and Butler, M. J. (2004). “Do Voters Affect or Elect Policies: Evidence from
the U.S. House.” Quarterly Journal of Economics, 119(3):807-859.

We have options other than a quadratic fit, though, and it’s useful
to compare this graph with one in which we only fit a linear model.
Now, because there are strong trends in the running variable, we
probably just want to use the quadratic, but let's see what we get
when we use simpler straight lines.

Eigure 39 shows what we get when we only use a linear fit of the
data left and right of the cutoff. Notice the influence that outliers far
from the actual cutoff play in the estimate of the causal effect at the
cutoff. Some of this would go away if we restricted the bandwidth to
be shorter distances to and from the cutoff, but | leave it to you to do
that.

Finally, we can use a lowess fit. A lowess fit more or less crawls
through the data and runs small regression on small cuts of data.



This can give the figure a zigzag appearance. We nonetheless show
it in Eigure 40.
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Figure 40. Using cmogram with lowess fit. Reprinted from Lee, D. S.,
Moretti, E., and Butler, M. J. (2004). “Do Voters Affect or Elect Policies:
Evidence from the U.S. House.” Quarterly Journal of Economics, 119(3):807—
859.

If there don’t appear to be any trends in the running variable, then
the polynomials aren’t going to buy you much. Some very good
papers only report a linear fit because there weren’t very strong
trends to begin with. For instance, consider Carrell et al. [2011].
Those authors are interested in the causal effect of drinking on
academic test outcomes for students at the Air Force Academy.
Their running variable is the precise age of the student, which they
have because they know the student’s date of birth and they know
the date of every exam taken at the Air Force Academy. Because the
Air Force Academy restricts students’ social life, there is a starker



increase in drinking at age 21 on its campus than might be the case
for a more a typical university campus. They examined the causal
effect of drinking age on normalized grades using RDD, but because
there weren’t strong trends in the data, they presented a graph with
only a linear fit. Your choice should be in large part based on what,
to your eyeball, is the best fit of the data.

Hahn et al. [2001] have shown that one-sided kernel estimation
such as lowess may suffer from poor properties because the point of
interest is at the boundary (i.e., the discontinuity). This is called the
“boundary problem.” They propose using local linear nonparametric
regressions instead. In these regressions, more weight is given to
the observations at the center.

You can also estimate kernel-weighted local polynomial
regressions. Think of it as a weighted regression restricted to a
window like we’'ve been doing (hence the word “local”’) where the
chosen kernel provides the weights. A rectangular kernel would give
the same results as E[Y] at a given bin on X, but a triangular kernel
would give more importance to observations closest to the center.
This method will be sensitive to the size of the bandwidth chosen.
But in that sense, it's similar to what we've been doing. Figure 41
shows this visually.



STATA

(continued)



R (continued)

9
10
11 smooth_dem1 <- Imb_data %>%
12 filter(democrat == 1) %>%
13 select(score, demvoteshare) %>%
14  na.omit()
15 smooth_dem1 <- as_tibble(ksmooth(smooth_dem1Sdemvoteshare,
< smooth_dem1Sscore,
16 kernel = "box", bandwidth = 0.1))
17

18 ggplot() +
19  geom_smooth(aes(x, y), data = smooth_dem0) +

20 geom_smooth(aes(x, y), data = smooth_dem1) +
21 geom_vline(xintercept = 0.5)

22

23

24

25

A couple of final things. First, recall the continuity assumption.
Because the continuity assumption specifically involves continuous
conditional expectation functions of the potential outcomes
throughout the cutoff, it therefore is untestable. That's right—it's an
untestable assumption. But, what we can do is check for whether
there are changes in the conditional expectation functions for other
exogenous covariates that cannot or should not be changing as a
result of the cutoff. So it's very common to look at things like race or
gender around the cutoff. You can use these same methods to do
that, but | do not do them here. Any RDD paper will always involve
such placebos; even though they are not direct tests of the continuity
assumption, they are indirect tests. Remember, when you are
publishing, your readers aren’t as familiar with this thing you're
studying, so your task is explain to readers what you know.
Anticipate their objections and the sources of their skepticism. Think
like them. Try to put yourself in a stranger’s shoes. And then test
those skepticisms to the best of your ability.



Second, we saw the importance of bandwidth selection, or
window, for estimating the causal effect using this method, as well as
the importance of selection of polynomial length. There’s always a
tradeoff when choosing the bandwidth between bias and variance—
the shorter the window, the lower the bias, but because you have
less data, the variance in your estimate increases. Recent work has
been focused on optimal bandwidth selection, such as Imbens and
Kalyanaraman [2011] and Calonico et al. [2014]. The latter can be
implemented with the user-created rdrobust command. These
methods ultimately choose optimal bandwidths that may differ left
and right of the cutoff based on some bias-variance trade-off. Let’s
repeat our analysis using this nonparametric method. The coefficient
is 46.48 with a standard error of 1.24.
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Figure 41. Local linear nonparametric regressions.



STATA
Imb_9.do

1 *Local polynomial point estimators with bias correction
2 sscinstall rdrobust, replace
3 rdrobust score demvoteshare, ¢(0.5)

R

Imb_9.R
library(tidyverse)

library(rdrobust)

x = Imb_dataSdemvoteshare, ¢ = 0.5)
summary(rdr)

1
2
3
4 rdr <- rdrobust(y = Imb_data$score,
5
6

This method, as we've repeatedly said, is data-greedy because it
gobbles up data at the discontinuity. So ideally these kinds of
methods will be used when you have large numbers of observations
in the sample so that you have a sizable number of observations at
the discontinuity. When that is the case, there should be some
harmony in your findings across results. If there isn’t, then you may
not have sufficient power to pick up this effect.

Finally, we look at the implementation of the McCrary density test.
We will implement this test using local polynomial density estimation
[Cattaneo et al., 2019]. This requires installing two files in Stata.
Visually inspecting the graph in Figure 42, we see no signs that there
was manipulation in the running variable at the cutoff.



rddensity plot (p=2, q=3)
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Figure 42. McCrary density test using local linear nonparametric
regressions.



STATA

Imb_10.do

1 *McCrary density test

net install rddensity,

— from(https://sites.google.com/site/rdpackages/rddensity/stata) replace
3 netinstall Ipdensity,

— from(https://sites.google.com/site/nppackages/Ipdensity/stata) replace
4 rddensity demvoteshare, ¢(0.5) plot

R
Imb_10.R
library(tidyverse)
library(rddensity)
library(rdd)

DCdensity(Imb_dataSdemvoteshare, cutpoint = 0.5)

density <- rddensity(Imb_dataSdemvoteshare, ¢ = 0.5)
rdplotdensity(density, Imb_dataSdemvoteshare)
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Concluding remarks about close-election designs. Let’s circle back
to the close-election design. The design has since become
practically a cottage industry within economics and political science.
It has been extended to other types of elections and outcomes. One
paper | like a lot used close gubernatorial elections to examine the
effect of Democratic governors on the wage gap between workers of
different races [Beland, 2015]. There are dozens more.

But a critique from Caughey and Sekhon [2011] called into
question the validity of Lee’s analysis on the House elections. They
found that bare winners and bare losers in US House elections
differed considerably on pretreatment covariates, which had not
been formally evaluated by Lee et al. [2004]. And that covariate
imbalance got even worse in the closest elections. Their conclusion
is that the sorting problems got more severe, not less, in the closest
of House races, suggesting that these races could not be used for an
RDD.



At first glance, it appeared that this criticism by Caughey and
Sekhon [2011] threw cold water on the entire close-election design,
but we since know that is not the case. It appears that the Caughey
and Sekhon [2011] criticism may have been only relevant for a
subset of House races but did not characterize other time periods or
other types of races. Eggers et al. [2014] evaluated 40,000 close
elections, including the House in other time periods, mayoral races,
and other types of races for political offices in the US and nine other
countries. No other case that they encountered exhibited the type of
pattern described by Caughey and Sekhon [2011]. Eggers et al.
(2014) conclude that the assumptions behind RDD in the close-
election design are likely to be met in a wide variety of electoral
settings and is perhaps one of the best RD designs we have going
forward.

Regression Kink Design

Many times, the concept of a running variable shifting a unit into
treatment and in turn causing a jump in some outcome is sufficient.
But there are some instances in which the idea of a “jump” doesn’t
describe what happens. A couple of papers by David Card and
coauthors have extended the regression discontinuity design in order
to handle these different types of situations. The most notable is
Card et al. [2015], which introduced a new method called regression
kink design, or RKD. The intuition is rather simple. Rather than the
cutoff causing a discontinuous jump in the treatment variable at the
cutoff, it changes the first derivative, which is known as a kink. Kinks
are often embedded in policy rules, and thanks to Card et al. [2015],
we can use kinks to identify the causal effect of a policy by exploiting
the jump in the first derivative.

Card et al.’s [2015] paper applies the design to answer the
question of whether the level of unemployment benefits affects the
length of time spent unemployed in Austria. Unemployment benefits
are based on income in a base period. There is then a minimum
benefit level that isn’t binding for people with low earnings. Then
benefits are 55% of the earnings in the base period. There is a



maximum benefit level that is then adjusted every year, which
creates a discontinuity in the schedule.

Figure 43 shows the relationship between base earnings and
unemployment benefits around the discontinuity. There’s a visible
kink in the empirical relationship between average benefits and base
earnings. You can see this in the sharp decline in the slope of the
function as base-year earnings pass the threshold. Figure 44
presents a similar picture, but this time of unemployment duration.
Again, there is a clear kink as base earnings pass the threshold. The
authors conclude that increases in unemployment benefits in the
Austrian context exert relatively large effects on unemployment
duration.
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Figure 43. RKD kinks. Reprinted from Card, D., Lee, D. S., Pei, Z., and
Weber, A. (2015). “Inference on Causal Effects in a Generalized Regression
Kink Design.” Econometrica, 84(6):2453—-2483. Copyright ©2015 Wiley. Used
with permission from John Wiley and Sons.

Conclusion



The regression discontinuity design is often considered a winning
design because of its upside in credibly identifying causal effects. As
with all designs, its credibility only comes from deep institutional
knowledge, particularly surrounding the relationship between the
running variable, the cutoff, treatment assignment, and the outcomes
themselves. Insofar as one can easily find a situation in which a
running variable passing some threshold leads to units being
siphoned off into some treatment, then if continuity is believable,
you're probably sitting on a great opportunity, assuming you can use
it to do something theoretically interesting and policy relevant to
others.
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Figure 44. Unemployment duration. Reprinted from Card, D., Lee, D. S., Pei,
Z., and Weber, A. (2015). “Inference on Causal Effects in a Generalized
Regression Kink Design.” Econometrica, 84(6):2453—-2483. Copyright © 2015
Wiley. Used with permission from John Wiley and Sons.

Regression discontinuity design opportunities abound, particularly
within firms and government agencies, for no other reason than that



these organizations face scarcity problems and must use some
method to ration a treatment. Randomization is a fair way to do it,
and that is often the method used. But a running variable is another
method. Routinely, organizations will simply use a continuous score
to assign treatments by arbitrarily picking a cutoff above which
everyone receives the treatment. Finding these can yield a cheap yet
powerfully informative natural experiment. This chapter attempted to
lay out the basics of the design. But the area continues to grow at a
lightning pace. So | encourage you to see this chapter as a starting
point, not an ending point.

Notes

1 Thistlehwaite and Campbell [1960] studied the effect of merit awards on
future academic outcomes. Merit awards were given out to students based on
a score, and anyone with a score above some cutoff received the merit award,
whereas everyone below that cutoff did not. Knowing the treatment
assignment allowed the authors to carefully estimate the causal effect of merit
awards on future academic performance.

2 Hat tip to John Holbein for giving me these data.

3 Think about it for a moment. The backdoor criterion calculates differences
in expected outcomes between treatment and control for a given value of X.
But if the assignment variable only moves units into treatment when X passes
some cutoff, then such calculations are impossible because there will not be
units in treatment and control for any given value of X.

4 Mark Hoekstra is one of the more creative microeconomists | have met
when it comes to devising compelling strategies for identifying causal effects in
observational data, and this is one of my favorite papers by him.

5 “Don’t be a jerk” applies even to situations when you aren’t seeking
proprietary data.

6 Van der Klaauw [2002] called the running variable the “selection variable.”
This is because Van der Klaauw [2002] is an early paper in the new literature,
and the terminology hadn’t yet been hammered out. But here they mean the
same thing.

7 Stata’s poly command estimates kernel-weighted local polynomial
regression.

8 RDHonest is available at https://github.com/kolesarm/RDHonest.

9 | discuss these assumptions and diagnostics in greater detail later in the
chapter on instrument variables.



https://github.com/kolesarm/RDHonest

10 In those situations, anyway, where the treatment is desirable to the units.

11 https://sites.google.com/site/rdpackages/rddensity.

12 http://cran.r-project.org/web/packages/rdd/rdd.eps.

43 The honey badger doesn’t care. It takes what it wants. See
https://www.youtube.com/watch?v=4r7wHMgS5Yjg.
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Instrumental Variables

I made “Sunday Candy,”
I’'m never going to hell.

I met Kanye West,

I’'m never going to fail.
Chance the Rapper

Just as Archimedes said, “Give me a fulcrum, and | shall move the
world,” you could just as easily say that with a good-enough
instrument, you can identify any causal effect. But, while that is
hyperbole, for reasons we will soon see, it is nonetheless the case
that the instrumental variables (IV) design is potentially one of most
important research designs ever devised. It is also unique because it
is one of those instances that the econometric estimator was not
simply ripped off from statistics (e.g., Eicker-Huber-White standard
errors) or imported from some other field (e.g., like regression
discontinuity). IV was invented by an economist, and its history is
fascinating.

History of Instrumental Variables: Father and Son

Philip Wright was born in 1861 and died in 1934. He received his
bachelor’'s degree from Tufts in 1884 and a master’s degree from
Harvard in 1887. His son, Sewall Wright, was born in 1889 when
Philip was 28. The family moved from Massachusetts to Galesburg,
lllinois, where Philip took a position as professor of mathematics and
economics at Lombard College. Philip published numerous articles
and books in economics over his career, and he published poetry,
too. You can see his vita here at

https://scholar.harvard.edu/files/stock/files/wright_cv.jpg.t Sewall
attended Lombard College and took his college mathematics courses
from his father.



https://scholar.harvard.edu/files/stock/files/wright_cv.jpg

In 1913, Philip took a position at Harvard, and Sewall entered there
as a graduate student. Philip would later leave for the Brookings
Institute, and Sewall would take his first job in the Department of
Zoology at the University of Chicago, where he would eventually be
promoted to professor in 1930.

Philip was prolific, which, given his sizable teaching and service
requirements, is impressive. He published in top journals such as
Quatrterly Journal of Economics, Journal of the American Statistical
Association, Journal of Political Economy, and American Economic
Review. A common theme across many of his publications was the
identification problem. He was acutely aware of it and intent on
solving it.

In 1928, Philip was writing a book about animal and vegetable oils.
The reason? He believed that recent tariff increases were harming
international relations. And he wrote about the damage from the
tariffs, which had affected animal and vegetable oils. The book, it
turns out, would become a classic—not for tariffs or oils, but for being
the first proof for the existence of an instrumental variables estimator.

While his father was publishing like a fiend in economics, Sewall
Wright was revolutionizing the field of genetics. He invented path
analysis, a precursor to Pearl’s directed acyclical graphic models, and
he made important contributions to the theory of evolution and
genetics. He was a genius. The decision to not follow in the family
business (economics) created a bit of tension between the two men,
but all evidence suggests that they found each other intellectually
stimulating.

In his book on vegetable and oil tariffs, there is an appendix
(entitled Appendix B) in which the calculus of an instrumental
variables estimator was worked out. Elsewhere, Philip thanked his
son for his valuable contributions to what he had written, referring to
the path analysis that Sewall had taught him. This path analysis, it
turned out, played a key role in Appendix B.

Appendix B showed a solution to the identification problem. So long
as the economist is wiling to impose some restrictions on the
problem, then the system of equations can be identified. Specifically,
if there is one instrument for supply, and the supply and demand



errors are uncorrelated, then the elasticity of demand can be
identified.

But who wrote this Appendix B? Either man could’ve done so. It is
a chapter in an economics book, which points to Philip. But it used
the path analysis, which points to Sewall. Historians have debated
this, even going so far as to accuse Philip of stealing the idea from
his son. If Philip stole the idea, by which | mean that when he
published Appendix B, he failed to give proper attribution to his son,
then it would at the very least have been a strange oversight. In come
Stock and Trebbi [2003] to offer their opinions to this debate over
authorship.

Stock and Trebbi [2003] tried to determine the authorship of
Appendix B using “stylometric analysis.” Stylometric analysis had
been used in other applications, such as to identify the author of the
1996 political novel Primary Colors (Joseph Klein) and the unsigned
Federalist Papers. But Stock and Trebbi [2003] is easily the best

application of stylometric analysis in economics.2

The method is akin to contemporary machine learning methods.
The authors collected raw data containing the known original
academic writings of each man, plus the first chapter and Appendix B
of the book in question. All footnotes, graphs, and figures were
excluded. Blocks of 1,000 words were selected from the files. Fifty-
four blocks were selected: twenty written by Sewall with certainty,
twenty-five by Philip, six from Appendix B, and three from chapter 1.
Chapter 1 has always been attributed to Philip, but Stock and Trebbi
[2003] treat the three blocks as unknown to check whether their
model is correctly predicting authorship when authorship is already
known.

The stylometric indicators that they used included the frequency of
occurrence in each block of 70 function words. The list was taken
from a separate study. These 70 function words produced 70
numerical variables, each of which is a count, per 1,000 words, of an
individual function word in the block. Some words were dropped (e.g.,
“things” because they occurred only once), leaving 69 function words.

The second set of stylometric indicators, taken from another study,
concerned grammatical constructions. Stock and Trebbi [2003] used



18 grammatical constructions, which were frequency counts. They
included things like noun followed by an adverb, total occurrences of
prepositions, coordinating conjunction followed by noun, and so on.
There was one dependent variable in their analysis, and that was
authorship. The independent variables were 87 covariates (69
function word counts and 18 grammatical statistics).

The results of this analysis are absolutely fascinating. For instance,
many covariates have very large t-statistics, which would be unlikely
if there really were no stylistic differences between the authors and
the indicators were independently distributed.

So what do they find? Most interesting is their regression analysis.
They write:

We regressed authorship against an intercept, the first two principal

components of the grammatical statistics and the first two principal

components of the function word counts, and we attribute authorship
depending on whether the predicted value is greater or less than 0.5. [191]

And what did they find? That all of the Appendix B and chapter 1
blocks were assigned to Philip, not Sewall. They did other robustness
checks, and all of them still pointed to Philip as the author.

Writing Appendix B and solving the problem that became Appendix
B are technically distinct. But | nonetheless love this story for many
reasons. First, | love the idea that an econometric estimator as
important as instrumental variables has its roots in economics. I'm so
accustomed to stories in which the actual econometric estimator was
lifted from statistics (Huber-White standard errors) or educational
psychology (regression discontinuity) that it's nice to know
economists have added their own designs to the canon. But the other
part of the story that | love is the father-son component. It's
encouraging to know that a father and son can overcome differences
through intellectual collaborations such as this. Such relationships are
important, and tensions, when they arise, should be vigorously
pursued until those tensions dissolve if possible. Relationships, and
love more generally, matter after all. And Philip and Sewall give a
story of that.

Intuition of Instrumental Variables



Canonical IV DAG. To understand the instrumental variables
estimator, it is helpful to start with a DAG that shows a chain of causal
effects that contains all the information needed to understand the
instrumental variables strategy. First, notice the backdoor path
between D and Y: D«—U—Y. Furthermore, note that U is unobserved
by the econometrician, which causes the backdoor path to remain
open. If we have this kind of selection on unobservables, then there
does not exist a conditioning strategy that will satisfy the backdoor
criterion (in our data). But, before we throw up our arms, let’s look at
how Z operates through these pathways.

Z—D »Y

First, there is a mediated pathway from Z to Y via D. When Z
varies, D varies, which causes Y to change. But, even though Y is
varying when Z varies, notice that Y is only varying because D has
varied. You sometimes hear people describe this as the “only
through” assumption. That is, Z affects Y “only through” D.

Imagine this for a moment though. Imagine D consists of people
making choices. Sometimes these choices affect Y, and sometimes
these choices are merely correlated with changes in Y due to
unobserved changes in U. But along comes some shock, Z, which
induces some but not all of the people in D to make different
decisions. What will happen?

Well, for one, when those people’s decisions change, Y will change
too, because of the causal effect. But all of the correlation between D
and Y in that situation will reflect the causal effect. The reason is that
D is a collider along the backdoor path between Z and Y.

But I'm not done with this metaphor. Let's assume that in this D
variable, with all these people, only some of the people change their
behavior because of D. What then? Well, in that situation, Z is
causing a change in Y for just a subset of the population. If the
instrument only changes the behavior of women, for instance, then



the causal effect of D on Y will only reflect the causal effect of
women’s choices, not men’s choices.

There are two ideas inherent in the previous paragraph that | want
to emphasize. First, if there are heterogeneous treatment effects
(e.g., men affect Y differently than women do), then our Z shock only
identified some of the causal effect of D on Y. And that piece of the
causal effect may only be valid for the population of women whose
behavior changed in response to Z; it may not be reflective of how
men’s behavior would affect Y. And second, if Z is inducing some of
the change in Y via only a fraction of the change in D, then it's almost
as though we have less data to identify that causal effect than we
really have.

Here we see two of the difficulties in interpreting instrumental
variables and identifying a parameter using instrumental variables.
Instrumental variables only identify a causal effect for any group of
units whose behaviors are changed as a result of the instrument. We
call this the causal effect of the complier population; in our example,
only women “complied” with the instrument, so we only know its effect
for them. And second, instrumental variables are typically going to
have larger standard errors, and as such, they will fail to reject in
many instances if for no other reason than being underpowered.

Moving along, let’s return to the DAG. Notice that we drew the DAG
such that Z is independent of U. You can see this because D is a
collider along the Z —-D U path, which implies that Z and U are
independent. This is called the “exclusion restriction,” which we will
discuss in more detail later. But briefly, the IV estimator assumes that
Z is independent of the variables that determine Y except for D.

Second, Z is correlated with D, and because of its correlation with
D (and D’s effect on Y), Z is correlated with Y but only through its
effect on D. This relationship between Z and D is called the “first
stage” because of the two-stage least squares estimator, which is a
kind of IV estimator. The reason it is only correlated with Y via D is
because D is a collider along the path Z—-D—U-Y.

Good instruments should feel weird. How do you know when you
have a good instrument? One, it will require prior knowledge. I'd



encourage you to write down that prior knowledge into a DAG and
use it to reflect on the feasibility of your design. As a starting point,
you can contemplate identifying a causal effect using IV only if you
can theoretically and logically defend the exclusion restriction, since
the exclusion restriction is an untestable assumption. That defense
requires theory, and since some people aren’t comfortable with
theoretical arguments like that, they tend to eschew the use of IV.
More and more applied microeconomists are skeptical of IV because
they are able to tell limitless stories in which exclusion restrictions do
not hold.

But, let’s say you think you do have a good instrument. How might
you defend it as such to someone else? A necessary but not
sufficient condition for having an instrument that can satisfy the
exclusion restriction is if people are confused when you tell them
about the instrument’s relationship to the outcome. Let me explain.
No one is likely to be confused when you tell them that you think
family size will reduce the labor supply of women. They don’t need a
Becker model to convince them that women who have more children
probably are employed outside the home less often than those with
fewer children.

But what would they think if you told them that mothers whose first
two children were the same gender were employed outside the home
less than those whose two children had a balanced sex ratio? They
would probably be confused because, after all, what does the gender
composition of one’s first two children have to do with whether a
woman works outside the home? That's a head scratcher. They're
confused because, logically, whether the first two kids are the same
gender versus not the same gender doesn’t seem on its face to
change the incentives a women has to work outside the home, which
is based on reservation wages and market wages. And yet,
empirically it is true that if your first two children are a boy, many
families will have a third compared to those who had a boy and a girl
first. So what gives?

The gender composition of the first two children matters for a family
if they have preferences over diversity of gender. Families where the
first two children were boys are more likely to try again in the hopes



they’ll have a girl. And the same for two girls. Insofar as parents
would like to have at least one boy and one girl, then having two boys
might cause them to roll the dice for a girl.

And there you see the characteristics of a good instrument. It's
weird to a lay person because a good instrument (two boys) only
changes the outcome by first changing some endogenous treatment
variable (family size) thus allowing us to identify the causal effect of
family size on some outcome (labor supply). And so without
knowledge of the endogenous variable, relationships between the
instrument and the outcome don’t make much sense. Why? Because
the instrument is irrelevant to the determinants of the outcome except
for its effect on the endogenous treatment variable. You also see
another quality of the instrument that we like, which is that it's quasi-
random.

Before moving along, I'd like to illustrate this “weird instrument” in
one more way, using two of my favorite artists: Chance the Rapper
and Kanye West. At the start of this chapter, | posted a line from
Kanye West's wonderful song “Ultralight Beam” on the underrated
Life of Pablo. On that song, Chance the Rapper sings:

| made “Sunday Candy,” I'm never going to hell.
| met Kanye West, I'm never going to fail.

Several years before “Ultralight Beam,” Chance made a song
called “Sunday Candy.” It's a great song and | encourage you to listen
to it. But Chance makes a strange argument here on “Ultralight
Beam.” He claims that because he made “Sunday Candy,” therefore
he won’'t go to hell. Now even a religious person will find that
perplexing, as there is nothing in Christian theology of eternal
damnation that would link making a song to the afterlife. This, | would
argue, is a ‘“weird instrument” because without knowing the
endogenous variable on the mediated path SC —»?—H, the two
phenomena don’t seem to go together.

But let's say that | told you that after Chance made “Sunday
Candy,” he got a phone call from his old preacher. The preacher
loved the song and invited Chance to come sing it at church. And
while revisiting his childhood church, Chance had a religious
experience that caused him to convert back to Christianity. Now, and



only now, does his statement make sense. It isn't that “Sunday
Candy” itself shaped the path of his afterlife, so much as “Sunday
Candy” caused a particular event that itself caused his beliefs about
the future to change. That the line makes a weird argument is what
makes “Sunday Candy” a good instrument.

But let’s take the second line—*| met Kanye West, I'm never going
to fail.” Unlike the first line, this is likely not a good instrument. Why?
Because | don’t even need to know what variable is along the
mediated path KW—7?—F to doubt the exclusion restriction. If you are
a musician, a relationship with Kanye West can possibly make or
break your career. Kanye could make your career by collaborating
with you on a song or by introducing you to highly talented producers.
There is no shortage of ways in which a relationship with Kanye West
can cause you to be successful, regardless of whatever unknown
endogenous variable we have placed in this mediated path. And
since it's easy to tell a story where knowing Kanye West directly
causes one’s success, knowing Kanye West is likely a bad
instrument. 1t simply won’t satisfy the exclusion restriction in this
context.

Ultimately, good instruments are jarring precisely because of the
exclusion restriction—these two things (gender composition and
work) don’t seem to go together. If they did go together, it would likely
mean that the exclusion restriction was violated. But if they don',
then the person is confused, and that is at minimum a possible
candidate for a good instrument. This is the commonsense
explanation of the “only through” assumption.

Homogeneous Treatment Effects

There are two ways to discuss the instrumental variables design: one
in a world where the treatment has the same causal effect for
everybody (“homogeneous treatment effects”) and one in a world
where the treatment effects can differ across the population
(“heterogeneous treatment effects”). For homogeneous treatment
effects, | will depend on a more traditional approach rather than on
potential outcomes notation. When the treatment effect is constant, |
don’t feel we need potential outcomes notation as much.



Instrumental variables methods are typically used to address
omitted variable bias, measurement error, and simultaneity. For
instance, quantity and price is determined by the intersection of
supply and demand, so any observational correlation between price
and quantity is uninformative about the elasticities associated with
supply or demand curves. Philip Wright understood this, which was
why he investigated the problem so intensely.

| will assume a homogeneous treatment effect of & which is the
same for every person. This means that if college caused my wages
to increase by 10%, it also caused your wages to increase by 10%.
Let’s start by illustrating the problem of omitted variable bias. Assume
the classical labor problem where we’re interested in the causal effect
of schooling on earnings, but schooling is endogenous because of
unobserved ability. Let’'s draw a simple DAG to illustrate this setup.
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We can represent this DAG with a simple regression. Let the true
model of earnings be:

Y,—=a-|-(53,-+yA,-—|—£,-

where Y'is the log of earnings, S is schooling measured in years, A is
individual “ability,” and ¢ is an error term uncorrelated with schooling
or ability. The reason A is unobserved is simply because the surveyor
either forgot to collect it or couldn’t collect it and therefore it's missing

from the data set.2 For instance, the CPS tells us nothing about
respondents’ family background, intelligence, motivation, or non-



cognitive ability. Therefore, since ability is unobserved, we have the
following equation instead:

Y;=(X+5Sj+f?;‘

where n); is a composite error term equalling y A; + €. We assume that
schooling is correlated with ability, so therefore it is correlated with n,,
making it endogenous in the second, shorter regression. Only ¢; is

uncorrelated with the regressors, and that is by definition.
We know from the derivation of the least squares operator that the
estimated value of 3 is:

C(Y,S) E[YS]—E[Y]E[S]

= V(iS) V(S)

Plugging in the true value of Y (from the longer model), we get the
following:

E[aS+S%5+ 7 SA+ &S] — E(S)E[a + S+ 7 A +¢]

°= VS
B (SE(SQ) —0E(S)? + yE(AS) —yE(S)E(A) + E(eS) — E(S)E(¢)
B V(S)
. CAS)
AERTS

If y >0 and C(A,S) > 0, then j, the coefficient on schooling, is upward
biased. And that is probably the case given that it's likely that ability
and schooling are positively correlated.

But let's assume that you have found a really great weird
instrument Z; that causes people to get more schooling but that is

independent of student ability and the structural error term. It is
independent of ability, which means we can get around the
endogeneity problem. And it's not associated with the other
unobserved determinants of earnings, which basically makes it weird.
The DAG associated with this set up would look like this:



We can use this variable, as I'll now show, to estimate 6. First,
calculate the covariance of Y and Z:

C(Y,Z) = C(a6S +yA+¢,2)
= E[(a + S+ 7 A+¢),Z] - E(SEQ)
= [aE(Z) — aEQ2)} + 6{E(SZ) — E(S)E))
17 [E(A2) — EA)E@)} +|E(c2) — E()E@))
=6C(S,2)+ 7y C(A,Z) + C(¢,2)

Notice that the parameter of interest, d is on the right side. So how do
we isolate it? We can estimate it with the following:

so long as C(A,Z) =0 and C(¢,Z) = 0.

These zero covariances are the statistical truth contained in the IV
DAG from earlier. If ability is independent of Z, then this second
covariance is zero. And if Z is independent of the structural error
term, ¢, then it too is zero. This, you see, is what is meant by the
“‘exclusion restriction”. the instrument must be independent of both
parts of the composite error term.

But the exclusion restriction is only a necessary condition for IV to
work; it is not a sufficient condition. After all, if all we needed was
exclusion, then we could use a random number generator for an



instrument. Exclusion is not enough. We also need the instrument to
be highly correlated with the endogenous variable schooling S. And
the higher the better. We see that here because we are dividing by
C(S,Z), so it necessarily requires that this covariance not be zero.

The numerator in this simple ratio is sometimes called the “reduced
form,” while the denominator is called the “first stage.” These terms
are somewhat confusing, particularly the former, as “reduced form”
means different things to different people. But in the IV terminology, it
is that relationship between the instrument and the outcome itself.
The first stage is less confusing, as it gets its name from the two-
stage least squares estimator, which we’ll discuss next.

When you take the probability limit of this expression, then
assuming C(A,Z) = 0 and C(¢,Z) = 0 due to the exclusion restriction,
you get

plimso=5

But if Z is not independent of n (either because it's correlated with A
or ¢), and if the correlation between S and Z is weak, then 5 becomes
severely biased in finite samples.

Two-stage least squares. One of the more intuitive instrumental
variables estimators is the two-stage least squares (2SLS). Let’s
review an example to illustrate why it is helpful for explaining some of
the IV intuition. Suppose you have a sample of data on Y, S, and Z.
For each observation i, we assume the data are generated according
to:

Yi=0+0S;+¢;
Si=y +pLi+e

where C(Z,e) = 0 and B = 0. The former assumption is the exclusion
restriction whereas the second assumption is a non-zero first-stage.
Now wusing our [V expression, and using the result that
Y7, (x;—X) =0, we can write out the IV estimator as:
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When we substitute the true model for Y, we get the following:

%ZL(Z- —2){o+5S+e}

0= :
E Z?=1 (Zr - Z)SI

1 _
5 E Z?=1 (Zi —2)g;
=0+

1 _
- > i(Zi=2)S;
=0+ “smallif nis large”

So, let’s return to our first description of 5 as the ratio of two
covariances.With some simple algebraic manipulation, we get the
following:

c(Y,2)
C(S,2)
CZY)
_ V@
CZ,

B a o —

o=




where the denominator is equal to ﬁ.ﬂ We can rewrite ﬁ as:

~ C(ZS)
p= V(Z)

BV(Z)=C(Z,S)

Then we rewrite the IV estimator and make a substitution:

~ _CZYy)
v = m

pCZY)

~ @9

BCZ.Y)

~ V@)

C(BZY)

~ V(p2)

Notice now what is inside the parentheses: ﬁZ, which are the fitted

values of schooling from the first-stage regression. We are no longer,

in other words, using S—we are using its fitted values. Recall that S =
- C{FZY)

y+PZ+ed=Toos and let =75+ §z. Then the two-stage least
squares (2SLS) estimator is:
~ _C(BZY)
5.“./:
V(pZ)
_CSY)
V(S

| will now show that EC(Y,Z) = C(s,Y), and leave it to you to show
that v(#z) = v(S).



C(S,Y) =E[SY] — E[SIE[Y]
=E(Y[7 +521) ~E(MEG +B2)
= TE(Y)+ PE(YZ) —FE(Y) — BE(Y)EZ)
= BE(YZ) —E(V)E(2)]
C(S,Y)=pC(,2)

Now let’s return to something | said earlier—learning 2SLS can
help you better understand the intuition of instrumental variables
more generally. What does this mean exactly? First, the 2SLS
estimator used only the fitted values of the endogenous regressors
for estimation. These fitted values were based on all variables used in
the model, including the excludable instrument. And as all of these
instruments are exogenous in the structural model, what this means
is that the fitted values themselves have become exogenous too. Put
differently, we are using only the variation in schooling that is
exogenous. So that’s kind of interesting, as now we’re back in a world
where we are identifying causal effects from exogenous changes in
schooling caused by our instrument.

But, now the less-exciting news. This exogenous variation in S
driven by the instrument is only a subset of the total variation in
schooling. Or put differently, IV reduces the variation in the data, so
there is less information available for identification, and what little
variation we have left comes from only those units who responded to
the instrument in the first place. This, it turns out, will be critical later
when we relax the homogeneous treatment effects assumption and
allow for heterogeneity.

Parental Methamphetamine Abuse and Foster
Care

I's helpful to occasionally stop and try to think about real-world
applications as much as possible; otherwise the estimators feel very
opaque and unhelpful. So to illustrate, I'm going to review one of my
own papers with Keith Finlay that sought to estimate the effect that



parental methamphetamine abuse had on child abuse and foster care
admissions [Cunningham and Finlay, 2012].

It has been claimed that substance abuse, notably illicit drug use,
has a negative impact on parenting, causing neglect, but as these all
occur in equilibrium, it's possible that the correlation is simply
reflective of selection bias. Maybe households with parents who
abuse drugs would’ve had the same negative outcomes had the
parents not used drugs. After all, it's not like people are flipping coins
when deciding to smoke meth. So let me briefly give you some
background to the study so that you better understand the data-
generating process.

First, methamphetamine is a toxic poison to the mind and body and
highly addictive. Some of the symptoms of meth abuse are increased
energy and alertness, decreased appetite, intense euphoria, impaired
judgment, and psychosis. Second, the meth epidemic in the United
States began on the West Coast, before gradually making its way
eastward over the 1990s.

We were interested in the impact that this growth in meth abuse
was having on children. Observers and law enforcement had
commented, without concrete causal evidence, that the epidemic was
causing a growth in foster care admissions. But how could we
separate correlation from causality? The solution was contained
within how meth itself is produced.

Meth is synthesized from a reduction of ephedrine or
pseudoephedrine, which is also the active ingredient in many cold
medications, such as Sudafed. Without one of these two precursors,
it is impossible to produce the kind of meth people abuse. These
precursors had supply chains that could be potentially disrupted
because of the concentration of pharmaceutical laboratories. In 2004,
nine factories manufactured the bulk of the world’'s supply of
ephedrine and pseudoephedrine. The US Drug Enforcement Agency
correctly noted that if it could regulate access to ephedrine and
pseudoephedrine, then it could effectively interrupt the production of
methamphetamine, and in turn, hypothetically reduce meth abuse
and its associated social harms.



So, with input from the DEA, Congress passed the Domestic
Chemical Diversion Control Act in August 1995, which provided
safeguards by regulating the distribution of products that contained
ephedrine as the primary medicinal ingredient. But the new
legislation’s regulations applied to ephedrine, not pseudoephedrine,
and since the two precursors were nearly identical, traffickers quickly
substituted. By 1996, pseudoephedrine was found to be the primary
precursor in almost half of meth lab seizures.

Therefore, the DEA went back to Congress, seeking greater control
over pseudoephedrine products. And the Comprehensive
Methamphetamine Control Act of 1996 went into effect between
October and December 1997. This act required distributors of all
forms of pseudoephedrine to be subject to chemical registration.
Dobkin and Nicosia [2009] argued that these precursor shocks may
very well have been the largest supply shocks in the history of drug
enforcement.
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Figure 45. Ratio of median monthly expected retail prices of meth, heroin,
and cocaine relative to their respective values in 1995, STRIDE 1995-1999.
Reprinted from Cunningham, S. and Finlay, K. (2012). “Parental Substance
Abuse and Foster Care: Evidence from Two Methamphetamine Supply
Shocks?” Economic Inquiry, 51(1):764—782. Copyright © 2012 Wiley. Used with
permission from John Wiley and Sons.

We placed a Freedom of Information Act request with the DEA
requesting all of their undercover purchases and seizures of illicit
drugs going back decades. The data included the price of an
undercover purchase, the drug’s type, its weight and its purity, as well
as the locations in which the purchases occurred. We used these
data to construct a price series for meth, heroin, and cocaine. The
effect of the two interventions were dramatic. The first supply
intervention caused retail (street) prices (adjusted for purity, weight,
and inflation) to more than quadruple. The second intervention, while
still quite effective at raising relative prices, did not have as large an
effect as the first. See Figure 45.



We showed two other drug prices (cocaine and heroin) in addition
to meth because we wanted the reader to understand that the 1995
and 1997 shocks were uniquely impacting meth markets. They did
not appear to be common shocks affecting all drug markets, in other
words. As a result, we felt more confident that our analysis would be
able to isolate the effect of methamphetamine, as opposed to
substance abuse more generally. The two interventions simply had
no effect on cocaine and heroin prices despite causing a massive
shortage of meth and raising its retail price. It wouldn’t have surprised
me if disrupting meth markets had caused a shift in demand for
cocaine or heroin and in turn caused its prices to change, yet at first
glance in the time series, I'm not finding that. Weird.

We are interested in the causal effect of meth abuse on child
abuse, and so our first stage is necessarily a proxy for meth abuse—
the number of people entering treatment who listed meth as one of
the substances they used in their last episode of substance abuse.
As | said before, since a picture is worth a thousand words, I’'m going
to show you pictures of both the first stage and the reduced form.
Why do | do this instead of going directly to the tables of coefficients?
Because quite frankly, you are more likely to find those estimates
believable if you can see evidence for the first stage and the reduced

form in the raw data itself.2

In Figure 46, we show the first stage. All of these data come from
the Treatment Episode Data Set (TEDS), which includes all people
going into treatment for substance abuse at federally funded clinics.
Patients list the last three substances used in the most recent
“‘episode.” We mark anyone who listed meth, cocaine, or heroin and
aggregate by month and state. But first, let's look at the national
aggregate in Figure 46. You can see evidence for the effect the two
interventions had on meth flows, particularly the ephedrine
intervention. Self-admitted meth admissions dropped significantly, as
did total meth admissions, but there’s no effect on cocaine or heroin.
The effect of the pseudoephedrine is not as dramatic, but it appears
to cause a break in trend as the growth in meth admissions slows
during this period of time. In summary, it appears we have a first
stage because, during the interventions, meth admissions declines.



& S5
S Sg
g o
g 3
8 35
81 J
il B 2
o ' , o=
£ i A =X
g ‘. |" o
%é | Sup‘:}ly | Supply g
i I Jg:ﬁgn : Intervention k § %
g 6 g
2 | [ Al |72
o§ PR @ =y //\\-/\'\ / v/\ i : )
- o | | I/~ N 7" \ | | eroin ]
i S o
R A - =
E (7]
VAV L RA 5
Sel-admit | \ o e /\ | ——\\_, ;. a
S meth N/ ~— N, \/ W /-\/ ~ gé
24, T | T T J | T ' -QE
N 995m1 1996m1 1997m1 1998m1 1999m1 2000m1’

Month

Figure 46. Visual representation of the equivalent of the first stage. Reprinted
from Cunningham, S. and Finlay, K. (2012). “Parental Substance Abuse and
Foster Care: Evidence from Two Methamphetamine Supply Shocks?”
Economic Inquiry, 51(1):764—782. Copyright © 2012 Wiley. Used with
permission from John Wiley and Sons.

In Figure 47, we show the reduced form—that is, the effect of the
price shocks on foster care admissions. Consistent with what we
found in our first-stage graphic, the ephedrine intervention in
particular had a profoundly negative effect on foster care admissions.
They fell from around 8,000 children removed per month to around
6,000, then began rising again. The second intervention also had an
effect, though it appears to be milder. The reason we believe that the
second intervention had a more modest effect than the first is
because (1) the effect on price was about half the size of the first
intervention, and (2) domestic meth production was being replaced by
Mexican imports of meth over the late 1990s, and the precursor
regulations were not applicable in Mexico. Thus, by the end of the



1990s, domestic meth production played a smaller role in total output,
and hence the effect on price and admissions was probably smaller.
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Figure 47. Showing reduced form effect of interventions on children removed
from families and placed into foster care. Reprinted from Cunningham, S. and
Finlay, K. (2012). “Parental Substance Abuse and Foster Care: Evidence from
Two Methamphetamine Supply Shocks?” Economic Inquiry, 51(1):764—782.
Copyright © 2012 Wiley. Used with permission from John Wiley and Sons.

It's worth reflecting for a moment on the reduced form. Why would
rising retail prices of a pure gram of methamphetamine cause a child
not to be placed in foster care? Prices don’t cause child abuse—
they’re just nominal pieces of information in the world. The only way
in which a higher price for meth could reduce foster care admissions
is if parents reduced their consumption of methamphetamine, which
in turn caused a reduction in harm to one’s child. This picture is a key
piece of evidence for the reader that this is going on.



In Table 52, | reproduce our main results from my article with Keith.
There are a few pieces of key information that all IV tables should
have. First, there is the OLS regression. As the OLS regression
suffers from endogeneity, we want the reader to see it so that they
have something to compare the IV model to. Let’s focus on column 1,
where the dependent variable is total entry into foster care. We find
no effect, interestingly, of meth on foster care when we estimate using
OLS.

Table 52. Log latest entry into foster care.

Log Latest Entry into Log Latest Entry into Log Latest Entry into
Foster Care Child Neglect Physical Abuse
Covariates

oLs 2SLS oLs 2SLS oLsS 2SLS
Log self-referred 0.001 .54k 0.03 1.03%* 0.04 1.49%*
Meth treatment rate (0.02) (0.59) (0.02) (0.47) (0.03) (0.62)
Month-of-year fixed effects Yes Yes Yes Yes Yes Yes
State controls Yes Yes Yes Yes Yes Yes
State fixed effects Yes Yes Yes Yes Yes Yes
State linear time trends Yes Yes Yes Yes Yes Yes
First-stage instrument
Price deviation instrument —0.0005*** —0.0005*** —0.0005%**

(0.0007) (0.0001) (0.0007)

F-statistic for IV in first stage 17.60 17.60 17.60
N 1,343 1,343 1,343 1,343

Note: Log latest entry into foster care is the natural log of the sum of all new
foster care admissions by state, race, and month. Models 3 to 10 denote the
flow of children into foster care via a given route of admission denoted by the
column heading. Models 11 and 12 use the natural log of the sum of all foster
care exits by state, race, and month. ***, **, and * denote statistical significance
at the 1%, 5%, and 10% levels, respectively.

The second piece of information that one should report in a 2SLS
table is the first stage itself. We report the first stage at the bottom of
each even-numbered column. As you can see, for each one-unit
deviation in price from its long-term trend, meth admissions into
treatment (our proxy) fell by —-0.0005 log points. This is highly
significant at the 1% level, but we check for the strength of the

instrument using the F statistic [Staiger and Stock, 1997].6 We have



an F statistic of 17.6, which suggests that our instrument is strong
enough for identification.

Finally, let's examine the 2SLS estimate of the treatment effect
itself. Notice using only the exogenous variation in log meth
admissions, and assuming the exclusion restriction holds in our
model, we are able to isolate a causal effect of log meth admissions
on log aggregate foster care admissions. As this is a log-log
regression, we can interpret the coefficient as an elasticity. We find
that a 10% increase in meth admissions for treatment appears to
cause around a 15% increase in children being removed from their
homes and placed into foster care. This effect is both large and
precise. And it was not detectable otherwise (the coefficient was
zero).

Why are they being removed? Our data (AFCARS) lists several
channels: parental incarceration, child neglect, parental drug use, and
physical abuse. Interestingly, we do not find any effect of parental
drug use or parental incarceration, which is perhaps counterintuitive.
Their signs are negative and their standard errors are large. Rather,
we find effects of meth admissions on removals for physical abuse
and neglect. Both are elastic (i.e., 6 >1).

What did we learn? First, we learned how a contemporary piece of
applied microeconomics goes about using instrumental variables to
identify causal effects. We saw the kinds of graphical evidence
mustered, the way in which knowledge about the natural experiment
and the policies involved helped the authors argue for the exclusion
restriction (since it cannot be tested), and the kind of evidence
presented from 2SLS, including the first-stage tests for weak
instruments. Hopefully seeing a paper at this point was helpful. But
the second thing we learned concerned the actual study itself. We
learned that for the group of meth users whose behavior was
changed as a result of rising real prices of a pure gram of
methamphetamine (i.e., the complier subpopulation), their meth use
was causing child abuse and neglect so severe that it merited
removing their children and placing those children into foster care. If
you were only familiar with Dobkin and Nicosia [2009], who found no
effect of meth on crime using county-level data from California and



only the 1997 ephedrine shock, you might incorrectly conclude that
there are no social costs associated with meth abuse. But, while meth
does not appear to cause crime in California, it does appear to harm
the children of meth users and places strains on the foster care
system.

The Problem of Weak Instruments

| am not trying to smother you with papers. But before we move back
into the technical material itself, I'd like to discuss one more paper.
This paper will also help you better understand the weak instrument
literature following its publication.

As we've said since the beginning, with example after example,
there is a very long tradition in labor economics of building models
that can credibly identify the returns to schooling. This goes back to
Becker [1994] and the workshop at Columbia that Becker ran for
years with Jacob Mincer. This study of the returns to schooling has
been an important task given education’s growing importance in the
distribution of income and wealth since the latter twentieth century
with increasing returns to skill in the marketplace [Juhn et al., 1993].

One of the more seminal papers in instrumental variables for the
modern period is Angrist and Krueger [1991]. Their idea is simple and
clever; a quirk in the United States educational system is that a child
enters a grade on the basis of his or her birthday. For a long time,
that cutoff was late December. If children were born on or before
December 31, then they were assigned to the first grade. But if their
birthday was on or after January 1, they were assigned to
kindergarten. Thus two people—one born on December 31 and one
born on January 1—were exogenously assigned different grades.
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Figure 48. Compulsory schooling start dates by birthdates.

Nowthere’s nothing necessarily relevant here because if those
children always stay in school for the duration necessary to get a high
school degree, then that arbitrary assignment of start date won’t
affect high school completion. It'll only affect when they get that high
school degree. But this is where it gets interesting. For most of the
twentieth century, the US had compulsory schooling laws that forced
a person to remain in high school until age 16. After age 16, one
could legally stop going to school. Figure 48 explains visually this

instrumental variable.Z

Angrist and Krueger had the insight that that small quirk was
exogenously assigning more schooling to people born later in the
year. The person born in December would reach age 16 with more
education than the person born in January, in other words. Thus, the
authors uncovered small exogenous variation in schooling. Notice
how similar their idea was to regression discontinuity. That's because
IV and RDD are conceptually very similar strategies.

Eigure 49 shows the first stage, and it is really interesting. Look at
all those 3s and 4s at the top of the picture. There’s a clear pattern—
those with birthdays in the third and fourth quarter have more
schooling on average than do those with birthdays in the first and
second quarters. That relationship gets weaker as we move into later
cohorts, but that is probably because for later cohorts, the price on
higher levels of schooling was rising so much that fewer and fewer
people were dropping out before finishing their high school degree.
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Figure 49. First-stage relationship between quarter of birth and schooling.
Reprinted from Cunningham, S. and Finlay, K. (2012). “Parental Substance
Abuse and Foster Care: Evidence from Two Methamphetamine Supply
Shocks?” Economic Inquiry, 51(1):764—782. Copyright © 2012 Wiley. Used with
permission from John Wiley and Sons.

Eigure 50 shows the reduced-form relationship between quarter of

birth and log weekly earnings.2 You have to squint a little bit, but you
can see the pattern—all along the top of the jagged path are 3s and
4s, and all along the bottom of the jagged path are 1s and 2s. Not
always, but it's correlated.

Remember what | said about how instruments having a certain
ridiculousness to them? That is, you know you have a good
instrument if the instrument itself doesn’t seem relevant for explaining
the outcome of interest because that’s what the exclusion restriction
implies. Why would quarter of birth affect earnings? It doesn’'t make
any obvious, logical sense why it should. But, if | told you that people
born later in the year got more schooling than those with less



because of compulsory schooling, then the relationship between the
instrument and the outcome snaps into place. The only reason we
can think of as to why the instrument would affect earnings is if the
instrument were operating through schooling. Instruments only
explain the outcome, in other words, when you understand their effect

on the endogenous variable.2
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Figure 50. Reduced-form visualization of the relationship between quarter of
birth and schooling. Reprinted from Angrist, J. D. and Krueger, A. B. (1991).
“Does Compulsory School Attendance Affect Schooling and Earnings?”
Quarterly Journal of Economics, 106(4):979-1014. Permission from Oxford
University Press.

Angrist and Krueger use three dummies as their instruments: a
dummy for first quarter, a dummy for second quarter, and a dummy
for third quarter. Thus, the omitted category is the fourth quarter,
which is the group that gets the most schooling. Now ask yourself
this: if we regressed years of schooling onto those three dummies,



what should the signs and magnitudes be? That is, what would we
expect the relationship between the first quarter (compared to the
fourth quarter) and schooling? Let's look at their first-stage results
(Table 53).

Table 53. Quarter of birth and schooling.

Quarter-of-birth effect

Outcome variable Birth cohort | 1l 1]

Total schooling 1930-1939 —0.124 —0.86 —0.015
(0.017) (0.017) (0.016)

1940-1949 —0.085 —0.035 —0.017

(0.012) (0.012) (0.011)
High school grad 1930—-1939 —0.019 —0.020 —0.004
(0.002) (0.002) (0.002)
1940-1949 —0.015 —-0.012 —0.002

(0.007) (0.007) (0.007)

College grad 1930-1939 —0.005 0.003 0.002
(0.002) (0.002) (0.002)

1940-1949 —0.003 0.004 0.000

(0.002) (0.002) (0.002)

Note: Standard errors in parentheses.

Table 53 shows the first stage from a regression of the following
form:

Si=Xmw+LZien+2Zomn +Zamwiz + 1

where Z; is the dummy for the first three quarters, and m; is the

coefficient on each dummy. Now we look at what they produced in
Table 53. The coefficients are all negative and significant for the total
years of education and the high school graduate dependent
variables. Notice, too, that the relationship gets much weaker once
we move beyond the groups bound by compulsory schooling: the
number of years of schooling for high school students (no effect) and
probability of being a college graduate (no effect).



Regarding those college non-results. Ask yourself this question:
why should we expect quarter of birth to affect the probability of being
a high school graduate but not a college grad? What if we had found
quarter of birth predicted high school completion, college completion,
post-graduate completion, and total years of schooling beyond high
school? Wouldn't it start to seem like this compulsory schooling
instrument was not what we thought it was? After all, this quarter of
birth instrument really should only impact high school completion;
since it doesn’t bind anyone beyond high school, it shouldn’t affect
the number of years beyond high school or college completion
probabilities. If it did, we might be skeptical of the whole design. But
here it didn’t, which to me makes it even more convincing that they’re

identifying a compulsory high school schooling effect. 12

Table 54. Effect of schooling on wages using OLS and 2SLS.

Independent variable oLS 2SLS
Years of schooling 0.0711 0.0891
(0.0003) (0.0161)

9 Year-of-birth dummies Yes Yes

8 Region-of-residence dummies No No

Note: Standard errors in parentheses. First stage is quarter of birth dummies.

Now we look at the second stage for both OLS and 2SLS (which
the authors label TSLS, but means the same thing). Table 54 shows
these results. The authors didn’t report the first stage in this table
because they reported it in the earlier table we just reviewed. For
small values, the log approximates a percentage change, so they are
finding a 7.1% return for every additional year of schooling, but with
2SLS it's higher (8.9%). That’s interesting, because if it was merely
ability bias, then we’'d expect the OLS estimate to be too large, not
too small. So something other than mere ability bias must be going
on here.

For whatever it's worth, | am personally convinced at this point that
quarter of birth is a valid instrument and that they've identified a



causal effect of schooling on earnings, but Angrist and Krueger
[1991] want to go further, probably because they want more precision
in their estimate. And to get more precision, they load up the first
stage with even more instruments. Specifically, they use
specifications with 30 dummies (quarter of birth x year) and 150
dummies (quarter of birth x state) as instruments. The idea is that the
quarter of birth effect may differ by state and cohort.

But at what cost? Many of these instruments are only now weakly
correlated with schooling—in some locations, they have almost no
correlation, and for some cohorts as well. We got a flavor of that, in
fact, in Table 54, where the later cohorts show less variation in
schooling by quarter of birth than the earlier cohorts. What is the
effect, then, of reducing the variance in the estimator by loading up
the first stage with a bunch of noise?

Bound et al. [1995] is a classic work in what is sometimes called
the “weak instrument” literature. It’s in this paper that we learn some
some very basic problems created by weak instruments, such as the
form of 2SLS bias in finite samples. Since Bound et al. [1995]
focused on the compulsory schooling application that Angrist and
Krueger [1991] had done, | will stick with that example throughout.
Let’s consider their model with a single endogenous regressor and a
simple constant treatment effect. The causal model of interest here is
as before:

y=ps+e

where y is some outcome and s is some endogenous regressor, such
as schooling. Our instrument is Z and the first-stage equation is:

s=Z'r+n

Let's start off by assuming that ¢ and n are correlated. Then
estimating the first equation by OLS would lead to biased results,
wherein the OLS bias is:

C(e,S)
V(s)

E[EOLS — Bl =
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We will rename this ratio as Bound et al. [1995] show that the

>
7]
5
bias of 2SLS centers on the previously defined OLS bias as the

weakness of the instrument grows. Following Angrist and Pischke
[2009], I'll express that bias as a function of the first-stage F statistic:

Table 55. Effect of completed schooling on men’s log weekly wages.

Independent variable OLS 2SLS OLs 2SLS OLS 2SLS

Years of schooling 0.063 0.142 0.063 0.081 0.063 0.060
(0.000) (0.033) (0.000) (0.016) (0.000) (0.029)

First stage F 13.5 4.8 1.6
Excluded instruments

Quarter of birth Yes Yes Yes
Quarter of birth x year

of birth No Yes Yes
Number of excluded

instruments 3 30 28

Note: Standard errors in parentheses. First stage is quarter of birth dummies.

where F is the population analogy of the F-statistic for the joint

significance of the instruments in the first-stage regression. If the first
J..'.‘J'IF
stage is weak, and F —0, then the bias of 2SLS approaches —- But

if the first stage is very strong, F—«, then the 2SLS bias goes to 0.
Returning to our rhetorical question from earlier, what was the cost
of adding instruments without predictive power? Adding more weak
instruments causes the first-stage F statistic to approach zero and
increase the bias of 2SLS.
Bound et al. [1995] studied this empirically, replicating Angrist and
Krueger [1991], and using simulations. Table 55 shows what happens



once they start adding in controls. Notice that as they do, the F
statistic on the excludability of the instruments falls from 13.5 to 4.7 to
1.6. So by the F statistic, they are already running into a weak
instrument once they include the 30 quarter of birth x year dummies,
and | think that's because as we saw, the relationship between
quarter of birth and schooling got smaller for the later cohorts.

Next, they added in the weak instruments—all 180 of them—which
is shown in Table 56. And here we see that the problem persists. The
instruments are weak, and therefore the bias of the 2SLS coefficient
is close to that of the OLS bias.

Table 56. Effect of completed schooling on men’s log weekly wages
controlling for state of birth.

Independent variable OLS 2SLS OoLS 2SLS

Years of schooling 0.063 0.083 0.063 0.081
(0.000) (0.009) (0.000) (0.017)

First stage F 2.4 1.9
Excluded instruments

Quarter of birth Yes Yes
Quarter of birth x year of birth Yes Yes
Quarter of birth x state of birth Yes Yes
Number of excluded instruments 180 178

Note: Standard errors in parentheses.

But the really damning part of the Bound et al. [1995] was their
simulation. The authors write:

To illustrate that second-stage results do not give us any indication of the
existence of quantitatively important finite-sample biases, we reestimated
Table 1, columns (4) and (6) and Table 2, columns (2) and (4), using
randomly generated information in place of the actual quarter of birth,
following a suggestion by Alan Krueger. The means of the estimated standard
errors reporting in the last row are quite close to the actual standard
deviations of the 500 estimates for each model. . . . It is striking that the
second-stage results reported in Table 3 look quite reasonable even with no



information about educational attainment in the simulated instruments. They
give no indication that the instruments were randomly generated . . . On the
other hand, the F statistics on the excluded instruments in the first-stage
regressions are always near their expected value of essentially 1 and do give
a clear indication that the estimates of the second-stage coefficients suffer
from finite-sample biases. (Bound et al., 448)

So, what can you do if you have weak instruments? Unfortunately,
not a lot. You can use a just-identified model with your strongest IV.
Second, you can use a limited-information maximum likelihood
estimator (LIML). This is approximately median unbiased for over
identified constant effects models. It provides the same asymptotic
distribution as 2SLS under homogeneous treatment effects but
provides a finite-sample bias reduction.

But, let's be real for a second. If you have a weak instrument
problem, then you only get so far by using LIML or estimating a just-
identified model. The real solution for a weak instrument problem is to
get better instruments. Under homogeneous treatment effects, you're
always identifying the same effect, so there’s no worry about a
complier only parameter. So you should just continue searching for
stronger instruments that simultaneously satisfy the exclusion

restriction.

In conclusion, | think we’ve learned a lot about instrumental
variables and why they are so powerful. The estimators based on this
design are capable of identifying causal effects when your data suffer
from selection on unobservables. Since selection on unobservables is
believed to be very common, this is a very useful methodology for
addressing that. But, that said, we also have learned some of the
design’s weaknesses, and hence why some people eschew it. Let’s
now move to heterogeneous treatment effects so that we can better
understand some limitations a bit better.

Heterogeneous Treatment Effects

Now we turn to a scenario where we relax the assumption that
treatment effects are the same for every unit. This is where the
potential outcomes notation comes in handy. Instead, we will allow for
each unit to have a unique response to the treatment, or



Note that the treatment effect parameter now differs by individual /.
We call this heterogeneous treatment effects.

The main questions we have now are: (1) what is IV estimating
when we have heterogeneous treatment effects, and (2) under what
assumptions will IV identify a causal effect with heterogeneous
treatment effects? The reason this matters is that once we introduce
heterogeneous treatment effects, we introduce a distinction between
the internal validity of a study and its external validity. Internal validity
means our strategy identified a causal effect for the population we
studied. But external validity means the study’s finding applied to
different populations (not in the study). The deal is that under
homogeneous treatment effects, there is no tension between external
and internal validity because everyone has the same treatment effect.
But under heterogeneous treatment effects, there is huge tension; the
tension is so great, in fact, that it may even undermine the
meaningfulness of the relevance of the estimated causal effect

despite an otherwise valid IV design!12

Heterogeneous treatment effects are built on top of the potential
outcomes notation, with a few modifications. Since now we have two
arguments—D and Z—we have to modify the notation slightly. We
say that Y is a function of D and Z as Y;(D; = 0, Z; =1), which is

represented as Y;(0, 1).

Potential outcomes as we have been using the term refers to the Y
variable, but now we have a new potential variable—potential
treatment status (as opposed to observed treatment status). Here are
the characteristics:

D! = i's treatment status when Z; =1
D? = i's treatment status when Z; =0

And observed treatment status is based on a treatment status
switching equations:



D; =D? + (D] — D?)Z;
=g+ m1Zi + ¢

where mg; = E[D?] =y = (D] —Df) i is the heterogeneous causal effect
of the IV on D;, and E[mr,;] = the average causal effect of Z; on D,.

There are considerably more assumptions necessary for
identification once we introduce heterogeneous treatment effects—
specifically five assumptions. We now review each of them. And to be
concrete, | use repeatedly as an example the effect of military service
on earnings using a draft lottery as the instrumental variable [Angrist,
1990]. In that paper, Angrist estimated the returns to military service
using as an instrument the person’s draft lottery number. The draft
lottery number was generated by a random number generator and if a
person’s number was in a particular range, they were drafted,
otherwise they weren't.

First, as before, there is a stable unit treatment value assumption
(SUTVA) that states that the potential outcomes for each person i are
unrelated to the treatment status of other individuals. The assumption
states that if Z; = Z';, then D,(Z) = D,(Z)). And if Z; = Z'; and D; = D,
then Y,(D,Z) = Y,(D',Z'). A violation of SUTVA would be if the status of

a person at risk of being drafted was affected by the draft status of

others at risk of being drafted. Such spillovers violate SUTVA.12 Not
knowing a lot about how that works, | can’t say whether Angrist’s draft
study would’ve violated SUTVA. But it seems like he’s safe to me.

Second, there is the independence assumption. The independence
assumption is also sometimes called the “as good as random
assignment” assumption. It states that the IV is independent of the
potential outcomes and potential treatment assignments. Notationally,
itis

[Y,(0,1),v,(07,0),0,0?} L Z,

The independence assumption is sufficient for a causal interpretation
of the reduced form:



E[Y;1Z:=1]—E[Y;| Z;= 0] = E[Yi(D},1) | Z; =11 — E[Y;(D,0) | Z; = 0]
= E[Y;(D],1)] — E[Y:(D?, 0)]

And many people may actually prefer to work just with the instrument
and its reduced form because they find independence satisfying and
acceptable. The problem, though, is technically the instrument is not
the program you're interested in studying. And there may be many
mechanisms leading from the instrument to the outcome that you
need to think about (as we will see below). Ultimately, independence
is nothing more and nothing less than assuming that the instrument
itself is random.

Independence means that the first stage measures the causal
effect of Z; on D;:

D |Z,=1)-ED;|Z,=0)=E[D} | Z,= ")~ E[D7 | Z,= )
=E(D;-D)]

1

An example of this is if Vietnam conscription for military service was
based on randomly generated draft lottery numbers. The assignment
of draft lottery number was independent of potential earnings or
potential military service because it was “as good as random.”

Third, there is the exclusion restriction. The exclusion restriction
states that any effect of Z on Y must be via the effect of Z on D. In
other words, Y;(D;,Z) is a function of D; only. Or formally:

Y,(D;,0) = Y;(D;,1) forD =0,

Again, our Vietnam example. In the Vietham draft lottery, an
individual's earnings potential as a veteran or a non-veteran are
assumed to be the same regardless of draft eligibility status. The
exclusion restriction would be violated if low lottery numbers affected
schooling by people avoiding the draft. If this was the case, then the



lottery number would be correlated with earnings for at least two
cases. One, through the instrument’s effect on military service. And
two, through the instrument’s effect on schooling. The implication of
the exclusion restriction is that a random lottery number
(independence) does not therefore imply that the exclusion restriction
is satisfied. These are different assumptions.

Fourth is the first stage. IV designs require that Z be correlated with
the endogenous variable such that

E[D] —D{1#0

Z has to have some statistically significant effect on the average
probability of treatment. An example would be having a low lottery
number. Does it increase the average probability of military service? If
so, then it satisfies the first stage requirement. Note, unlike
independence and exclusion, the first stage is testable as it is based
solely on D and Z, both of which you have data on.

And finally, there is the monotonicity assumption. This is only
strange at first glance but is actually quite intuitive. Monotonicity
requires that the instrumental variable (weakly) operate in the same
direction on all individual units. In other words, while the instrument
may have no effect on some people, all those who are affected are
affected in the same direction (i.e., positively or negatively, but not
both). We write it out like this:

Either =y, > 0 foralliorz; <0 foralli=1,...,N

What this means, using our military draft example, is that draft
eligibility may have no effect on the probability of military service for
some people, like patriots, people who love and want to serve their
country in the military, but when it does have an effect, it shifts them
all into service, or out of service, but not both. The reason we have to
make this assumption is that without monotonicity, IV estimators are
not guaranteed to estimate a weighted average of the underlying
causal effects of the affected group.



If all five assumptions are satisfied, then we have a valid IV
strategy. But that being said, while valid, it is not doing what it was
doing when we had homogeneous treatment effects. What, then, is
the IV strategy estimating under heterogeneous treatment effects?
Answer: the local average treatment effect (LATE) of D on Y-

Effectof ZonY

S =
WLATE ™ Effect of Zon D
~ E[Y;(D},1) - Yi(D},0)]
B E[D} — D"

=E[(Y] - ¥))| D] =D} =1]

The LATE parameter is the average causal effect of D on Y for those
whose treatment status was changed by the instrument, Z. We know
that because notice the difference in the last line: D] -0 . So, for those
people for whom that is equal to 1, we calculate the difference in
potential outcomes. Which means we are only averaging over
treatment effects for whom D] - DP. Hence why the parameter we are
estimating is “local.”

How do we interpret Angrist's estimated causal effect in his
Vietnam draft project? Well, IV estimates the average effect of military
service on earnings for the subpopulations who enrolled in military
service because of the draft. These are specifically only those people,
though, who would not have served otherwise. It doesn’t identify the
causal effect on patriots who always serve, for instance, because
D! — DY = 0 for patriots. They always serve! D! =1and D} =1 for patriots
because they’re patriots! It also won't tell us the effect of military
service on those who were exempted from military service for medical

reasons because for these people b =0 and 0? =014

The LATE framework has even more jargon, so let’s review it now.
The LATE framework partitions the population of units with an
instrument into potentially four mutually exclusive groups. Those
groups are:

1. Compliers: This is the subpopulation whose treatment status is affected by
the instrument in the correct direction. That is, D: =1 and D? = 0.



2. Defiers: This is the subpopulation whose treatment status is affected by the
instrument in the wrong direction. That is, D] =0 and DY = 113
3. Never takers: This is the subpopulation of units that never take the

treatment regardless of the value of the instrument. So, DJ = Df = 0. They

simply never take the treatment. 16

4. Always takers: This is the subpopulation of units that always take the
treatment regardless of the value of the instrument. So, DI? = {JF =1.They

simply always take the instrument.

As outlined above, with all five assumptions satisfied, IV estimates
the average treatment effect for compliers, which is the parameter
we’ve called the local average treatment effect. It's local in the sense
that it is average treatment effect to the compliers only. Contrast this
with the traditional IV pedagogy with homogeneous treatment effects.
In that situation, compliers have the same treatment effects as
noncompliers, so the distinction is irrelevant. Without further
assumptions, LATE is not informative about effects on never-takers or
always-takers because the instrument does not affect their treatment
status.

Does this matter? Yes, absolutely. It matters because in most
applications, we would be mostly interested in estimating the average
treatment effect on the whole population, but that's not usually

possible with V.18

Now that we have reviewed the basic idea and mechanics of
instrumental variables, including some of the more important tests
associated with it, let's get our hands dirty with some data. We'll work
with a couple of data sets now to help you better understand how to
implement 2SLS in real data.

Applications

College in the county. We will once again look at the returns to
schooling since it is such a historically popular topic for causal
questions in labor. In this application, we will simply estimate a 2SLS
model, calculate the first-stage F statistic, and compare the 2SLS
results with the OLS results. | will be keeping it simple, because my
goal is just to help the reader become familiarized with the procedure.



The data comes from the NLS Young Men Cohort of the National
Longitudinal Survey. This data began in 1966 with 5,525 men aged
14-24 and continued to follow up with them through 1981. These
data come from 1966, the baseline survey, and there are a number of
questions related to local labor-markets. One of them is whether the
respondent lives in the same county as a 4-year (and a 2-year)
college.

Card [199%5] is interested in estimating the following regression
equation:

Y;=OI+5S,'+]?X;+8,'

where Y is log earnings, S is years of schooling, X is a matrix of
exogenous covariates, and ¢ is an error term that contains, among
other things, unobserved ability. Under the assumption that € contains
ability, and ability is correlated with schooling, then C(S, ¢) = 0 and
therefore schooling is biased. Card [1995] proposes therefore an
instrumental variables strategy whereby he will instrument for
schooling with the college-in-the-county dummy variable.

It is worth asking ourselves why the presence of a 4-year college in
one’s county would increase schooling. The main reason | can think
of is that the presence of the 4-year college increases the likelihood
of going to college by lowering the costs, since the student can live at
home. This therefore means that we are selecting on a group of
compliers whose behavior is affected by the variable. Some kids, in
other words, will always go to college regardless of whether a college
is in their county, and some will never go despite the presence of the
nearby college. But there may exist a group of compliers who go to
college only because their county has a college, and if I'm right that
this is primarily picking up people going because they can attend
while living at home, then it's necessarily people at some margin who
attend only because college became slightly cheaper. This is, in other
words, a group of people who are liquidity constrained. And if we
believe the returns to schooling for this group are different from those
of the always-takers, then our estimates may not represent the ATE.
Rather, they would represent the LATE. But in this case, that might



actually be an interesting parameter since it gets at the issue of
lowering costs of attendance for poorer families.
Here we will do some simple analysis based on Card [1995].

STATA
card.do
1 use https://github.com/scunning1975/mixtape/raw/master/card.dta, clear
2 reglwage educ exper black south married smsa
3 ivregress 2sls wage (educ=nearc4) exper black south married smsa, first
4 reg educ nearc4 exper black south married smsa
5 test nearc4
R
card.R
1 library(AER)
2 library(haven)
3 library(tidyverse)
4
5 read_data < function(df)
6 {
7  full_path <- paste("https://raw.github.com/scunning1975/mixtape/master/",
8 df, sep ="")
9  df < read_dta(full_path)
10 return(df)
1 }
12
13 card <- read_data("card.dta")
14
15 #Define variable
16 #(Y1 = Dependent Variable, Y2 = endogenous variable, X1 = exogenous variable,
< X2 = Instrument)
17
18 attach(card)
19
20 Y1 <-lwage
21 Y2 <-educ

22 X1 <- chind(exper, black, south, married, smsa)
23 X2 <-nearcd

24

25 #OLS

26 ols_reg <- Im(Y1 ~ Y2 + X1)

27 summary(ols_reg)

28

29 #2SLS

30 iv_reg = ivreg(Y1 ~ Y2 + X1 | X1 + X2)
31 summary(iv_reg)

32



Table 57. OLS and 2SLS regressions of Log Earnings on schooling.

Dependent variable

Log earnings

OLS 2SLS
educ 0.0771%** 0.124**
(0.003) (0.050)
exper 0.034*** 0.056***
(0.002) (0.020)
black —0.166*** —0.116**
(0.018) (0.057)
south —0.132%** —0.113%**
(0.015) (0.023)
married —0.036*** —0.032%**
(0.003) (0.005)
smsa 0.176%*** 0.148%**
(0.015) (0.031)
First-stage instrument
College in the county 0.327***
Robust standard error (0.082)
F statistic for IV in first stage 15.767
N 3,003 3,003
Mean dependent variable 6.262 6.262
SD dependent variable 0.444 0.444

Note: Standard errors in parentheses. *p < 0.10. **p <0.05. ***p < 0.01.

Our results from this analysis have been arranged into Table 57.
First, we report our OLS results. For every one year additional of
schooling, respondents’ earnings increase by approximately 7.1%.
Next we estimated 2SLS using the ivregress 2sls command in Stata.
Here we find a much larger return to schooling than we had found
using OLS—around 75% larger in fact. But let’s look at the first stage.
We find that the college in the county is associated with 0.327 more
years of schooling. This is highly significant (p<0.001). The F statistic
exceeds 15, suggesting we don’'t have a weak instrument problem.
The return to schooling associated with this 2SLS estimate is 0.124—



that is, for every additional year of schooling, earnings increase by
12.4%. Other covariates are listed if you're interested in studying
them as well.

Why would the return to schooling be so much larger for the
compliers than for the general population? After all, we showed
earlier that if this was simply ability bias, then we’d expect the 2SLS
coefficient to be smaller than the OLS coefficient, because ability bias
implies that the coefficient on schooling is too large. Yet we're finding
the opposite. So a couple of things it could be. First, it could be that
schooling has measurement error. Measurement error would bias the
coefficient toward zero, and 2SLS would recover its true value. But |
find this explanation to be unlikely, because | don’t foresee people
really not knowing with accuracy how many years of schooling they
currently have. Which leads us to the other explanation, and that is
that compliers have larger returns to schooling. But why would this be
the case? Assuming that the exclusion restriction holds, then why
would compliers, returns be so much larger? We've already
established that these people are likely being shifted into more
schooling because they live with their parents, which suggests that
the college is lowering the marginal cost of going to college. All we
are left saying is that for some reason, the higher marginal cost of
attending college is causing these people to underinvest in schooling;
that in fact their returns are much higher.

Fulton Fish Markets. The second exercise that we’'ll be doing is based
on Graddy [2006]. My understanding is that Graddy collected these
data herself by recording prices of fish at the actual Fulton Fish
Market. I'm not sure if that is true, but | like to believe it's true.
Anyhow, the Fulton Fish Market operated in New York on Fulton
Street for 150 years. In November 2005, it moved from Lower
Manhattan to a large facility building for the market in the South
Bronx. At the time when Graddy (2006) was published, the market
was called the New Fulton Fish Market. It's one of the world’s largest
fish markets, second only to the Tsukiji in Tokyo.

Fish a